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In the study of quantum mechanical systems, exact diagonalisation (ED) methods play an extremely
important role. We have developed an ED code named DoQO (Diagonalisation of Quantum Observables).
This code is capable of constructing and diagonalising the observables for spin 1

2 and spinless fermionic
particles with many body interactions on arbitrary graphs using massively parallel distributed memory
machines. At the same time, the code can exploit physical symmetries to reduce the size of the relevant
basis set and provide useful physical information about each eigenstate. DoQO has been employed
successfully to directly diagonalise systems with basis sets containing a billion elements. By exploiting
symmetries it has been possible to perform calculations on systems with 36 spin 1

2 particles. Here we
present essential background details, the structure and usage of DoQO, and a study of the performance
characteristics of DoQO on different machines.

Program summary

Program title: DoQO
Catalogue identifier: AEII_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEII_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 81 845
No. of bytes in distributed program, including test data, etc.: 495 379
Distribution format: tar.gz
Programming language: C++ (dependencies require Fortran)
Computer: Standard workstations and distributed memory machines
Operating system: Any operating system with C++, Fortran, MPI, PETSc and SLEPc (code developed and
tested on OS X and Linux)
Has the code been vectorised or parallelised?: Yes code uses MPI for interprocess communication. One to
thousands of processors may be used
RAM: Depends on problem size. Ranges from MBs to TBs
Classification: 7.8
External routines: PETSc, SLEPc, LAPACK, BLAS, MPI, BOOST, tinyxml
Nature of problem: To calculate the low lying eigenvalues and eigenstates of quantum observables for spin
1
2 and spinless fermionic systems on arbitrary graphs efficiently in parallel.
Solution method: Large scale linear scaling iterative exact diagonalisation methods are used on distributed
memory machines. Physical symmetries are exploited to extend the size of systems which can be treated
and to provide important additional information about the eigenstates.
Restrictions: The size of the systems that DoQO can handle is restricted by the amount of available
memory.
Unusual features: The main feature that makes DoQO stand out from other diagonalisation codes is its
ability to exploit physical symmetries efficiently using parallel computer architectures without the use
of model specific optimisations. The ability to treat systems with arbitrarily complex interactions is also
unique.

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.com/
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Running time: The running time ranges from seconds to hours depending on the problem size and
computational resources used.

© 2011 Elsevier B.V. All rights reserved.
1. Motivation and background

Solving a quantum mechanical system means finding the eigen-
values and eigenstates of a relevant set of quantum operators. In
many instances, finding the extremal part of the spectrum is not
only the most tractable numerically but also the most relevant to
the physics of the system being studied. This is particularly rel-
evant to strongly correlated many body quantum problems which
lie at the heart of condensed matter and statistical physics research
today.

Here we present a code for Diagonalisation of Quantum Ob-
servables (DoQO). It is capable of constructing and diagonalising
observables for spin 1

2 and spinless fermionic particles on both
regular lattices and general graphs. It produces numerically ex-
act data about the low energy part of the operator spectrum
and provides access to the full eigenfunctions, making it possible
to calculate useful physical quantities. Exact diagonalisation tech-
niques, like those implemented in DoQO, are essential for getting
important physical insights and also for understanding the limits
of approximative techniques which in principle allow larger sys-
tems to be studied. DoQO can exploit physical symmetries which
reduce the relevant basis set size and the related memory require-
ments, providing additional information about each eigenstate. In
addition, DoQO has been designed to work in parallel to take ad-
vantage of modern High Performance Computing (HPC) resources
and has been benchmarked on various HPC platforms. The mem-
ory, load and indexing issues are taken care of automatically using
a number of custom built and generalisable algorithms.

In the rest of this section we introduce essential concepts rel-
evant to quantum observables and symmetries and then discuss
the associated implementation issues. In Section 2 we provide an
overview of the software together with usage information. In Sec-
tion 3 the central components of the software are explained in
more detail, with a demonstration of how DoQO is used given in
Section 4. In Section 5 the scaling and performance of the code for
a benchmark system on a number of different HPC platforms are
investigated. Finally in Section 6 we explore possible ways to ex-
tend the code. These possible extensions are related to handling
different particle types and exploiting additional symmetries.

