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We numerically study the effect of disorder on the stability of the many-body zero mode in a Kitaev chain with
local interactions. Our numerical procedure allows us to resolve the position space and multiparticle structure of
the zero modes, as well as providing estimates for the mean energy splitting between pairs of states of opposite
fermion parity, over the full many-body spectrum. We find that the parameter space of a clean system can be
divided into regions where interaction induced decay transitions are suppressed (region I) and where they are
not (region II). In region I we observe that disorder has an adverse effect on the zero mode, which extends
further into the bulk and is accompanied by an increased energy splitting between pairs of states of opposite
parity. Conversely region II sees a more intricate effect of disorder, showing an enhancement of localization
at the system’s end accompanied by a reduction in the mean pairwise energy splitting. We discuss our results
in the context of the many-body localization (MBL). We show that while the mechanism that drives the MBL
transition also contributes to the fock-space localization of the many-body zero modes, measures that characterize
the degree of MBL do not necessarily correlate with an enhancement of the zero mode or an improved stability
of the topological region.
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I. INTRODUCTION

The prospects of building quantum devices using topolog-
ical superconductors has caused a great deal of excitement. In
these systems, emergent excitations known as Majorana zero
modes that occur at sample edges obey non-Abelian exchange
statistics [1–5], and their manipulation is inherently protected
from common sources of decoherence. This potentially revo-
lutionary feature has spurred a great deal of theoretical [6–14]
and experimental work [15–25].

The experimental observations in proximity coupled sys-
tems are typically well described within a quasiparticle frame-
work (see, e.g., Refs. [26–43]), suggesting that at temper-
atures well below the gap, the properties of these systems
are stable to imperfect conditions such as electron-electron
interactions. Recently there have been efforts to understand
the stability of these non-Abelian excitations at energies
and temperatures well above the topological gap [43–57].
These studies directly relate to the effectiveness of symmetry-
protected-topological (SPT) systems as platforms for quantum
memories.

In this respect an important recent idea connected to the
phenomenon of many-body localization [58,59] suggests that
the stability of non-Abelian excitations at high energies can be
enhanced with additional protection due to disorder-induced
localization [60–69]. This notion has been called localization-
protected topological order [70] and its consequences could be
far reaching, allowing for topological quantum processors that
can be operated at high temperatures. Although this would be
a remarkable feature, the precise way in which the interplay
between disorder and interactions affect the topological order
has proved difficult to pin down.

One complication is that both disorder and interactions
are known to be universally detrimental to this symmetry-
protected topological phase. By gradually destroying the
superconducting gap which protects it, potential disorder is
known to make the Majorana zero modes less localized at the
system’s boundary. This drives a topological phase transition
at a critical strength when the mean free path is half the
superconducting coherence length lc = ξ/2 [26–33].

Interactions can similarly reduce the topological protection
and drive a phase transition to a nontopological phase (see,
e.g., Refs. [34–43]). This can be understood in terms of two
mechanisms that lift the topological degeneracy associated
with the mode: (1) Local charging effects, which give rise
to local potentials, can measure the occupation of the zero
mode and (2) interaction induced decay transitions that change
the occupancy of the zero mode while exciting quasiparticle
excitations. As both disorder and interactions reduce the topo-
logical protection, it is reasonable to think that they combine to
destroy the topological phase even further. Indeed, analyses of
both effects using Abelian bosonization suggests that repulsive
interactions and disorder do indeed reinforce their destructive
effects on the topological phase [37,38].

These destructive effects add an additional level of com-
plexity to an already difficult numerical problem. This is
because in order to demonstrate some enhanced topological
protection in the interacting system, one typically needs to
obtain precise information about the full many-body spectrum,
using a statistically significant number of different disorder
realizations. Although this full spectrum resolution can be in
principle obtained using exact diagonalization methods, the
range of system sizes accessible to this technique is very
limited. This, and the fact that the background negative effects

2469-9950/2018/97(8)/085425(15) 085425-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.085425&domain=pdf&date_stamp=2018-02-20
https://doi.org/10.1103/PhysRevB.97.085425


G. KELLS, N. MORAN, AND D. MEIDAN PHYSICAL REVIEW B 97, 085425 (2018)

of both interactions and disorder are also strongly present in
small systems, makes extrapolation to larger more meaningful
systems essentially impossible.

In this paper we address these questions from the per-
spective of many-body zero modes [43–57]. We focus on
the simplest topological superconductor, the Kitaev chain,
in the presence of short range interactions and potential
disorder. We study these effects using exact diagonalization
and a numerical procedure that approximates the odd-parity
multiparticle steady states of the interacting commutator H =
[H,•] [55]. In this respect we showcase a key improvement:
namely its implementation using matrix-product operators
(MPO) [71] and DMRG-like optimization [72]. This super-
operator formalism allows us to resolve the position-space and
multiparticle structure of the zero modes as well as to extract
statistical information about the entire many-body spectrum.
Our analysis shows that, in weakly interacting topological
superconductors, disorder can trigger separate effects that both
enhance and degrade topological order. As the strength of each
mechanism is dependent on the underlying parameter space,
this allows for the identification of regimes of parameter space
where disorder can degrade (region I) or improve (region II)
the underlying topological protection of the zero mode.

The structure of the paper is as follows. In Sec. II we review
the Kitaev chain (or p-wave wire) model and qualify our central
results using both band-projection and perturbation theory.
In this section we also review the key results pertaining to
MBL and their connection to so-called many-body zero modes.
In Sec. II we discuss our MPO numerical methodology and
examine the connection between the structure of the zero-mode
expansion and the statistical estimates of the pairwise energy
level splitting. In Sec. III we outline the numerical results
themselves.

We also include several appendices: In Appendix A we
discuss the perturbative case for zero modes. In Appendix B
we discuss our MPO algorithm and add more details to the
error analysis provided in the main text. In Appendix C we
provide the results from exact diagonalization calculations.
In Appendix D we outline the formal construction of many-
body zero modes and discuss the relationship between energy
relaxation processes and resulting multiparticle structure of the
zero-mode position space expansion.

II. MODEL AND PHYSICAL PICTURE

We formulate our results using the lattice p-wave supercon-
ducting model or Kitaev chain [3]:

H0 = −
N∑

j=1

μj

(
c
†
j cj − 1

2

)
−

N−1∑
j=1

tc
†
j cj+1

+ �c
†
j c

†
j+1 + H.c., (1)

where coefficients t , �, and μi are for the hopping, pairing
amplitude, and local chemical potential at site i, respectively.
To model disorder we allow the local chemical potential to
vary around an average value μ with the standard deviation set
by the parameter λ. The normal-state mean-free path is given

as l = v2
F

λ2 , where h̄vF = 2ta

√
μ+2t

t
is the Fermi velocity.

Interactions are included through the local quartic term

HI = 2U

N−1∑
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)(
c
†
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)
. (2)

The phase of the p-wave superconducting pairing potential
can be chosen to be real. When |�| > 0 and |μ| < 2t the H0

system is known to be in a topological phase with Majorana
zero modes exponentially localized at each end of the wire [3].
In what follows it is useful to work in a basis of position space
Majorana operators defined as:

γ2j−1 = i(c†j − cj ),γ2j = (c†j + cj ). (3)

These obey {γi,γj } = 2δij and thus γi = γ
†
i and γ 2

i = I .
When interactions are absent, the many-body spectrum

is doubly degenerate. The two states that form an almost
degenerate pair differ by the occupation of the zero mode,
made up of two Majorana bound states exponentially localized
at the two ends of the chain. The energy splitting between
pairs depends on the spatial decay rate of the Majorana
zero modes and is given as δ ∼ e−L/ξ where ξ ∼ t/� is the
superconducting coherence length.

Interactions can lift the twofold degeneracy in two ways.
Firstly, by introducing local charging effects, which can mea-
sure the occupation of the zero mode. As information of the
occupancy of the zero mode is stored nonlocally, this lifting
occurs at an order of the interaction strength U which scales
with the system size ∼UL. Crucially, interactions can also
change the occupancy of the zero mode by introducing energy
relaxation processes whereby a finite energy excitation can
decay into the zero mode while exciting a pair of quasiparticles.
These decay processes serve as a lifetime for noninteracting
states, which can be estimated from a Fermi golden rule
type analysis. The simplest lowest-order decay process is the
transition of a quasiparticle excitation to two quasiparticle ex-
citations, while changing the occupancy of the zero mode
(leaving all other quasiparticle excitations unaltered):

� ∼ |U |2
�ε

, (4)

where �ε = 2ε
0/1
min − ε

1/0
max where the superscript denotes the

state of the zero mode, 2ε
0/1
min is the minimal energy of a state

with two bulk quasiparticle excitations, and ε
1/0
max is the maximal

energy of a state with a single bulk quasiparticle excitation
(Fig. 1).

Our main insight is then based on the fact that in a clean
system there are regions of parameter space where these real
decay transitions are suppressed; we refer to this regime as
region I. In the clean noninteracting limit, region I can be
defined by the requirement that � < �ε which can be written
as [see Appendix A for a detailed discussion]:

|μ| <
2t − U

3
, if |μ| >

2

t
(t2 − �2)

|μ| < 2|�|
√

4 − μ2

t2 − �2
− 2t − U,otherwise. (5)

The complement space, where � > �ε, is identified as region
II. We remark that while region I can be prominent in lattice
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FIG. 1. (a) The full many-body spectrum of a small L = 12
system with � = 0.9t and U = 0. We label bands according to the
number of bulk (nonzero mode) excitations above the ground state.
When band crossings occur, interactions can induce avoided level
crossings between bands with different fermion number and different
occupation of the zero mode. These are generally different in even and
odd sectors; causing the degeneracy associated with the zero mode to
lift. Away from the flat band limit μ = 0 and t = |�|, bands in the
middle of the spectrum begin to cross. Interaction induced transitions
require the excitation of a large number of quasiparticle excitations in
this limit. (b) Phase diagram constructed by outlining where crossings
first occur for a L = 50 system. It also indicates a key exception
along the μ = 0 line, where the crossings are protected by additional
symmetry [45]. (c)

√〈E2〉/U given by (12) in the clean system with
U = 0.1t , calculated using the MPS/DMRG algorithm for a system
of length L = 50. Unless specified otherwise, all energy scales are in
units of t .

models, experimental realizations of the Kitaev chain are
typically characterized by weak proximity coupling � � t ,
and the parameter space is dominated by region II.

Disorder modifies this picture in three ways by: (1) in-
creasing the coherence length ξ , making the Majorana zero
modes less localized at the systems boundary [26–33], (2)
broadening the width of the single particle excitation band, and
(3) decreasing the localization length of bulk excitations [73].

On a single particle level, both regions I and II experience a
similar effect of disorder which extends the zero mode operator
further into the bulk, thus gradually lifting the degeneracy
that protects the topological phase. However, on top of this
single particle effect, disorder plays a much more subtle role:
In region I disorder has a universally adverse effect because, by
also broadening the bulk single particle excitation band, it also
drives the system towards a regime where decay transitions
can occur. Although disorder may also increase the number of
decay transition in region II, in this case the energy splitting
associated with these decay transitions is reduced, as shown
in Fig. 2. This behavior is directly connected to the spatial
localization of the bulk states, which suppress these decay
processes within a localization length (see, e.g., Refs. [58–60]).
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FIG. 2. The probability distribution of the first-order interaction-
induced decay amplitude |d| = |〈n |HI | m〉| decays as we increase the
disorder strength λ. Here | m〉 is a noninteracting state with two bulk
excitations and the zero mode unoccupied and | n〉 is a noninteracting
state with a single bulk excitation and the zero mode occupied. The
plots were obtained in region II for μ = −t , � = 0.5t , U = 0.1t ,
and for a wire of length L = 100. Increasing the value of the disorder
parameter λ shifts the distribution towards zero splitting.

