Abstract

Dr. Vladimir S. Malinovsky (MagiQ Technologies, Inc., New York)


Collapse and revival of entanglement of two interacting qubits

A new method of entangled states preparation of two-qubit systems is proposed. The method combines the techniques of coherent control by manipulation of the relative phase between pulses, and adiabatic control using time-delayed pulse sequences. In this work we exploit the sensitivity of population dynamics to the relative phase of the fields in order to control entanglement. The interplay between adiabatic partially time-delayed pulse sequences and phase control allow to prepare any type of entangled state in a simple and robust manner. We show that the population and entanglement exhibits collapses and full revivals when the initial distribution of phonons is a coherent state. A scheme to generate phase-controlled two-qubit gates based on the effect of full revivals is proposed.