1.1. Quantum observables

The main objective of DoQO is to provide exact low energy
spectral data, specifically ground state and low lying eigenstates
and the relevant eigenvalues, of quantum observables. This data
can be used to formulate and verify relevant analytical models and
to benchmark approximative techniques. By benchmarking these
techniques we can quantify their reliability for a given system or
physical context.

Quantum observables are self-adjoint operators which represent
observable physical quantities. Their eigenvalues are real num-
bers and together with the related eigenstates correspond to the
possible measurement outcomes. A prominent example of an ob-
servable is the Hamiltonian. This observable represents the total
energy of the system and generates quantum dynamics through
the Schrödinger equation. Its eigenvalues are the energy levels and
the eigenstates are the corresponding stationary states. In the con-
text of condensed matter and statistical physics we are generally
interested in the ground state and/or low lying part of the energy
spectrum.
DoQO is designed to work with systems of spin 1
2 or spinless

fermionic particles on regular lattices or general graphs. It is pos-
sible to describe interactions involving arbitrary numbers of par-
ticles. Each spin 1

2 particle is a two-level quantum system whose
states are vectors in a two-dimensional Hilbert space H2. Likewise
each site of a spinless fermionic system can be either empty or
occupied. The two level nature of these particles makes DoQO rel-
evant to quantum information processing systems.

The Hilbert space of the system of n spin 1
2 particles is the

n-fold tensor product
⊗n

1 H2, so its dimension is an exponential
of the number of spin 1

2 particles. DoQO tackles the system size
limitation, which derives from the exponential scaling of the basis
set, by several means. First, symmetries can be used to reduce the
basis set without compromising the quantitative accuracy of the
computed data. Second, DoQO exploits the sparsity of the matrix
representation to save memory. Lastly DoQO constructs the observ-
ables such that the diagonalisation procedure can be performed
efficiently in parallel on massively parallel distributed memory ar-
chitectures.

1.2. Employing symmetries

The use of symmetries reduces the computational resources re-
quired to diagonalise an observable while simultaneously providing
additional physical information about each eigenstate. By work-
ing in the eigenbasis of a symmetry operator (SO) and reordering
the basis elements appropriately, the matrix representation of the
observable becomes block diagonal. Each block corresponds to a
particular eigenspace of the SO and can be diagonalised separately.
The states resulting from the diagonalisation of a given block are
labelled by a quantum number that is the eigenvalue of the SO
associated with that block.

DoQO is capable of exploiting the symmetries which conserve
parity, filling and momentum. Where multiple symmetries are
compatible they can be exploited simultaneously. Here we define
these symmetries more precisely and show how DoQO determines
and indexes the relevant eigenvectors of each SO.

1.2.1. Parity
The SO that conserves parity is defined as

∏
i σ

z
i for spin 1

2
systems and

∏
i(2ni − 1) for spinless fermionic systems. Here the

products are over the subset of sites for which parity is conserved
and ni is the spinless fermionic number operator. These operators
are diagonal in the standard basis that DoQO uses. For spin 1

2 sys-
tems the standard basis refers to the basis in which σ z operators
are diagonal and for fermionic systems the occupancy number ba-
sis. As a result of the SO’s being diagonal in the standard basis
no change of basis elements is required to exploit this symmetry.
DoQO can also exploit situations where parity is conserved over
subsets of spins or sites. This results in a further reduction of the
basis set size for each block and thus the computational resources
required. For example, if there are M subsets of sites over which
parity is conserved then there are 2M blocks each with dimension
2N−M where N is the total number of sites.

1.2.2. Filling
For spin 1

2 systems the SO’s that conserves filling are defined as
1
2

∑
i(σ

z
i + 1) (for spin 1

2 ) and
∑

i ni (for spinless fermions) with
i running over the subset of sites for which filling is conserved.
Like the SO’s that conserve parity these operators are diagonal in
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the standard bases. If filling is conserved over a subset of sites this
implies that parity is also conserved over that subset. In this re-
spect conservation of filling is stronger than conservation of parity.
If filling is conserved over M subsets of sites with each subset con-
taining si sites there are

∏M
i (si + 1) blocks. The dimension of the

block with filling f i in each subset is
∏

i

( si
f i

)
.