These competing behaviors are revealed in the numerical
analysis (see Sec. III) of the multiparticle structure where
we see clear evidence of both localization-enhanced and
localization-diminished topological order. Near the system
edges, in both regions I and II, disorder increases the decay
length of single particle terms as well as locally clustered
components. However, further from the sample edge, the
spatial decay of the locally clustered components shows a
clear distinction between the two regions of phase space,
as highlighted in Figs. 4(c) and 4(d). In region I all local
clusters extend further into the bulk in the presence of disorder.
Conversely, region II exhibits a transition from nondecaying
local clusters [see (7)] in the clean system to exponentially
decaying in a disordered medium.

We will also show how the aforementioned decay of local
multiparticle clusters is reflected in the mean energy-level
splitting 〈δ〉 between pairs of states from opposite parity
sectors. Region I, which is dominated by the single parti-
cle behavior, exhibits predominantly localization-diminished
topological order. Conversely, region II displays localization-
enhanced topological order at moderate disorder strength.

Relation to many-body localization

The observed enhancement of topological protection is
related to, but distinct from, many-body localization (MBL)
[58,59]. In particular, while our analysis shows that disorder
induces opposing effects on the zero mode structure in the two
regimes of parameters, measures that characterize the extent
of MBL show no prominent differences between the two
regions. Nor do they demonstrate any noticeable change as
the topological order is destroyed.
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The transition to an MBL phase can be understood as a
dynamical phase transition, in the sense that one can construct
an extensive number of integrals of motion [74–76] that
constrain the dynamics of the system to a degree that it
does not thermalize in the way expected from the eigenstate
thermalization hypothesis (ETH) [77–79]. These features of
the ETH-MBL transition give rise to a rich variety of signa-
tures, which can be detected in the level statistics [61,80–84], in
the entanglement entropy [61,63,85], in the response [86,87],
and in the dynamics of the system under consideration [88–90].

To address the possible association between enhanced
topological order and the ETH-MBL transition we focus on
one sensitive characterization of the transition that is based
on the eigenvalues of the generalized single-particle density
matrix

Rn =
[

ρ κ

κ† I − ρ

]
, (6)

where ρij = 〈n |c†i cj | n〉, κij = 〈n |c†i c†j | n〉, and | n〉 is a many-
body eigenstate. Similarly to Ref. [91], for which the sys-
tem was not superconducting and so ρ was sufficient, the
eigenvalues of Rn constitute the occupation spectrum and this
exhibits distinct behavior in the two phases. In the delocalized
(ETH) phase, they are expected to be close to the mean filling
fraction, while in the localized phase (MBL) they should tend
to their asymptotic values ∈ {0,1}. Consequently, it is possible
to characterize the transition to an MBL phase by a steplike
jump in the occupation spectrum.

In Fig. 3 we show the value of the discontinuous jump in
the occupation spectrum of the single particle density matrix,
in region I (red curve) and region II (black curve) for a system
of size L = 15. Although disorder induces opposing effects on
the zero mode structure in the two regimes of parameters, this
MBL measure does not distinguish between the two regions.
Moreover it is also insensitive to the underlying topological or-
der which, for the representative parameters for regions I and II,
is destroyed by disorder strength λ � 2.9 and 2.3, respectively.

The distinction between localization and the observed
enhancement of topological protection is twofold. Firstly,
while localization in Fock space is known to suppress decay
transitions, not all transitions are detrimental to the zero mode.
Consequently, localization induced protection can only occur
in regions of phase space where these harmful decay process
are abundant. This corresponds to our definition of region II.
As standard measures of localization cannot distinguish tran-
sitions that couple states with different occupation of the zero
mode and those who do not, these cannot pick up the difference
between the two regimes of parameter, as we show in Fig. 3.
Secondly, it is not clear that the topological superconducting
phase survives strong potential disorder. That is to say, in the
limit when the system breaks down into segments of localiza-
tion length, topological protection can be lifted altogether due
the small size of each segment as compared to the supercon-
ducting coherence length, which is known to increase in the
presence of potential disorder. This single particle effect is cru-
cial to the suppression of topological protection in topological
superconductors but plays no role in the localization transition.
It is for this reason that calculations aimed at detecting the MBL
transition (such as the one shown in Fig. 3), are insensitive to
the disorder induced topological phase transition.
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FIG. 3. The dependence of the discontinuous jump of the occu-
pations of natural orbitals, with increasing disorder strength λ for
region I (� = 0.7t ,μ = −0.2t , andU = 0.1t , red curve) and region II
(� = 0.5t , μ = −t , and U = 0.1t , black curve). Following Ref. [91],
in the delocalized phase, the occupations are expected to be close to
the mean filling fraction, while in the localized phase they tend to
their asymptotic values 〈nN 〉 = {0,1}, and the occupation spectrum
exhibits a discontinuous jump �n = nL+1 − nL. Consequently, the
averaged value of the discontinuous jump in the occupation spectrum
can be used to characterize the ETH-MBL transition. While disorder
is shown to induce opposing effects on the zero mode structure in the
two regimes of parameters, see Fig. 4, its effect on the occupation
spectrum is essentially identical. The data shown is for a system of
length L = 15 and each data point is averaged over 100 disorder
realizations with a sampling of 100 states per realization (50 in each
sector) around E = 0.

III. NUMERICAL METHODS

We seek to identify an operator which:
(i) Commutes with the Hamiltonian, up to small correc-

tions: [H,�] ∼ 0.
(ii) Anticommutes with the total parity: {P,�} = 0.
(iii) Is Hermitian: � = �†.
(iv) Is its own inverse: �2 = I .
Our numerical procedure is based on giving matrix repre-

sentations to the commutator H = [H,•] using the operator
(Hilbert-Schmidt) inner product [44,55]. This procedure is
based on what is called the Choi-Jamiolkowski isomorphism
[92–94], also referred to as third quantization [95]. The
numerical algorithm itself can be seen as a hybridization of
the variational position-space algorithm applied in Ref. [55],
and methods that represent superoperators such as H (or
more generally the Limblad superoperator) as matrix-product
operators (see, e.g., Refs. [96,97]).

In the presence of interactions, this procedure produces a
many-body operator of the general form:

� =
2L∑
i

u(1)(i)γi +
2L∑
ijk

u(3)(i,j,k)γiγjγk + · · · , (7)
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where γi is a Majorana operator at position i and u(n)(i,j,k,..)
is the coefficient of the n particle term, with n majorana modes
located at positions i < j < k. We numerically calculate the
zero mode wave function by identifying the operators that
minimize the expression Tr(�†

L/R × [H,[H,�L/R]])/2L, sub-
ject to constraints 2-3, and where �L/R stands for zero mode
localized at the left/right side of the chain. Although constraint
4 is not actively enforced, our methodology insures that it is
approximately obeyed.

Statistics of level splittings and error estimates

In addition to probing the local structure of the zero mode
(7), the methodology described above allows us to estimate the
average level splitting between pairs of states from different
parity sectors. To see this we first examine the Hamiltonian in
the system eigenbasis. In the topological phase the many-body
spectrum is doubly degenerate up to corrections δn:

H =
∑

n

En[|n1〉〈n1| + |n0〉〈n0|]

+ δn/2[|n1〉〈n1| − |n0〉〈n0|]. (8)

Here 0/1 refers to the occupation of the zero mode. In the
noninteracting system, the zero-mode operators are eigen-
modes of the Hamiltonian, [|n0〉〈n1|,H ] = δ(|n0〉〈n1|), which
means that the many-body spectrum consists of pairs of
states distinguished by the occupation of the zero mode, and
displaced by a uniform energy splitting: δn = δ ∼ e−L/ξ . In
general, however, interactions give rise to a distribution of pair
splittings P (δn) which are not necessarily exponentially small.

In this basis the MPS/MPO methodology constructs an
approximate Majorana zero mode with the following structure

�L =
∑

n

(
1 − αL

n

)
[|n0〉〈n1| + |n1〉〈n0|]

+
∑
n�=m

βL
nm[|n0〉〈m1| + |m1〉〈n0|] (9)

�R = −i
∑

n

(
1 − αR

n

)
[|n0〉〈n1| − |n1〉〈n0|]

− i
∑
n�=m

βR
nm[|n0〉〈m1| − |m1〉〈n0|], (10)

where α and β terms represent diagonal/off-diagonal errors,
respectively. The commutator of the near zero mode operators
�L/R with the interacting Hamiltonian allows us to estimate
the energy level statistics:

E1 = i Tr(�L × [H,�R])/2L = 〈δ〉 + χ1 (11)

E2 = Tr(�L × [H,[H,�L]])/2L = 〈δ2〉 + χ2, (12)

where

χ1 = − 1

2L

∑
n

δn

[
αL

n + αR
n − αL

n αR
n

]

+ 1

2L

∑
n�=m

βL
nmβR

nm

[
En − Em + δn

2
+ δm

2

]
(13)

and

χ2 = − 1

2L

∑
n

δ2
n

(
2αL

n − (
αL

n

)2)

+ 1

2L

∑
n�=m

(
βL

nm

)2
[
En − Em + δn

2
+ δm

2

]2

. (14)

Crucially we note that as Eq. (11) involves the two near zero
modes that are predominantly supported on opposite ends of
the system, its value is influenced by the degree of localization
of local clusters of the constituent Majorana components. This
is unlike Eq. (12) for which we only need either �L or �R .
In addition, as the expression for the error χ1 is an average
over contributions of random sign, we expect it to be small.
In contrast the error in the E2 estimate, which is what the
DMRG routine is trying to minimize, consists of positive
definite contributions which do not cancel. These suggest
that χ2 may be substantial and possibly dominate the esti-
mates for E2. Evidence supporting this conjecture is provided
in Appendix B.

The search for a zero-mode operator is similar in some
ways to the search for integrals of motion (IOM) which have
a finite position space support in the MBL regime, see for
example Refs. [98–113]. Nonetheless there are some important
distinctions. In parity preserving systems such as the one under
study, operators like | n〉〈n | (or any superposition thereof) have
multinomial expansions that are sums of even terms only. In
contrast, in the search for a zero mode we are essentially
looking for two IOMs that switch the parity of state being acted
on, see for example Eq. (9). In the representation of our MPO
encoding this is enforced by constraining the multinomial
expansion to contain odd numbers of fermion terms only.
As a result of this, these two fermionic IOMs anticommute
({γL,γR} = 0) with each other and with the parity operator
({γL/R,P } = 0).

The odd excitation sector of the superoperator [H,•] differs
from the even excitation sector in that it only contains an IOM
when there is an underlying degeneracy (in the Hamiltonian)
between a state in the even sector and a state in the odd
sector. Although this may happen by accident between any
pair of states, a strong many-body mode would ensure it
approximately happens between 2L−1 pairs simultaneously.
In this respect the constraints that �2 = I ensures that there
is approximately equal weight given to each diagonal outer
product [|n0〉〈n1| ± |n1〉〈n0|] in summations Eqs. (9) and (10).

