next up previous
Next: TENSOR STRUCTURE Up: The structure of the propagator Previous: INTRODUCTION

   
LATTICE FORMALISM

We use the `symmetric' definition of the gluon field, given by U$\scriptstyle \mu$(x) = exp(ig0aA$\scriptstyle \mu$(x + $ \hat{\mu}$/2)). This gives the gluon field in momentum space,

A$\scriptstyle \mu$($\displaystyle \hat{q}$) = $\displaystyle {\frac{e^{-i\hat{q}_{\mu}a/2}}{2ig_0a}}$$\displaystyle \left[\vphantom{B_\mu(\hat{q})
-\frac{1}{3}{\rm Tr}\,B_\mu(\hat{q})}\right.$B$\scriptstyle \mu$($\displaystyle \hat{q}$) - $\displaystyle {\textstyle\frac{1}{3}}$Tr B$\scriptstyle \mu$($\displaystyle \hat{q}$)$\displaystyle \left.\vphantom{B_\mu(\hat{q})
-\frac{1}{3}{\rm Tr}\,B_\mu(\hat{q})}\right]$ (1)

where $ \hat{q}$ denotes the discrete momenta $ \hat{q}_{\mu}^{}$ = 2$ \pi$n$\scriptstyle \mu$/(aL$\scriptstyle \mu$), B$\scriptstyle \mu$($ \hat{q}$) $ \equiv$ U$\scriptstyle \mu$($ \hat{q}$) - U$\scriptstyle \dagger$$\scriptstyle \mu$(- $ \hat{q}$), and U$\scriptstyle \mu$($ \hat{q}$) $ \equiv$ $ \sum_{x}^{}$e-i$\scriptstyle \hat{q}$xU$\scriptstyle \mu$(x). An alternative, `asymmetric' definition of the gluon field can be provided by U$\scriptstyle \mu$(x) = exp(ig0aA'$\scriptstyle \mu$(x)). In momentum space, this differs from A$\scriptstyle \mu$(x) by a factor exp(i$ \hat{q}_{\mu}^{}$a/2).

The gluon propagator Dab$\scriptstyle \mu$$\scriptstyle \nu$($ \hat{q}$) is defined as

Dab$\scriptstyle \mu$$\scriptstyle \nu$($\displaystyle \hat{q}$) = $\displaystyle \langle$Aa$\scriptstyle \mu$($\displaystyle \hat{q}$)Ab$\scriptstyle \nu$(- $\displaystyle \hat{q}$)$\displaystyle \rangle$ / V , (2)

where A$\scriptstyle \mu$($ \hat{q}$) $ \equiv$ taA$\scriptstyle \mu$a($ \hat{q}$). In the continuum Landau gauge, the propagator has the structure

 
D$\scriptstyle \mu$$\scriptstyle \nu$ab(q) = $\displaystyle \delta^{ab}_{}$($\displaystyle \delta_{\mu\nu}^{}$ - $\displaystyle {\frac{q_{\mu}q_{\nu}}{q^2}}$)D(q2) , (3)

At tree level, D(q2) will have the form D(0)(q2) = 1/q2. On the lattice, this becomes D(0)($ \hat{q}$) = a2/(4$ \sum_{\mu}^{}$sin2($ \hat{q}_{\mu}^{}$a/2)). Since QCD is asymptotically free, we expect that up to logarithmic corrections, q2D(q2)$ \to$1 in the ultraviolet. Hence we define the new momentum variable q by q$\scriptstyle \mu$ $ \equiv$ (2/a)sin($ \hat{q}_{\mu}^{}$a/2), and use this throughout


 
 
Table: Simulation parameters. The lattice spacing is taken from the string tension [6].
Name $ \beta$ a-1 (GeV) Volume Nconf
Small 6.0 1.885 163 x 48 125
Large 6.0 1.885 323 x 64 75
Fine 6.2 2.63 243 x 48 223

We have analysed three lattices, with different values for the volume and lattice spacing. The details are given in table 1. All the configurations have been fixed to Landau gauge with an accuracy $ \langle$($ \partial_{\mu}^{}$A$\scriptstyle \mu$)2$ \rangle$ < 10-12.


next up previous
Next: TENSOR STRUCTURE Up: The structure of the propagator Previous: INTRODUCTION
Jon Ivar Skullerud
1999-02-15