1.2.3. Momentum
DoQO is capable of exploiting the translational symmetry,

which conserves the momentum in each direction. The SO’s in
this case are the translation operators T = eix̂k̂ and the quantum
numbers eik , where k is the momentum and 0 � k � 2π . As these
operators are not diagonal in the standard basis a change of ba-
sis elements is required to exploit these symmetries. In DoQO the
method of representatives is used to work in the eigenbasis of the
SO’s, and calculate the matrix elements of each block. This method
is discussed in [1,2].

From each set of configurations which can be related via trans-
lation a representative configuration |ψr〉 is selected. This is con-
ventionally chosen to be the configuration with the smallest nu-
merical label in the set. An eigenstate of the translation operators
with a given momentum can be determined from each representa-
tive configuration. These eigenstates have the form of a weighted
sum of states obtained by translating the representative configura-
tion. The weight of each state is a function of the momentum and
of the number of translations needed to cycle back to the repre-
sentative configuration. For a square lattice with L × L sites and
translation operators T1 and T2, an eigenstate with momentum ki
in the direction of Ti is given by

|ψk1,k2,r〉 = 1

N

L−1∑
x1=0

L−1∑
x2=0

ei(x1k1+x2k2)
∣∣ψ x1,x2

r
〉

where N is a normalisation factor ensuring 〈ψk1,k2,r |ψk1,k2,r〉 = 1
and |ψx1,x2

r 〉 = T x1
1 T x2

2 |ψr〉. This is in essence the discrete Fourier
transform.

DoQO exploits the fact that the matrix elements for a given
block can be calculated by working with the representative config-
urations alone. This can be clearly seen by expanding the expres-
sion for each matrix element in a given block 〈ψk1,k2,r |H|ψk1,k2,r′ 〉.

1.2.4. Labelling
In order to implement the exploitation of symmetries, the ba-

sis elements of each block must also be labelled appropriately. To
do this DoQO uses perfect mapping functions for the symmetries
which conserve parity and filling and uses a sorted distributed
array to label the representative configurations when exploiting
the translational symmetries. The implementation details of the
so-called perfect mapping functions used are explained in Sec-
tion 3.1.1 and the use of distributed sorted arrays is discussed in
Sections 3.1.2 and 3.1.3.

2. Overview of the software structure and usage

DoQO is written in C++ and makes extensive use of the PETSc
[3–5] and SLEPc [6] libraries which are required for DoQO to work.
The XML file format is used for some of the input files due to its
extensibility. An open source library named TinyXML [7] is used to
parse the XML files and is included with the DoQO code.

2.1. Compiling DoQO

A makefile has been included in the DoQO source directory
which can be used to build DoQO. For this to work the PETSc
and SLEPc libraries must first be built and the relevant environ-
ment variables set. Users are advised to consult the README file
included with the code for detailed instructions about compiling
PETSc, SLEPc and DoQO.
2.2. Basic usage

DoQO can be run as a single process or as multiple intercom-
municating processes. To run a single process of DoQO a command
as in Code block 1 is used from the directory containing the DoQO
executable. The input filename is passed to DoQO via the ‘input’
switch:

Code block 1 Command used to launch a single process of DoQO.
./doqo -input sample_input.xml

To run multiple intercommunicating processes of DoQO the MPI
launcher application is used. This is named ‘mpiexec’ or ‘mpirun’
depending on the MPI implementation in use. An example of the
command used to launch 16 DoQO processes is given in Code
block 2:

Code block 2 Command used to launch DoQO with sixteen pro-
cesses using mpiexec.
mpiexec -np 16 ./doqo -input sample_input.xml

The input file which is passed to the DoQO executable is an
XML file which contains all the parameters that control how DoQO
runs. An example of a simple input file is given in Code block 3:

Code block 3 Sample input file for DoQO containing required pa-
rameters. These are the model file which describes the observable,
the task list file which specifies the coefficient values for each task
and the output prefix which is the prefix used for the output files.
<?xml version="1.0" encoding="UTF-8"?>
<SIMULATION>

<PARAMETERS>
<MODEL_FILE>ising_chain_L_8.ham</MODEL_FILE>
<TASK_LIST>ising_chain_tasks</TASK_LIST>
<OUTPUT_PREFIX>ising_chain_L_8</OUTPUT_PREFIX>