IV. NUMERICAL RESULTS

A. Decay rates: Clean case

We now begin our discussion of numerical results, starting
with single and multiparticle decay rates of near zero modes.
Looking at Eq. (7), in the noninteracting system, the multiparti-
cle expansion coefficients u(n) = 0 for all n > 1 and the spatial
profile of u(1)(x) decays exponentially with t/�. In order to
generalize this spatial profile for the multiparticle components
of the many-body zero mode, u(n)(i,j,k,..) which depend
on multiple position indices, we have calculated the spatial
profile of two representations of the three particle component
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FIG. 4. Spatial composition of the single particle component
u(1)(x) (green circles) and the three particle components composed
of local u

(3)
l (x) = u(3)(γ2x−1,γ2x+2,γ2x+3) (red stars) and nonlocal

clusters u
(3)
nl (x) = u(3)(γ1,γ2x,γ2x+1) (blue diamonds) clusters for an

L = 100 site chain. Panels (a) and (c) were calculated for region I
(� = 0.7t and μ = −0.2t), in the clean (λ = 0) and disordered (λ =
0.7) case, respectively. Panels (b) and (d) were calculated for region II
(� = 0.5t and μ = −t), in the clean (λ = 0) and disordered (λ = 0.7)
case, respectively. All plots where calculated for U = 0.1t with a bond
dimension of χ = 128. In region I [(a)] local clusters u

(3)
l decay with

the same rate as u(1) which itself resembles the noninteracting wave
function (solid line). In region II [(b)] u

(3)
l decays much more slowly

than u(1) and seems to follow a power law. Moreover, as one moves
away from the edge, the single particle decay rate starts to follows that
of the local three particle clusters u

(3)
l . Disorder has strikingly different

effects in the two regions. In region I [(c)], disorder extends both the
single particle components u(1) and the local clusters of Majorana
u

(3)
l which both initially follow the noninteracting disordered decay

(dashed dotted line) and eventually follow a slower decay length.
Conversely, in region II [(d)], disorder substantially suppresses the
spatial extent of locally clustered components.

corresponding to local u
(3)
l (x) = u(3)(γ2x−1,γ2x+2,γ2x+3) and

nonlocal clusters u
(3)
nl (x) = u(3)(γ1,γ2x,γ2x+1) [114].

In a clean system we observe notable distinctions between
regions I and II, see Figs. 4(a) and 4(b). In both regions close to
the boundary (x = 0) the zero mode operator is dominated by
the single particle component u(1)(x), which resembles closely
the noninteracting wave function and decays exponentially in
space with the coherence length ξ ∼ t/�. In region I we find
that the three-particle components made of local clusters of
Majorana operators u

(3)
l (x) are everywhere smaller than the

single particle component u(1)(x), and follows the same spatial
decay, see Fig. 4(a).

Region II shows larger overall weights in the multiparticle
content of the zero modes, see Fig. 4(b). Crucially in this
regime we see that local clusters of Majoranas u

(3)
l (x) decay

much slower than u(1)(x), in what seems to resemble a power
law. The presence of such terms implies that the modes on
opposite sides of the system are more strongly coupled.

FIG. 5. (a) The behavior of the disorder-average single particle
components for different amounts of on-site disorder λ. The cleaner
systems show an exponential decay that follows the noninteracting
coherence length near the boundary, which revert to a more moderate
decay in the bulk. Disorder typically increases the effective single
particle coherence length near the boundary while reducing the
residual decay lengths in the bulk. (b) For a long enough wire we can
see this behavior is correlated with the disorder averaged E1 ∼ 〈δ〉
estimate. In contrast this behavior is clearly not correlated with the
〈E2〉 estimate, which is expected to be dominated by nondiagonal
disorder χ2. This data is for region II (� = 0.5t and μ = −t) with
U = 0.01t and bond dimension χ = 64.

B. Decay rates: Disorder case

Disorder has a strikingly different effect on the decay of
the different multiparticle components in the two regimes of
parameters. In region I [Fig. 4(c)], disorder extends the spatial
profile ofu(1)(x) as well asu

(3)
l (x), which both follow the spatial

decay of the noninteracting wave function (dashed black line)
close to the boundary and saturate to a larger decay length away
from the boundary. Crucially this transition to a longer decay
length does not happen in the clean wire limit. We see this as
evidence that disorder has driven the system from region I to
region II. In region II we see that disorder reduces the spatial
extent of both the single particle component u(1)(x) and local
clusters u

(3)
l (x) from no or power law decay in the clean limit

Fig. 4(b) to exponential decay Fig. 4(d).

C. Energy splitting statistics

The previous results outlined how the degree of localization
of the approximate zero mode depends on the amount of
disorder. Figure 5 shows the correlation between these spatial
decay rates and the mean energy splitting estimate E1 ∼ 〈δ〉 in
region II. The single particle components show clearly the dual
nature of disorder. On a mean field level, disorder extends the
effective coherence length. This is manifested in a moderation
of the exponential decay near the chain edge, which follows
the noninteracting spatial profile. Conversely, the residual
nonexponential decay, absent in a noninteracting system, is
progressively reduced in a disordered medium, see Fig. 5(a).
In a long chain, contributions from these nonexponential tails
dominate the mean pairwise energy splitting E1 ∼ 〈δ〉. As
such the mean energy splitting is decreased by moderate
disorder, see Fig. 5(b). As disorder is increased further, the
single-particle effect dominates and E1 increases.

Figure 5(b) also shows the associated 〈E2〉1/2 estimate.
Although this number is expected to be dominated by χ2 in this
regime, it does represent an upper bound on the expected spread
of the distribution (see discussion about errors in Appendix B).
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FIG. 6. Distributions of the multiparticle content 1 − |N1|2 of
the approximate steady state as a function of disorder strength λ,
for (a) region I (� = 0.7t and μ = −0.2t) and (b) region II (� =
0.5t and μ = −t). The plots were obtained for a system of length
L = 100, using an interaction strength U = 0.1t and constant MPS
bond dimension of χ = 128. In region I the 1 − |N1|2 probability
distribution displays a hard minimum and disorder can only increase
the weight supported in the multiparticle sectors. In region II we see
that disorder has a chance to increase or decrease the multiparticle
weight. Mean and median values are shown in red and black dashed
lines, respectively)

To address these statistics more directly, in Appendix C
we also examine distributions for small systems using exact
diagonalization. We find that disorder reduces the occasional
large energy splitting from real decay transitions but that the
standard deviation (about the mean) of pairwise splitting shows
only a modest initial decrease with disorder, eventually being
overcome due to the increase in the probability of bands to
overlap and/or the single particle effect which dominates near
the system edges.

D. Discussion of multiparticle weights

As a last measure we analyze the total multiparticle content
of the zero mode wave function. For this purpose we define
the integrated weight in a given n-particle sector as the sum
of all n particle terms: |Nn|2 = ∫ |u(n)(	x)|2d 	x, which have the
property that

∑
n |Nn|2 = 1. The total multiparticle content of

the zero mode wave function is then given by 1 − |N1|2. It has
been argued previously that operators with larger weights in
these multiparticle sectors decohere more quickly [44]; it could
be used as a signature for localization-enhanced topological
order, see Ref. [55] and Appendix D.

Figure 6 shows the distribution of these multiparticle
weights as a function of disorder. In region I we find that
disorder increases the multiparticle weight. Region II shows
a more intricate behavior. Here, while disorder broadens the
distribution thus allowing for specific disorder realizations
with a smaller multiparticle weight, both the mean (red line)
and median (black-dashed line) exhibit a monotonic increase.

V. CONCLUSION

We study numerically the effect of disorder on the stability
of the many-body zero mode in a Kitaev chain with local
interactions. Our methodology allows us to obtain information
about the spatial and multiparticle profile of the zero mode
operator, as well as to approximate the statistics of nearly
degenerate pairs of states associated with the zero mode,
over the entire energy spectrum. Our analysis shows that

the parameter space of a clean system can be divided into
regions where relevant interaction-induced decay transitions
are suppressed (region I) and where they are not (region
II). We find that the effect of disorder on the many-body
zero mode varies qualitatively between these two regimes.
In region I, disorder has an overall adverse effect: It extends
both single particle and multiparticle components further into
the bulk while simultaneously increases the likelihood that
real decay processes occur. In region II disorder has a more
intricate effect. While broadening exponential decay of the
single particle components of the zero mode operator, we
observe that local clusters of multiparticles decay more rapidly
in a disordered medium. This more rapid decay is reflected in
the mean energy splitting between pairs of states of opposite
parity which exhibits an overall reduction in a disordered
medium.

The qualitative prediction is that these localization effects
should also result in a decrease in the width of the energy
splitting distribution—resulting in a many-body Majorana
operator that is more modelike. For larger systems we argue
that the MPS measure, which could in principle be used to
address the width of the splitting distribution, are in fact
dominated by nonzero mode contributions. However, using
exact diagonalization we show that disorder can reduce the size
of the occasional large splitting corresponding to real decay
transitions. We note however that this effect is counteracted
by an increase in the likelihood of these decay transitions
occurring and noninteracting single particle effects which tend
to dominate near the system’s edges.

We have discussed in some detail how the enhancement
effect ties in with the phenomena of many-body localization.
We note that although the underlying mechanisms and the
techniques used to study them are similar, there are important
distinctions that result in the phenomena being independent
of each other. This can be seen quite clearly in the numerical
analysis where we show that measures of MBL cannot resolve
the disorder-driven topological phase transition, nor the subtle
distinctions between regions I and II. We stress however that
there is nothing in our work that precludes the coexistence of
SPT order and MBL.

The MPS/superoperator methodology can be extended to
other related models, e.g., the proximity coupled models or
the Zn parafermionic clock models. For the class of proximity
coupled systems the extension should be possible as these
systems also possess a natural noninteracting limit and disorder
is known to localize bulk eigenmodes there also. One possible
caveat is that in proximity coupled systems, the Kitaev chain
arises as an effective low-energy limit, and it is not clear that
the correspondence holds at higher energies.

For the Zn models, apart from some special cases (e.g.,
Ref. [50]) there are no obvious noninteracting limits. There are
however a number of works that point to exactly-solvable/free-
fermion ground states [115,116]. Moreover, there are clear
indications that special points of clean Zn models, where n

is prime, can contain strong zero modes. One particularly
strong candidate for this is the so-called π/6 point in the Z3

system [50,51,54]. These special points are natural analogs
of region I and so we expect that these models should
share many of the same features with the interacting Kitaev
chain.
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APPENDIX A: PERTURBATIVE ZERO MODES FOR
FINITE WIRES

The argument given in Ref. [48] shows that the existence
of the noninteracting Majorana mode also places restrictions
on the form of all couplings between eigenstates of the
noninteracting system. The argument relies on the fact that the
perturbative terms due to local parity-preserving operators will
be identical in each sector, provided the states involved have
the same zero-mode occupation. As a result, the degenerate
perturbation expansions of the bands themselves will look
the same in each sector, to an order of perturbation theory
that scales with the length of the system (see also Ref. [50]).
However, this argument does not account for situations where
the bands with different fermion number start to hybridize. In
this case interaction-induced transitions between bands with
different occupation of the noninteracting zero mode will factor
into left ± right (for even and odd sectors) [48] and therefore
when these bands start to intersect we see some even-odd
sectoral dependency at avoided level crossings.

This basic argument allows us to place some more simple
limits on the degree to which degeneracy is protected in
the wire. The single particle spectrum of the noninteracting
system is given as εk = ((−μ − 2t cos k)2 + (2|�| sin k)2)1/2.
For μ < 0, such that we move the chemical potential towards
the bottom of the band, the maximum bulk-excitation energy
is εmax = 2t − μ, and the minimum is

εmin =
⎧⎨
⎩

2t + μ, if t
2 (u + 2t) < |�|2

|�|
√

4 − μ2

(t2−�2) , otherwise
. (A1)

The condition that there are no overlaps between bands that
differ by one bulk fermion excitation is that εmax < 2εmin and
we arrive at the inequality which, in the main text, defines our
region I:

−μ <
2

3
t, if

t

2
(u + 2t) < |�|2

−μ < 2

(
|�|

√
4 − μ2

t2 − |�|2 − t

)
, otherwise. (A2)

We can also estimate when this spread becomes large
enough to close the gap (2t) between the N th and N − 1th
bands. Near the flat band limit (t = |�|, μ = 0), and with
μ < 0, the maximum of the band occurs at εmax = 2t − μ

at k = ±π and the minimum occurs roughly at 2|�| sin kF

where kF = cos−1 μ/2t ≈ π/2 and therefore εmin ≈ 2|�|.
The spread in the single particle spectrum is therefore |μ| + κ ,
with κ ≡ 2(t − |�|). Assuming we are in a large enough
system such that the N th largest and smallest single particle
eigenvalues are almost the same we can write the requirement
that the bands don’t overlap: Nεmin − (N − 1)εmax > 0, which
after rearranging becomes

κ + |μ|
4t + |μ| <

1

N
. (A3)

The condition is restrictive. Close to the middle of the spectrum
this occurs at progressively small κ and μ. A caveat to this
however is that the splitting that occurs between the bands
N and N − 1 (recall that one of these states has an occupied
zero mode which we are not counting) comes about because
of nonzero matrix elements between states that differ by
∼2N fermions. As such, the interaction-induced transition
that couples these states would therefore result in an even-odd
splitting of the order UN/2 occurring at this interaction induced
avoided level crossing.

Moreover, for a system of length L as we vary μ or κ

away from the special point, the first crossing occurs between
the N = L/2 and say = N − 1 = L/2 − 1 bands. However
as the avoided level crossing here must be proportional to UL/4

the even-odd splitting will strictly speaking still be exponential
in a parameter that is a sizable fraction of the system length.
The question of whether there is a strong zero mode when both
μ and κ are nonzero is therefore a complicated one, and the
answer has to be qualified based on where exactly one is in the
parameter space.

For a finite wire, we see that there is a finite region of
parameter space for nonzero μ and κ such that there is a
strong zero mode. Nonetheless, this region diminishes as one
approaches the thermodynamic limit. On this point, we note
that it is always possible to make the zero mode exact with
some small local tweak in parameters near one of the wire
ends and thus for many purposes in what follows it is useful
to proceed as if there is an exact zero mode and to explore the
consequences that this must have for its multiparticle content.

APPENDIX B: DMRG FOR SUPEROPERATORS

Our algorithm attempts to construct multinomials of posi-
tion space Majorana operators:

γL(U ) =
2L∑
i

u
(1)
L (i)γi +

2L∑
ijk

u
(3)
L (i,j,k)γiγjγk + · · ·

γ R(U ) =
2L∑
i

u
(1)
R (i)γi +

2L∑
ijk

u
(3)
R (i,j,k)γiγjγk + · · · (B1)

that almost commute with the interacting Kitaev wire Hamil-
tonian. These modes are normalized such that if we define
weights Nn = ∫ |u(n)(	x|2dx then

∑
Nn = 1. In the noninter-

acting system, the expansion coefficients u(n) = 0 for all n > 1,
and therefore N (1) = 1. In keeping with the idea of the mode
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as a dressed quasiparticle, we expect that the single particle
weight N (1) dominates the other multiparticle weights also in
the case of nonzero interaction strength U .

In Ref. [55] it was demonstrated how one can approximate
such a mode using a real space approach that selectively
sampled the multiparticle components that were close, in
configuration space, to single particle operators. The technique
works by creating a matrix representation for the superoperator
H = [H,•] and finding approximate steady states of the form
(7) by variationally approaching a single-particle dominated
null vector of H2.

One difficulty with this method is that the Hilbert space
dimension of null vectors of H grows as 2L and moreover is
itself embedded in a continuum. However, it is possible to argue
that within this continuous band of excitation energies there
are only two approximate steady states with the form (7) that
are dominated by the single-particle elements. Moreover, by
continuity it is straightforward to argue that the single particle
components of the operators should have a similar structure to
their noninteracting counterparts.

The variational step searches for null vectors of H2 using a
Lanczos algorithm. The initial states for the procedure are the
noninteracting Majorana’s on both ends of the wires. Working
with H2 is needed to ensure our eigenvalue approximation
is bounded from below and has the additional advantage that
this operator preserves sublattice symmetry. Thin restarting is
needed to ensure that on each iteration of the algorithm the
updated state resembles the input state.

The algorithm that we use in this paper can be seen as a hy-
brid of the aforementioned real-space sampling approach and
methods that seek to use DMRG approaches to approximate the
null vectors of H or more generally the Limbladlian [96,97].
The key difference with the real-space sampling approach is
that the operator H = [H,•] is now represented as a matrix-
product operator. From this we contract indices of the MPO
to obtain an MPO for H2 and then search for its null vectors
using a modified DMRG sweeping procedure.

To ensure that algorithm converges to the single-particle
dominated modes we found it necessary to again employ Lanc-
soz thin restarting, this time at each optimization step in the
sweep along the wire/chain. In terms of overall efficiency we
note that orders of magnitude improvement can be obtained by
also implementing a controlled compression of the MPO H2.

Discussion of numerical errors in the MPS
variational technique

In the main text we argued that the MPO/MPS representa-
tion of the zero mode could be written in the eigenbasis of the
Hamiltonian as:

�L =
∑

n

(
1 − αL

n

)
[|n0〉〈n1| + |n1〉〈n0|]

+
∑
n�=m

βL
nm[|n0〉〈m1| + |m1〉〈n0|] (B2)

�R = −i
∑

n

(
1 − αR

n

)
[|n0〉〈n1| − |n1〉〈n0|]

− i
∑
n�=m

βR
nm[|n0〉〈m1| − |m1〉〈n0|], (B3)

where the α and β terms represent diagonal/off-diagonal
errors, respectively. Moreover we showed that the estimates
for the energy level statistics are calculated using the trace
formula:

E1 = i Tr(�L × [H,�R])/2L = 〈δ〉 + χ1 (B4)

E2 = Tr(�L × [H,[H,�L]])/2L = 〈δ2〉 + χ2, (B5)

where

χ1 = − 1

2L

∑
n

δn

[
αL

n + αR
n − αL

n αR
n

]

+ 1

2L

∑
n�=m

βL
nmβR

nm

[
En − Em + δn

2
+ δm

2

]
(B6)

and

χ2 = − 1

2L

∑
n

δ2
n

(
2αL

n − (
αL

n

)2)

+ 1

2L

∑
n�=m

(
βL

nm

)2
[
En − Em + δn

2
+ δm

2

]2

. (B7)

Here, the error χ1 is an average over small contributions of
random sign. We therefore expect it to be negligible. In contrast
χ2 can dominate the second moment E2.

To check this conjecture, we perform the following simple
test. At fixed bond dimension we compare the asymptotic
value of the E2 (calculated using the �L operator) with the
asymptotic value of a almost identical setup, given by Eqs. (1)
and (2) where the coupling terms on the very right hand
side of the system are changed to ensure we have a perfectly
decoupled �R = γ2N Majorana (e.g., we set μN = 0, �N−1 =
t arg(�), and UN−1 = 0). In the modified setup, as a result
of the perfectly decoupled �R Majorana, the true many-body
spectrum is exactly twofold degenerate, which corresponds to
Eq. (8), with δn = 0 for all n. In this setup, the first and second
moments are determined solely by the off diagonal errors in
χ1 and χ2:

E1 = χ1 = 1

2L

∑
n�=m

βL
nmβR

nm[En − Em] (B8)

and

E2 = χ2 = 1

2L

∑
n�=m

(
βL

nm

)2
[En − Em]2. (B9)

Moreover, in the modified setup, the right Majorana can
be determined exactly, and αR = βR = 0. Consequently, the
resulting first moment E will be identically zero, regardless of
the numerically calculated �L.

In contrast the estimate for E2 is affected by errors of the
calculated �L only and does not necessarily vanish. We find
that the estimate for the second moment E2 in the modified
setup with an exact degeneracy and in the original setup given
by Eqs. (1) and (2) to be comparable. This supports our
conjecture that the second moment calculations are dominated
by off diagonal errors.
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FIG. 7. Distributions of E2 as a function of disorder strength λ, for
(a) region I (� = 0.7t and μ = −0.2t) and (b) region II (� = 0.5t

and μ = −t). The plots were obtained for a system of length L =
100, using an interaction strength U = 0.1t and constant MPS bond
dimension of χ = 64. One hundred disorder realizations are used for
each value of λ. In region I the dominant effect of disorder is to push
the system towards values closer to those observed in region II. In
region II we see that disorder has a chance to increase or decrease
the E2. We observe that the average and median values (red and black
dashed lines resp.) tend to increase as we increase the amount of
disorder.

Figure 7 shows the distribution of E2 as a function of disor-
der in (a) region I and (b) region II. A similar calculation in the
modified setup gives comparable results which indicates that
the value ofE2 is dominated by off diagonal error χ2. Moreover,
the data taken in the modified setup show a similar trend with
disorder. This suggests that E2 and consequently χ2 generally
reflect the extent of mixing between bands. In this respect
we see for example that in region I disorder substantially
increases the E2 estimate, indicating that it drives the system
into the regime where real transitions can occur. In region II
the E2 estimate shows a moderate increase with disorder, in
accordance with the expectation that it is determined by the
degree of mixing between bands.

APPENDIX C: MEASURES OF LOCALIZATION
ENHANCED TOPOLOGICAL ORDER IN

EXACT-DIAGONALIZATION CALCULATIONS

Interaction induced decay transitions, which can change the
occupancy of the zero mode while exciting Bogoliubov quasi-
particles, occur when bands of different fermion occupation
number cross. The key prediction of localization enhanced
topological order is that the resulting mismatch in even-odd
energy levels at the avoided crossings (see Fig. 9) will become
smaller as the amount of disorder is increased.

In exact diagonalization this effect is quite difficult to
discern in the overall energy level splitting statistics. This is
because, in the parameter space accessible to exact diagonal-
ization (ED) (large �), disorder increases (on average) both
the overall splitting of pairs as well as the probability that
an anomalous splitting can occur. The effect on the average
splitting can be understood on a single particle level as resulting
from the increases in the effective coherence length in a
disordered medium. The increase in the number of anomalous
splittings comes about because disorder will also broaden the
bands and hence increase the chances that bands with different
fermion number overlap. Hence, while disorder reduces the
value of anomalous pair splitting, it increases their number.

FIG. 8. For small system sizes the disorder averaged distribution
P (δ) can become less broad with a modest amount of disorder.
This is because, even for very small systems sizes (L = 13), the
matrix elements responsible for real decay processes are reduced as
a function of disorder parameter λ. The effect quickly disappears as
one increases disorder because this (on average) drives the system
further into region II and also increase the single-particle coherence
length of the Majorana end states (an effect which is more relevant
for short systems). The inset shows the standard deviation σ (δ),
calculated using the full spectrum, and the 〈|d|〉 is the mean of all
interacting matrix elements (in the noninteracting basis) that differ
by occupation of the zero mode. The data was generated in region II,
with μ = −1,� = 0.5t , and U = 0.1t .

For small system size, the latter explains qualitatively why
one should not necessarily observe a reduction in the global
statistical quantities such as Var(δ) even though the responsible
matrix elements should be reduced by disorder (see Fig. 8).
The ED calculations, however, allow us to calculate the entire
probability distribution of energy levels. Here the reduction
in decay like transitions becomes apparent in the shape of the
distributions at larger pair-splitting δ.