</PARAMETERS>
</SIMULATION>

The file specified by the MODEL_FILE parameter describes the
observable that is being diagonalised. An example of such a file for
a system of spin 1

2 particles can be seen in Code block 4:

Code block 4 Input specification for Hamiltonian of Ising chain in
a transverse magnetic on an 8 site ring.
SITES 8
PARAMETERS
J
h
TERMS
1 X,2 X * J
2 X,3 X * J
3 X,4 X * J
4 X,5 X * J
5 X,6 X * J
6 X,7 X * J
7 X,8 X * J
8 X,1 X * J
1 Z * h
2 Z * h
3 Z * h
4 Z * h
5 Z * h
6 Z * h
7 Z * h
8 Z * h

This example describes the Hamiltonian for the transverse field
Ising model on a ring with eight spins. That is
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H = J
8∑

i=1

σ x
i σ x

i+1 + h
8∑

i=1

σ z
i

with σ x
8+1 = σ x

1 . The format of this file is:

• The first line specifies the number of sites over which the ob-
servable is defined.

• The second line contains the label ‘PARAMETERS’.
• The following lines up to the one containing the label ‘TERMS’

contain the parameter names of the coefficients used in the
definition of the observable.

• Next is a line containing the label ’TERMS’.
• The rest of the lines specify the terms that make up the ob-

servable. The format for these lines is:
◦ A comma separated list followed by an asterisk where each

entry is composed of a site index and an X, Y or Z which
signify a σ x, σ y or σ z operator acting on the site specified
by the site index.

◦ A comma separated list of the parameters that are multi-
plied together to get the coefficient for each term.

There is an implicit identity for each site not explicitly mentioned.
In this way ‘* J’ would describe the identity operator over all sites
multiplied by the coefficient J . For spinless fermionic systems a
similar format is used except instead of using X, Y and Z to repre-
sent σ x, σ y and σ z we use C and A to represent the creation and
annihilation operators c† and c. Refer to Appendix B for further
details on constructing operators.

The file specified by the TASK_LIST parameter contains a list of
the parameter values to be used for each task. This file has one
line per task, where each line consists of a comma separated list
of parameters. These parameters are used to calculate the coeffi-
cients for each term of the observable. Any parameters which are
not specified are set to zero. By specifying appropriate parameter
values in the task file, scans of the parameter space can be per-
formed with a single call to DoQO. An example of a task file with
seven tasks is given in Code block 5:

Code block 5 Example of task file specifying seven tasks for the
Ising chain described in Code block 4.
J = -1.0
J = -1.0, h = 0.5
J = -1.0, h = 1.0
J = -1.0, h = 1.5
J = -1.0, h = 2.0
J = -1.0, h = 2.5
J = -1.0, h = 3.0

DoQO produces XML output files. A general output file is cre-
ated which lists the specific output files that contain the results of
each diagonalisation. The name of the general output file is com-
posed of the output prefix as specified in the input file with the
suffix ‘.output.xml’ appended. Details about the code version and
environment are also provided in this file. In addition for each
task and symmetry block a separate output file is created contain-
ing the results of that diagonalisation. The information written to
these output files includes the eigenvalues converged, the error es-
timates as well as additional information. This includes the basis
set size, the time taken and the number of iterations of the solver
method used.

2.3. Exploiting symmetries

To enable the use of symmetries in DoQO an element describing
the symmetries to be exploited is added to the XML input file. The
element is enclosed within tags labelled ‘SYMMETRIES’. For each
symmetry that one wishes to exploit a child element describing
that symmetry is added inside the initial element. These child el-
ements are enclosed between tags labelled ‘PARITY’, ‘FILLING’ and
‘MOMENTUM’ corresponding to the symmetries that conserve par-
ity, filling and momentum respectively. Code block 6 contains an
extract of an input that has a symmetries element with a child
element specifying a symmetry that conserves parity.

Additional details for each symmetry are given in a metadata
file specified by the ‘file’ attribute for each symmetry element. For
the symmetries that conserve parity and filling this metadata file
specifies the subsets of sites on which the parity or filling is con-
served. For translational symmetries this file specifies the lattice
geometry and translation vectors. The format for these files is ex-
plained in more detail later in this section.