FIG. 9. At crossings between states with different (approximate)
occupations of the zero mode, the interaction dependent splitting co-
efficient factors into a left and right contribution (see, e.g., Ref. [48]).
In the presence of disorder, the average splitting coefficients l and r

should decay exponentially with the system length L. (b) In a clean
system with perfect reflection symmetry about the center of the wire
one of the sectors, depending on the total fermionic and spatial parity,
will always display a symmetry protected crossing.

085425-10



LOCALIZATION ENHANCED AND DEGRADED … PHYSICAL REVIEW B 97, 085425 (2018)

APPENDIX D: FORMAL MAJORANA CONSTRUCTION
AND THE CONNECTION BETWEEN THE ENERGY

SPLITTING AND MULTIPARTICLE CONTENT

In terms of the eigenstates of the system we can write

γL(U ) =
∑

| n0〉〈n1 | + | n1〉〈n0 | (D1)

γR(U ) = i
∑

| n0〉〈n1 | − | n1〉〈n0 |, (D2)

where the subscript is the approximate occupation of the zero
mode. This method of constructing the modes is formally
identical to the method of l-bit construction in the MBL
literature, see for example Ref. [74], and requires one to be
able to identify pairs of states | n0〉 and | n1〉, and then to fix the
relative phases. One way to make this identification in principle
is to use the energy of the states as an identifier and match states
according to where they occur in the energy spectrum. Another
identification method is to examine how well two states are
mapped to each other by the noninteracting modes,which can
be calculated exactly:

OL/R = 〈neven |γL/R(0)| modd〉. (D3)

This latter method also allows one to determine the correct
relative phase.

In the case of well separated fermionic bands both identifi-
cation criteria (E and OL/R) are in agreement. However, band
crossings may introduce an ambiguity between these methods
of identification. This has implications for the zero-mode’s
residual energy and its multiparticle content.

To see this, consider what happens at an avoided crossing
between states from the same parity sector that differ in their
occupation of the zero mode. Working in the basis | n〉0/1, | n +
1〉1/0, we can understand the crossing point using the following
parametrization of the matrix elements between the relevant
states

Hc = Ec +
[

as l ± r

l ± r bs

]
, (D4)

where s is related to the parameters of the noninteracting
Hamiltonian (μ, �, t), and a and b are the slopes of the
energy levels at the crossing. Here the off-diagonal elements
de,o = l ± r are the interaction-induced coupling coefficients
in the even and odd parity sectors, respectively, which are
generally different. The partition into left (l) and right (r)
components comes about because the states in question differ
in the occupation of the fermionic zero mode β

†
0β0 and thus we

need to operate with either β0 = γL + iγR or β
†
0 = γL − iγR

to connect them.
The question we now ask is which states are identified

as pairs by the noninteracting Majoranas γL(0) and γR(0)?
Away from the crossings the relevant eigensubspace is | ψe〉 =
{| n〉0,| n + 1〉1} and | ψo〉 = {| n〉1,| n + 1〉0} where e/o de-
notes the even/odd sector and 0/1 denote the approximate
occupation of the zero mode. In this basis we have

〈ψe |γL(0)| ψo〉 ∼ I 〈ψe |γR(0)| ψo〉 ∼ σ z.

At the crossing, the interaction lifts the degeneracy and the
modified eigenbasis is rotated to symmetric and antisymmetric
combinations: | ψ̃e〉 = {| n〉0 ± | n + 1〉1} and | ψ̃o〉 = {| n〉1 ±

FIG. 10. In order to construct the many-body Majorana zero mode
one needs to first identify which states in each sector to pair up. Away
from the avoided crossings this identification can be achieved either by
examining the energy or by using the noninteracting Majorana modes
γL/R(0). At the crossing however, one of the noninteracting modes
[in this figure we have chosen γL(0)] will always identify states at
the other side of the crossing. This sets up the relationship between
multiparticle content and energy.

| n + 1〉0}. Therefore in this scenario one of the noninteracting
Majoranas will always identify with a state at the other side
of the crossing: For the particular example when l ± r > 0 we
get

〈ψ̃e |γL(0)| ψ̃o〉 ∼ I 〈ψ̃e |γR(0)| ψ̃o〉 ∼ σx,

implying that the noninteracting left Majorana connects states
in opposite parity sectors, with an energy splitting of the same

sign ±�e

γL−→ ±�o while the noninteracting right Majorana
identifies states with energy splitting of an opposite sign

±�e

γR−→ ∓�o (in cases when l ± r < 0 results in similar
scenarios where it is γL(0) that identifies states on the opposite
side of the crossing).

More insight can be gained by considering the scenario
where one artificially forces one side of the system (say the
right) to be noninteracting. This ensures that the single-particle
γR(0) Majorana is an exact zero mode. Moreover, in this
scenario all the interaction-induced coupling coefficient r at
the r.h.s vanish identically, and the splitting in both sectors is
identical. By construction, γR(0) will identify states at the same
energy, even in the case where there is an avoided crossing.
However, at the crossing point, the noninteracting Majorana at
the left hand side will identify states with an energy mismatch,
see again Fig. 10.

This highlights the ambiguity between constructing a near-
zero mode operator which pairs up states of opposite parity
with a minimal energy mismatch, or near zero mode which
operates similarly to its noninteracting counterpart. As an
example, in the modified setup described above, we may con-
struct an operator γL(U ) using states | n〉e and | n〉o which are
identified by the noninteracting γL(0). The resulting operator
would connect states with an energy mismatch—in other words
it is not a zero mode. On the other hand, constructing an
operator out of states with identical energies would result in
a zero mode by definition, but the states chosen to appear
together in the outer product are very different from the ones
that are suggested by the single-particle γL(0). As such, we can
construct a zero mode but with the price that the operator does
not resemble the noninteracting mode within this subspace.

085425-11



G. KELLS, N. MORAN, AND D. MEIDAN PHYSICAL REVIEW B 97, 085425 (2018)

[1] N. Read and D. Green, Paired states of fermions in two di-
mensions with breaking of parity and time-reversal symmetries
and the fractional quantum Hall effect, Phys. Rev. B 61, 10267
(2000).

[2] D. A. Ivanov, Non-Abelian Statistics of Half-Quantum Vortices
in p-Wave Superconductors, Phys. Rev. Lett. 86, 268 (2001).

[3] A. Y. Kitaev, Unpaired Majorana fermions in quantum wires,
Phys. Usp. 44, 131 (2001).

[4] A. Y. Kitaev, Anyons in an exactly solved model and beyond,
Ann. Phys. 321, 2 (2006).

[5] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D.
Sarma, Non-Abelian anyons and topological quantum compu-
tation, Rev. Mod. Phys. 80, 1083 (2008).

[6] L. Fu and C. L. Kane, Superconducting Proximity Effect and
Majorana Fermions at the Surface of a Topological Insulator,
Phys. Rev. Lett. 100, 096407 (2008).

[7] R. M. Lutchyn, J. D. Sau, and S. D. Sarma, Majorana Fermions
and a Topological Phase Transition in Semiconductor-
Superconductor Heterostructures, Phys. Rev. Lett. 105, 077001
(2010).

[8] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and
Majorana Bound States in Quantum Wires, Phys. Rev. Lett.
105, 177002 (2010).

[9] M. Duckheim and P. W. Brouwer, Andreev reflection from
noncentrosymmetric superconductors and Majorana bound-
state generation in half-metallic ferromagnets, Phys. Rev. B
83, 054513 (2011).

[10] S. B. Chung, H.-J. Zhang, X.-L. Qi, and S.-C. Zhang, Topo-
logical superconducting phase and Majorana fermions in
half-metal/superconductor heterostructures, Phys. Rev. B 84,
060510 (2011).

[11] T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C. W.
J. Beenakker, Majorana fermions emerging from magnetic
nanoparticles on a superconductor without spin-orbit coupling,
Phys. Rev. B 84, 195442 (2011).

[12] M. Kjaergaard, K. Wölms, and K. Flensberg, Majorana
fermions in superconducting nanowires without spin-orbit
coupling, Phys. Rev. B 85, 020503 (2012).

[13] I. Martin and A. F. Morpurgo, Majorana fermions in supercon-
ducting helical magnets, Phys. Rev. B 85, 144505 (2012).

[14] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A. Yazdani,
Proposal for realizing Majorana fermions in chains of magnetic
atoms on a superconductor, Phys. Rev. B 88, 020407(R) (2013).

[15] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard,
E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of
Majorana Fermions in Hybrid Supercondcutor-Semiconductor
Nanowire Devices, Science 336, 1003 (2012).

[16] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and
H. Q. Xu, Anomalous zero-bias conductance peak in a Nb-InSb
nanowire-Nb hybrid device, Nano Lett. 12, 6414 (2012).

[17] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and
H. Shtrikman, Zero-bias peaks and splitting in an Al-InAs
nanowire topological superconductor as a signature of Majo-
rana fermions, Nat. Phys. 8, 887 (2012).

[18] A. D. K. Finck, D. J. Van Harlingen, P. K. Mohseni, K. Jung,
and X. Li, Anomalous Modulation of a Zero-Bias Peak in a
Hybrid Nanowire- Superconductor Device, Phys. Rev. Lett.
110, 126406 (2013).

[19] H. O. H. Churchill, V. Fatemi, K. Grove-Rasmussen, M. T.
Deng, P. Caroff, H. Q. Xu, and C. M. Marcus, Superconductor-

nanowire devices from tunneling to the multichannel regime:
Zero-bias oscillations and magnetoconductance crossover,
Phys. Rev. B 87, 241401 (2013).

[20] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth,
T. S. Jespersen, J. J. Nygård, P. Krogstrup, and C. M. Marcus,
Exponential protection of zero modes in Majorana islands,
Nature (London) 531, 206 (2016).

[21] Ö. Gül, H. Zhang, J. D. S. Bommer, M. W. A. de Moor,
D. Car, S. R. Plissard, E. P. A. M. Bakkers, A. Geresdi,
K. Watanabe, T. Taniguchi, and L. P. Kouwenhoven, Bal-
listic Majorana nanowire devices, Nat. Nanotechnol. (2018),
doi:10.1038/s41565-017-0032-8.

[22] M. T. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus, Ma-
jorana bound state in a coupled quantum-dot hybrid-nanowire
system, Science 354, 1557 (2016).

[23] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,
A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Observation
of Majorana fermions in ferromagnetic atomic chains on a
superconductor, Science 346, 602 (2014).

[24] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B. W. Heinrich, and
K. J. Franke, End States and Subgap Structure in Proximity-
Coupled Chains of Magnetic Adatoms, Phys. Rev. Lett. 115,
197204 (2015).

[25] R. Pawlak, M. Kisiel, J. Klinovaja, T. Meier, S. Kawai, T.
Glatzel, D. Loss, and E. Meyer, Probing atomic structure
and Majorana wavefunctions in mono-atomic Fe chains on
superconducting Pb surface, Npj Quantum Inf. 2, 16035 (2016).

[26] O. Motrunich, K. Damle, and D. A. Huse, Griffiths effects and
quantum critical points in dirty superconductors without spin-
rotation invariance: One-dimensional examples, Phys. Rev. B
63, 224204 (2001).

[27] P. W. Brouwer, M. Duckheim, A. Romito, and F. von Oppen,
Probability Distribution of Majorana End-State Energies in
Disordered Wires, Phys. Rev. Lett. 107, 196804 (2011).

[28] P. W. Brouwer, M. Duckheim, A. Romito, and F. von Oppen,
Topological superconducting phases in disordered quantum
wires with strong spin-orbit coupling, Phys. Rev. B 84, 144526
(2011).

[29] A. R. Akhmerov, J. P. Dahlhaus, F. Hassler, M. Wimmer, and
C. W. J. Beenakker, Quantized Conductance at the Majorana
Phase Transition in a Disordered Superconducting Wire, Phys.
Rev. Lett. 106, 057001 (2011).

[30] M.-T. Rieder, G. Kells, M. Duckheim, D. Meidan, and P. W.
Brouwer, Endstates in multichannel spinless p-wave supercon-
ducting wires, Phys. Rev. B 86, 125423 (2012).

[31] M.-T. Rieder, P. W. Brouwer, and I. Adagideli, Reentrant
topological phase transitions in a disordered spinless super-
conducting wire, Phys. Rev. B 88, 060509(R) (2013).

[32] W. DeGottardi, D. Sen, and S. Vishveshwara, Majorana
Fermions in Superconducting 1D Systems Having Periodic,
Quasiperiodic, and Disordered Potentials, Phys. Rev. Lett. 110,
146404 (2013).

[33] F. Pientka, A. Romito, M. Duckheim, Y. Oreg, and F. von Op-
pen, Signatures of topological phase transitions in mesoscopic
superconducting rings, New J. Phys. 15, 025001 (2013).

[34] E. M. Stoudenmire, J. Alicea, O. A. Starykh, and
M. P. A. Fisher, Interaction effects in topological supercon-
ducting wires supporting Majorana fermions, Phys. Rev. B 84,
014503 (2011).

085425-12

https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevB.83.054513
https://doi.org/10.1103/PhysRevB.83.054513
https://doi.org/10.1103/PhysRevB.83.054513
https://doi.org/10.1103/PhysRevB.83.054513
https://doi.org/10.1103/PhysRevB.84.060510
https://doi.org/10.1103/PhysRevB.84.060510
https://doi.org/10.1103/PhysRevB.84.060510
https://doi.org/10.1103/PhysRevB.84.060510
https://doi.org/10.1103/PhysRevB.84.195442
https://doi.org/10.1103/PhysRevB.84.195442
https://doi.org/10.1103/PhysRevB.84.195442
https://doi.org/10.1103/PhysRevB.84.195442
https://doi.org/10.1103/PhysRevB.85.020503
https://doi.org/10.1103/PhysRevB.85.020503
https://doi.org/10.1103/PhysRevB.85.020503
https://doi.org/10.1103/PhysRevB.85.020503
https://doi.org/10.1103/PhysRevB.85.144505
https://doi.org/10.1103/PhysRevB.85.144505
https://doi.org/10.1103/PhysRevB.85.144505
https://doi.org/10.1103/PhysRevB.85.144505
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1021/nl303758w
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevLett.110.126406
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1103/PhysRevB.87.241401
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/s41565-017-0032-8
https://doi.org/10.1038/s41565-017-0032-8
https://doi.org/10.1038/s41565-017-0032-8
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1103/PhysRevB.63.224204
https://doi.org/10.1103/PhysRevB.63.224204
https://doi.org/10.1103/PhysRevB.63.224204
https://doi.org/10.1103/PhysRevB.63.224204
https://doi.org/10.1103/PhysRevLett.107.196804
https://doi.org/10.1103/PhysRevLett.107.196804
https://doi.org/10.1103/PhysRevLett.107.196804
https://doi.org/10.1103/PhysRevLett.107.196804
https://doi.org/10.1103/PhysRevB.84.144526
https://doi.org/10.1103/PhysRevB.84.144526
https://doi.org/10.1103/PhysRevB.84.144526
https://doi.org/10.1103/PhysRevB.84.144526
https://doi.org/10.1103/PhysRevLett.106.057001
https://doi.org/10.1103/PhysRevLett.106.057001
https://doi.org/10.1103/PhysRevLett.106.057001
https://doi.org/10.1103/PhysRevLett.106.057001
https://doi.org/10.1103/PhysRevB.86.125423
https://doi.org/10.1103/PhysRevB.86.125423
https://doi.org/10.1103/PhysRevB.86.125423
https://doi.org/10.1103/PhysRevB.86.125423
https://doi.org/10.1103/PhysRevB.88.060509
https://doi.org/10.1103/PhysRevB.88.060509
https://doi.org/10.1103/PhysRevB.88.060509
https://doi.org/10.1103/PhysRevB.88.060509
https://doi.org/10.1103/PhysRevLett.110.146404
https://doi.org/10.1103/PhysRevLett.110.146404
https://doi.org/10.1103/PhysRevLett.110.146404
https://doi.org/10.1103/PhysRevLett.110.146404
https://doi.org/10.1088/1367-2630/15/2/025001
https://doi.org/10.1088/1367-2630/15/2/025001
https://doi.org/10.1088/1367-2630/15/2/025001
https://doi.org/10.1088/1367-2630/15/2/025001
https://doi.org/10.1103/PhysRevB.84.014503
https://doi.org/10.1103/PhysRevB.84.014503
https://doi.org/10.1103/PhysRevB.84.014503
https://doi.org/10.1103/PhysRevB.84.014503


LOCALIZATION ENHANCED AND DEGRADED … PHYSICAL REVIEW B 97, 085425 (2018)

[35] E. Sela, A. Altland, and A. Rosch, Majorana fermions in
strongly interacting helical liquids, Phys. Rev. B 84, 085114
(2011).

[36] R. M. Lutchyn and M. P. A. Fisher, Interacting topological
phases in multiband nanowires, Phys. Rev. B 84, 214528
(2011).

[37] A. M. Lobos, R. M. Lutchyn, and S. D. Sarma, Interplay of
Disorder and Interaction in Majorana Quantum Wires, Phys.
Rev. Lett. 109, 146403 (2012).

[38] F. Crépin, G. Zaránd, and P. Simon, Nonperturbative phase
diagram of interacting disordered Majorana nanowires, Phys.
Rev. B 90, 121407(R) (2014).

[39] F. Hassler and D. Schuricht, Strongly interacting Majorana
modes in an array of Josephson junctions, New J. Phys. 14,
125018 (2012).

[40] R. Thomale, S. Rachel, and P. Schmitteckert, Tunneling spectra
simulation of interacting Majorana wires, Phys. Rev. B 88,
161103(R) (2013).

[41] H. Katsura, D. Schuricht, and M. Takahashi, Exact ground
states and topological order in interacting Kitaev/Majorana
chains, Phys. Rev. B 92, 115137 (2015).

[42] N. M. Gergs, L. Fritz, and D. Schuricht, Topological order
in the Kitaev/Majorana chain in the presence of disorder and
interactions, Phys. Rev. B 93, 075129 (2016).

[43] S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss, Ma-
jorana Edge States in Interacting One-Dimensional Systems,
Phys. Rev. Lett. 107, 036801 (2011).

[44] G. Goldstein and C. Chamon, Exact zero modes in closed
systems of interacting fermions, Phys. Rev. B 86, 115122
(2012).

[45] P. Fendley, Strong zero modes and eigenstate phase transitions
in the XYZ/interacting Majorana chain, J. Phys. A: Math.
Theor. 49, 30LT01 (2016).

[46] M. McGinley, J. Knolle, and A. Nunnenkamp, Robustness of
Majorana edge modes and topological order: Exact results for
the symmetric interacting Kitaev chain with disorder, Phys.
Rev. B 96, 241113(R) (2017).

[47] J.-J. Miao, H.-K. Jin, F.-C. Zhang, and Y. Zhou, Exact Solution
for the Interacting Kitaev Chain at the Symmetric Point, Phys.
Rev. Lett. 118, 267701 (2017).

[48] G. Kells, Many-body Majorana operators and the equivalence
of parity sectors, Phys. Rev. B 92, 081401(R) (2015).

[49] J. Kemp, N. Y. Yao, C. R. Laumann, and P. Fendley, Long
coherence times for edge spins, J. Stat. Mech. (2017) 063105.

[50] N. Moran, D. Pellegrino, J. K. Slingerland, and G. Kells,
Parafermionic clock models and quantum resonance, Phys.
Rev. B 95, 235127 (2017).

[51] D. V. Else, P. Fendley, J. Kemp, and C. Nayak, Prethermal
Strong Zero Modes and Topological Qubits, Phys. Rev. X 7,
041062 (2017).

[52] P. Fendley, Parafermionic edge zero modes in Zn-invariant spin
chains, J. Stat. Mech. (2012) P11020.

[53] P. Fendley, Free parafermions, J. Phys. A: Math. Theor. 47,
075001 (2014).

[54] A. S. Jermyn, R. S. K. Mong, J. Alicea, and P. Fendley, Stability
of zero modes in parafermion chains, Phys. Rev. B 90, 165106
(2014).

[55] G. Kells, Multiparticle content of Majorana zero modes in the
interacting p-wave wire, Phys. Rev. B 92, 155434 (2015).

[56] The case for strong zero modes can be made in several exactly
solvable limits see, e.g., Refs. [43–46] and can be extended into
other regimes as long as there is no energetic overlap between
bands with different fermion number [48–51].

[57] For studies of the same phenomena in the context of ZN

parafermionic clock models see Refs. [50,52–54].
[58] I. V. Gornyi, A. D. Mirlin, and D. G. Polyakov, Interacting

Electrons in Disordered Wires: Anderson Localization and
Low-T Transport, Phys. Rev. Lett. 95, 206603 (2005).

[59] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Metal-
insulator transition in a weakly interacting many-electron sys-
tem with localized single-particle states, Ann. Phys. 321, 1126
(2006).

[60] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and S. L.
Sondhi, Localization-protected quantum order, Phys. Rev. B
88, 014206 (2013).

[61] B. Bauer and C. Nayak, Area laws in a many-body localized
state and its implications for topological order, J. Stat. Mech.
(2013) P09005.

[62] A. Chandran, V. Khemani, C. R. Laumann, and S. L. Sondhi,
Many-body localization and symmetry-protected topological
order, Phys. Rev. B 89, 144201 (2014).

[63] J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Many-Body
Localization in a Disordered Quantum Ising Chain, Phys. Rev.
Lett. 113, 107204 (2014).

[64] A. Carmele, M. Heyl, C. Kraus, and M. Dalmonte, Stretched
exponential decay of Majorana edge modes in many-body
localized Kitaev chains under dissipation, Phys. Rev. B 92,
195107 (2015).

[65] Y. Bahri, R. Vosk, E. Altman, and A. Vishwanath, Localization
and topology protected quantum coherence at the edge of hot
matter, Nat. Commun. 6, 7341 (2015).

[66] J. R. Wootton and J. K. Pachos, Bringing Order Through Disor-
der: Localization of Errors in Topological Quantum Memories,
Phys. Rev. Lett. 107, 030503 (2011).

[67] S. Bravyi and R. Koenig, Disorder-assisted error correction in
majorana chains, Comm. Math. Phys. 316, 641 (2012).

[68] C. Stark, L. Pollet, A. Imamoğlu, and R. Renner, Localization
of Toric Code Defects, Phys. Rev. Lett. 107, 030504 (2011).

[69] A. C. Potter and R. Vasseur, Symmetry constraints on many-
body localization, Phys. Rev. B 94, 224206 (2016).

[70] Within the literature, the enhancement of topological order can
have a number of distinct meanings. With respect to the ground
state properties it is well known that disorder [33], interactions
[34], and combinations of both [42] can shift the boundary
of the topological region. In instances where the system is
already close to the topological phase transition this can have a
stabilizing effect. However, the idea of localization-enhanced
topological order as discussed in, e.g., Refs. [60–69] refers to
the behavior of many-body states at finite energy density. In
the context of topological superconductors it is understood as
an enhancement of the physical attributes of the pre-existing
Majorana modes, on which the topological qubit is based (see,
e.g., Refs. [60,63]). Similarly one can (e.g., Refs. [64,67]) focus
on the dynamical properties of edge correlators, which can be
seen as an indication of how long our qubit remains intact
given imperfect knowledge of both the initial quantum state
and subsequent dynamical evolution. In these later dynamical
cases the notion of localization-enhanced topological qubit can

085425-13

https://doi.org/10.1103/PhysRevB.84.085114
https://doi.org/10.1103/PhysRevB.84.085114
https://doi.org/10.1103/PhysRevB.84.085114
https://doi.org/10.1103/PhysRevB.84.085114
https://doi.org/10.1103/PhysRevB.84.214528
https://doi.org/10.1103/PhysRevB.84.214528
https://doi.org/10.1103/PhysRevB.84.214528
https://doi.org/10.1103/PhysRevB.84.214528
https://doi.org/10.1103/PhysRevLett.109.146403
https://doi.org/10.1103/PhysRevLett.109.146403
https://doi.org/10.1103/PhysRevLett.109.146403
https://doi.org/10.1103/PhysRevLett.109.146403
https://doi.org/10.1103/PhysRevB.90.121407
https://doi.org/10.1103/PhysRevB.90.121407
https://doi.org/10.1103/PhysRevB.90.121407
https://doi.org/10.1103/PhysRevB.90.121407
https://doi.org/10.1088/1367-2630/14/12/125018
https://doi.org/10.1088/1367-2630/14/12/125018
https://doi.org/10.1088/1367-2630/14/12/125018
https://doi.org/10.1088/1367-2630/14/12/125018
https://doi.org/10.1103/PhysRevB.88.161103
https://doi.org/10.1103/PhysRevB.88.161103
https://doi.org/10.1103/PhysRevB.88.161103
https://doi.org/10.1103/PhysRevB.88.161103
https://doi.org/10.1103/PhysRevB.92.115137
https://doi.org/10.1103/PhysRevB.92.115137
https://doi.org/10.1103/PhysRevB.92.115137
https://doi.org/10.1103/PhysRevB.92.115137
https://doi.org/10.1103/PhysRevB.93.075129
https://doi.org/10.1103/PhysRevB.93.075129
https://doi.org/10.1103/PhysRevB.93.075129
https://doi.org/10.1103/PhysRevB.93.075129
https://doi.org/10.1103/PhysRevLett.107.036801
https://doi.org/10.1103/PhysRevLett.107.036801
https://doi.org/10.1103/PhysRevLett.107.036801
https://doi.org/10.1103/PhysRevLett.107.036801
https://doi.org/10.1103/PhysRevB.86.115122
https://doi.org/10.1103/PhysRevB.86.115122
https://doi.org/10.1103/PhysRevB.86.115122
https://doi.org/10.1103/PhysRevB.86.115122
https://doi.org/10.1088/1751-8113/49/30/30LT01
https://doi.org/10.1088/1751-8113/49/30/30LT01
https://doi.org/10.1088/1751-8113/49/30/30LT01
https://doi.org/10.1088/1751-8113/49/30/30LT01
https://doi.org/10.1103/PhysRevB.96.241113
https://doi.org/10.1103/PhysRevB.96.241113
https://doi.org/10.1103/PhysRevB.96.241113
https://doi.org/10.1103/PhysRevB.96.241113
https://doi.org/10.1103/PhysRevLett.118.267701
https://doi.org/10.1103/PhysRevLett.118.267701
https://doi.org/10.1103/PhysRevLett.118.267701
https://doi.org/10.1103/PhysRevLett.118.267701
https://doi.org/10.1103/PhysRevB.92.081401
https://doi.org/10.1103/PhysRevB.92.081401
https://doi.org/10.1103/PhysRevB.92.081401
https://doi.org/10.1103/PhysRevB.92.081401
https://doi.org/10.1088/1742-5468/aa73f0
https://doi.org/10.1088/1742-5468/aa73f0
https://doi.org/10.1088/1742-5468/aa73f0
https://doi.org/10.1103/PhysRevB.95.235127
https://doi.org/10.1103/PhysRevB.95.235127
https://doi.org/10.1103/PhysRevB.95.235127
https://doi.org/10.1103/PhysRevB.95.235127
https://doi.org/10.1103/PhysRevX.7.041062
https://doi.org/10.1103/PhysRevX.7.041062
https://doi.org/10.1103/PhysRevX.7.041062
https://doi.org/10.1103/PhysRevX.7.041062
https://doi.org/10.1088/1742-5468/2012/11/P11020
https://doi.org/10.1088/1742-5468/2012/11/P11020
https://doi.org/10.1088/1742-5468/2012/11/P11020
https://doi.org/10.1088/1751-8113/47/7/075001
https://doi.org/10.1088/1751-8113/47/7/075001
https://doi.org/10.1088/1751-8113/47/7/075001
https://doi.org/10.1088/1751-8113/47/7/075001
https://doi.org/10.1103/PhysRevB.90.165106
https://doi.org/10.1103/PhysRevB.90.165106
https://doi.org/10.1103/PhysRevB.90.165106
https://doi.org/10.1103/PhysRevB.90.165106
https://doi.org/10.1103/PhysRevB.92.155434
https://doi.org/10.1103/PhysRevB.92.155434
https://doi.org/10.1103/PhysRevB.92.155434
https://doi.org/10.1103/PhysRevB.92.155434
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1103/PhysRevLett.95.206603
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1016/j.aop.2005.11.014
https://doi.org/10.1103/PhysRevB.88.014206
https://doi.org/10.1103/PhysRevB.88.014206
https://doi.org/10.1103/PhysRevB.88.014206
https://doi.org/10.1103/PhysRevB.88.014206
https://doi.org/10.1088/1742-5468/2013/09/P09005
https://doi.org/10.1088/1742-5468/2013/09/P09005
https://doi.org/10.1088/1742-5468/2013/09/P09005
https://doi.org/10.1103/PhysRevB.89.144201
https://doi.org/10.1103/PhysRevB.89.144201
https://doi.org/10.1103/PhysRevB.89.144201
https://doi.org/10.1103/PhysRevB.89.144201
https://doi.org/10.1103/PhysRevLett.113.107204
https://doi.org/10.1103/PhysRevLett.113.107204
https://doi.org/10.1103/PhysRevLett.113.107204
https://doi.org/10.1103/PhysRevLett.113.107204
https://doi.org/10.1103/PhysRevB.92.195107
https://doi.org/10.1103/PhysRevB.92.195107
https://doi.org/10.1103/PhysRevB.92.195107
https://doi.org/10.1103/PhysRevB.92.195107
https://doi.org/10.1038/ncomms8341
https://doi.org/10.1038/ncomms8341
https://doi.org/10.1038/ncomms8341
https://doi.org/10.1038/ncomms8341
https://doi.org/10.1103/PhysRevLett.107.030503
https://doi.org/10.1103/PhysRevLett.107.030503
https://doi.org/10.1103/PhysRevLett.107.030503
https://doi.org/10.1103/PhysRevLett.107.030503
https://doi.org/10.1007/s00220-012-1606-9
https://doi.org/10.1007/s00220-012-1606-9
https://doi.org/10.1007/s00220-012-1606-9
https://doi.org/10.1007/s00220-012-1606-9
https://doi.org/10.1103/PhysRevLett.107.030504
https://doi.org/10.1103/PhysRevLett.107.030504
https://doi.org/10.1103/PhysRevLett.107.030504
https://doi.org/10.1103/PhysRevLett.107.030504
https://doi.org/10.1103/PhysRevB.94.224206
https://doi.org/10.1103/PhysRevB.94.224206
https://doi.org/10.1103/PhysRevB.94.224206
https://doi.org/10.1103/PhysRevB.94.224206


G. KELLS, N. MORAN, AND D. MEIDAN PHYSICAL REVIEW B 97, 085425 (2018)

also include the effects of post-processing/error correction of
the quantum system. We note that for 2D topological memories
the presence of disorder is often a necessary ingredient, see for
example Refs. [62,66,68].

[71] G. M. Crosswhite and D. Bacon, Finite automata for caching
in matrix product algorithms, Phys. Rev. A 78, 012356
(2008).

[72] U. Schollwöck, The density-matrix renormalization group in
the age of matrix product states, Ann. Phys. 326, 96 (2011).

[73] P. W. Anderson, Absence of Diffusion in Certain Random
Lattices, Phys. Rev. 109, 1492 (1958).

[74] D. A. Huse, R. Nandkishore, and V. Oganesyan, Phenomenol-
ogy of fully many-body-localized systems, Phys. Rev. B 90,
174202 (2014).

[75] A. Chandran, I. H. Kim, G. Vidal, and D. A. Abanin, Construct-
ing local integrals of motion in the many-body localized phase,
Phys. Rev. B 91, 085425 (2015).

[76] M. Serbyn, Z. Papic, and D. A. Abanin, Local Conservation
Laws and the Structure of the Many-Body Localized States,
Phys. Rev. Lett. 111, 127201 (2013).

[77] J. M. Deutsch, Quantum statistical mechanics in a closed
system, Phys. Rev. A 43, 2046 (1991).

[78] M. Srednicki, Chaos and quantum thermalization, Phys. Rev.
E 50, 888 (1994).

[79] M. Srednicki, Thermal fluctuations in quantized chaotic sys-
tems, J. Phys. A: Math. Gen. 29, L75 (1996).

[80] V. Oganesyan and D. A. Huse, Localization of interacting
fermions at high temperature, Phys. Rev. B 75, 155111 (2007).

[81] A. Pal and D. A. Huse, Many-body localization phase transi-
tion, Phys. Rev. B 82, 174411 (2010).

[82] E. Cuevas, M. FeigelMan, L. Ioffe, and M. Mezard, Level
statistics of disordered spin-1/2 systems and materials with
localized Cooper pairs, Nat. Commun. 3, 1128 (2012).

[83] C. R. Laumann, A. Pal, and A. Scardicchio, Many-Body
Mobility Edge in a Mean-Field Quantum Spin Glass, Phys.
Rev. Lett. 113, 200405 (2014).

[84] D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization
edge in the random-field Heisenberg chain, Phys. Rev. B 91,
081103 (2015).

[85] T. Grover, Certain general constraints on the many-body
localization transition, arXiv:1405.1471.

[86] T. C. Berkelbach and D. R. Reichman, Conductivity of disor-
dered quantum lattice models at infinite temperature: Many-
body localization, Phys. Rev. B 81, 224429 (2010).

[87] Y. B. Lev, G. Cohen, and D. R. Reichman, Absence of Diffusion
in an Interacting System of Spinless Fermions on a One-
Dimensional Disordered Lattice, Phys. Rev. Lett. 114, 100601
(2015).

[88] M. Žnidarič, T. Prosen, and P. Prelovşek, Many-body localiza-
tion in the Heisenberg XXZ magnet in a random field, Phys.
Rev. B 77, 064426 (2008).

[89] J. H. Bardarson, F. Pollmann, and J. E. Moore, Unbounded
Growth of Entanglement in Models of Many-Body Localiza-
tion, Phys. Rev. Lett. 109, 017202 (2012).

[90] M. Serbyn, Z. Papić, and D. A. Abanin, Universal Slow Growth
of Entanglement in Interacting Strongly Disordered Systems,
Phys. Rev. Lett. 110, 260601 (2013).

[91] S. Bera, H. Schomerus, F. Heidrich-Meisner, and J. H. Bar-
darson, Many-Body Localization Characterized from a One-
Particle Perspective, Phys. Rev. Lett. 115, 046603 (2015).

[92] M.-D. Choi, Positive linear maps on Cspast-algebras, Canad.
J. Math. 24, 520 (1972).

[93] M.-D. Choi, Completely positive linear maps on complex
matrices, Linear Algebra Applications 10, 285 (1975).

[94] A. Jamiolkowski, Linear transformations which preserve trace
and positive semi-definiteness of operators, Rep. Math. Phys.
3, 275 (1972).

[95] T. Prosen, Third quantization: A general method to solve master
equations for quadratic open Fermi systems, New. J. Phys. 10,
043026 (2008).

[96] E. Mascarenhas, H. Flayac, and V. Savona, Matrix-product-
operator approach to the nonequilibrium steady state of driven-
dissipative quantum arrays, Phys. Rev. A 92, 022116 (2015).

[97] J. Cui, J. I. Cirac, and M. C. Bañuls, Variational Matrix Product
Operators for the Steady State of Dissipative Quantum Systems,
Phys. Rev. Lett. 114, 220601 (2015).

[98] I. H. Kim, A. Chandran, and D. A. Abanin, Local integrals of
motion and the logarithmic lightcone in many-body localized
systems, arXiv:1412.3073.

[99] A. Chandran, J. Carrasquilla, I. H. Kim, D. A. Abanin, and
G. Vidal, Spectral tensor networks for many-body localization,
Phys. Rev. B 92, 024201 (2015).

[100] V. Ros, M. Müller, and A. Scardicchio, Integrals of motion in
the many-body localized phase, Nucl. Phys. B 891, 420 (2015).

[101] J. Z. Imbrie, On Many-Body Localization for Quantum Spin
Chains, J. Stat. Phys. 163, 998 (2016).

[102] Y. Z. You, X. L. Qi, and C. Xu, Entanglement holographic map-
ping of many-body localized system by spectrum bifurcation
renormalization group, Phys. Rev. B 93, 104205 (2016).

[103] S. D. Geraedts, R. N. Bhatt, and R. Nandkishore, Emergent
local integrals of motion without a complete set of localized
eigenstates, Phys. Rev. B 95, 064204 (2017).

[104] T. E. O’Brien, D. A. Abanin, G. Vidal, and Z. Papic, Explicit
construction of local conserved operators in disordered many-
body systems, Phys. Rev. B 94, 144208 (2016).

[105] E. Ilievski, M. Medenjak, T. Prosen, and L. Zadnik, Quasilocal
charges in integrable lattice systems, J. Stat. Mech. (2016)
064008.

[106] M. Friesdorf, A. H. Werner, M. Goihl, J. Eisert, and W. Brown,
Local constants of motion imply information propagation, New
J. Phys. 17, 1 (2015).

[107] R.-Q. He and Z.-Y. Lu, Interaction-Induced characteristic
length in strongly many-body localized systems, Chin. Phys.
Lett. 35, 027101 (2018).

[108] L. Rademaker and M. Ortuño, Explicit Local Integrals of
Motion for the Many-Body Localized State, Phys. Rev. Lett.
116, 010404 (2016).

[109] L. Rademaker, M. Ortuño, and A. M. Somoza, Many-body lo-
calization from the perspective of Integrals of Motion, Annalen
der Physik 529, 1600322 (2017).

[110] D. Pekker, B. K. Clark, V. Oganesyan, and G. Refael, Fixed
Points of Wegner-Wilson Flows and Many-Body Localization,
Phys. Rev. Lett. 119, 075701 (2017).

[111] V. L. Quito, P. Titum, D. Pekker, and G. Refael, Localization
transition in one dimension using Wegner flow equations, Phys.
Rev. B 94, 104202 (2016).

[112] V. Khemani, F. Pollmann, and S. L. Sondhi, Obtaining Highly
Excited Eigenstates of Many-Body Localized Hamiltonians by
the Density Matrix Renormalization Group Approach, Phys.
Rev. Lett. 116, 247204 (2016).

085425-14

https://doi.org/10.1103/PhysRevA.78.012356
https://doi.org/10.1103/PhysRevA.78.012356
https://doi.org/10.1103/PhysRevA.78.012356
https://doi.org/10.1103/PhysRevA.78.012356
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.91.085425
https://doi.org/10.1103/PhysRevB.91.085425
https://doi.org/10.1103/PhysRevB.91.085425
https://doi.org/10.1103/PhysRevB.91.085425
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1088/0305-4470/29/4/003
https://doi.org/10.1088/0305-4470/29/4/003
https://doi.org/10.1088/0305-4470/29/4/003
https://doi.org/10.1088/0305-4470/29/4/003
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1103/PhysRevB.82.174411
https://doi.org/10.1038/ncomms2115
https://doi.org/10.1038/ncomms2115
https://doi.org/10.1038/ncomms2115
https://doi.org/10.1038/ncomms2115
https://doi.org/10.1103/PhysRevLett.113.200405
https://doi.org/10.1103/PhysRevLett.113.200405
https://doi.org/10.1103/PhysRevLett.113.200405
https://doi.org/10.1103/PhysRevLett.113.200405
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevB.91.081103
https://doi.org/10.1103/PhysRevB.91.081103
http://arxiv.org/abs/arXiv:1405.1471
https://doi.org/10.1103/PhysRevB.81.224429
https://doi.org/10.1103/PhysRevB.81.224429
https://doi.org/10.1103/PhysRevB.81.224429
https://doi.org/10.1103/PhysRevB.81.224429
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevLett.114.100601
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevB.77.064426
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.109.017202
https://doi.org/10.1103/PhysRevLett.110.260601
https://doi.org/10.1103/PhysRevLett.110.260601
https://doi.org/10.1103/PhysRevLett.110.260601
https://doi.org/10.1103/PhysRevLett.110.260601
https://doi.org/10.1103/PhysRevLett.115.046603
https://doi.org/10.1103/PhysRevLett.115.046603
https://doi.org/10.1103/PhysRevLett.115.046603
https://doi.org/10.1103/PhysRevLett.115.046603
https://doi.org/10.4153/CJM-1972-044-5
https://doi.org/10.4153/CJM-1972-044-5
https://doi.org/10.4153/CJM-1972-044-5
https://doi.org/10.4153/CJM-1972-044-5
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1016/0034-4877(72)90011-0
https://doi.org/10.1088/1367-2630/10/4/043026
https://doi.org/10.1088/1367-2630/10/4/043026
https://doi.org/10.1088/1367-2630/10/4/043026
https://doi.org/10.1088/1367-2630/10/4/043026
https://doi.org/10.1103/PhysRevA.92.022116
https://doi.org/10.1103/PhysRevA.92.022116
https://doi.org/10.1103/PhysRevA.92.022116
https://doi.org/10.1103/PhysRevA.92.022116
https://doi.org/10.1103/PhysRevLett.114.220601
https://doi.org/10.1103/PhysRevLett.114.220601
https://doi.org/10.1103/PhysRevLett.114.220601
https://doi.org/10.1103/PhysRevLett.114.220601
http://arxiv.org/abs/arXiv:1412.3073
https://doi.org/10.1103/PhysRevB.92.024201
https://doi.org/10.1103/PhysRevB.92.024201
https://doi.org/10.1103/PhysRevB.92.024201
https://doi.org/10.1103/PhysRevB.92.024201
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1016/j.nuclphysb.2014.12.014
https://doi.org/10.1007/s10955-016-1508-x
https://doi.org/10.1007/s10955-016-1508-x
https://doi.org/10.1007/s10955-016-1508-x
https://doi.org/10.1007/s10955-016-1508-x
https://doi.org/10.1103/PhysRevB.93.104205
https://doi.org/10.1103/PhysRevB.93.104205
https://doi.org/10.1103/PhysRevB.93.104205
https://doi.org/10.1103/PhysRevB.93.104205
https://doi.org/10.1103/PhysRevB.95.064204
https://doi.org/10.1103/PhysRevB.95.064204
https://doi.org/10.1103/PhysRevB.95.064204
https://doi.org/10.1103/PhysRevB.95.064204
https://doi.org/10.1103/PhysRevB.94.144208
https://doi.org/10.1103/PhysRevB.94.144208
https://doi.org/10.1103/PhysRevB.94.144208
https://doi.org/10.1103/PhysRevB.94.144208
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1088/1742-5468/2016/06/064008
https://doi.org/10.1088/1367-2630/17/11/113054
https://doi.org/10.1088/1367-2630/17/11/113054
https://doi.org/10.1088/1367-2630/17/11/113054
https://doi.org/10.1088/1367-2630/17/11/113054
https://doi.org/10.1088/0256-307X/35/2/027101
https://doi.org/10.1088/0256-307X/35/2/027101
https://doi.org/10.1088/0256-307X/35/2/027101
https://doi.org/10.1088/0256-307X/35/2/027101
https://doi.org/10.1103/PhysRevLett.116.010404
https://doi.org/10.1103/PhysRevLett.116.010404
https://doi.org/10.1103/PhysRevLett.116.010404
https://doi.org/10.1103/PhysRevLett.116.010404
https://doi.org/10.1002/andp.201600322
https://doi.org/10.1002/andp.201600322
https://doi.org/10.1002/andp.201600322
https://doi.org/10.1002/andp.201600322
https://doi.org/10.1103/PhysRevLett.119.075701
https://doi.org/10.1103/PhysRevLett.119.075701
https://doi.org/10.1103/PhysRevLett.119.075701
https://doi.org/10.1103/PhysRevLett.119.075701
https://doi.org/10.1103/PhysRevB.94.104202
https://doi.org/10.1103/PhysRevB.94.104202
https://doi.org/10.1103/PhysRevB.94.104202
https://doi.org/10.1103/PhysRevB.94.104202
https://doi.org/10.1103/PhysRevLett.116.247204
https://doi.org/10.1103/PhysRevLett.116.247204
https://doi.org/10.1103/PhysRevLett.116.247204
https://doi.org/10.1103/PhysRevLett.116.247204


LOCALIZATION ENHANCED AND DEGRADED … PHYSICAL REVIEW B 97, 085425 (2018)

[113] C. Monthus, Many-body localization: Construction of the
emergent local conserved operators via block real-space renor-
malization, J. Stat. Mech. (2016) 033101.

[114] There is no particular reason for using this choice of lo-
cal/nonlocal clusters. Other choices yield the same general
picture.

[115] F. Iemini, C. Mora, and L. Mazza, Topological Phases of
Parafermions: A Model with Exactly Solvable Ground States,
Phys. Rev. Lett. 118, 170402 (2017).

[116] K. Meichanetzidis, C. J. Turner, A. Farjami, Z. Papić, and J. K.
Pachos, Free-fermion descriptions of parafermion chains and
string-net models, arXiv:1705.09983.

085425-15

https://doi.org/10.1088/1742-5468/2016/03/033101
https://doi.org/10.1088/1742-5468/2016/03/033101
https://doi.org/10.1088/1742-5468/2016/03/033101
https://doi.org/10.1103/PhysRevLett.118.170402
https://doi.org/10.1103/PhysRevLett.118.170402
https://doi.org/10.1103/PhysRevLett.118.170402
https://doi.org/10.1103/PhysRevLett.118.170402
http://arxiv.org/abs/arXiv:1705.09983