DoQO will by default diagonalise an observable in each eigen-
space of the supplied symmetry operators one after another.
An optional child element can be added within each symme-
try element that allows one to restrict the calculation to specific
eigenspaces. This element is enclosed by tags labelled ‘RELE-
VANT_SECTORS’ and has an attribute called ‘number’ that specifies
how many of the eigenspaces are to be used. Each eigenspace to
be used is then specified by a child element of this element la-
belled by ‘SECTOR’ that encloses an integer that uniquely labels
an eigenspace of the symmetry operator. The details of how each
eigenspace is labelled for each of the symmetries that DoQO ex-
ploits is described later in this section. Code block 6 shows an
example of an input file that specifies that DoQO exploit the con-
servation of parity and that it is restricted to the eigenspaces of
the parity operators labelled one and three:

Code block 6 Input file specifying that symmetry conserving parity
should be used.
<SIMULATION>

<PARAMETERS>
...

<SYMMETRIES>
<PARITY file="subsets.txt">

<RELEVANT_SECTORS number="2">
<SECTOR>1</SECTOR>
<SECTOR>3</SECTOR>

</RELEVANT_SECTORS>
</PARITY>

</SYMMETRIES>
</PARAMETERS>

</SIMULATION>

For the symmetry that conserves parity the metadata file iden-
tifies the subsets of sites for which parity is conserved. This file
contains one line for each subset of sites. Each line consists of a
bit string with the number of bits matching the number of sites in
the system. Each site corresponds to a bit in this string with the
site indices increasing from right to left. For sites included in the
subset, there is a ‘1’ in the position that corresponds to that site
and a ‘0’ otherwise. In Code block 7 an example of such a file for
a system with eight sites is shown:

Code block 7 File specifying two subsets of sites, 1 to 4 and 5 to 8.
00001111
11110000

Here two subsets of sites are defined, one which spans sites with
indices 1 to 4 and one that spans sites with indices 5 to 8. The
SO’s that conserve parity over these subsets of sites for spin 1

2 sys-

tems are P0 = ∏4
i=1 σ z

i and P1 = ∏8
i=5 σ z

i . The four eigenspaces
with eigenvalues (p0, p1) = (1,1), (1,−1), (−1,1), (−1,−1) are
labelled with integers from zero to three respectively. If, as
specified in Code block 6, only eigenspaces labelled one and
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three were used, this would select the eigenspaces (p0, p1) =
(1,−1), (−1,−1).

When using the symmetry that conserves filling the meta-
data file specifies the subsets of sites over which filling is con-
served. The format of this file is the same as that used for the
symmetry that conserves parity. In this case the SO’s are Ci =
1
2

∑
j∈Ni

(σ z
j + 1) where Ni is the set of sites in the ith subset.

There are
∏

i(si + 1) eigenspaces where si is the number of sites
in the ith subset. These eigenspaces correspond to the possible fill-
ings that each subset can have. If f i are the fillings for each subset
then each eigenspace is labelled by

∑
i( f i

∏ j<i
j=0(s j + 1)).

The metadata file supplied when describing symmetries that
conserve momentum provide details of the lattice geometry as
well as the translation vectors for which the system is invariant:

Code block 8 Example of the metadata file that would be sup-
plied to exploit translational invariance for a four by four square
lattice. The LATTICE_VECTOR vectors specify the translation vec-
tors in terms of lattice sites. The NORM_VECTOR vectors corre-
spond to the same vectors except normalised to one and the LAT-
TICE_DIMENSIONS specifies the size of the lattice in each direction.
LATTICE_VECTOR1 = 1,0
LATTICE_VECTOR2 = 0,1
NORM_VECTOR1 = 1,0
NORM_VECTOR2 = 0,1
LATTICE_DIMENSIONS = 4,4

The information contained in this file consists of two translation
vectors in lattice units in each direction, the normalised version of
these vectors and the dimensions of the lattice in each direction.
Code block 8 shows an example of what this file looks like for a
four by four square lattice with periodic boundary conditions. The
number of eigenspaces of the translation operators is then n0n1
where n0 and n1 are the numbers of translations possible in each
direction. The corresponding eigenvalues of the translation opera-

tors for these eigenspaces are e
2π ix0

n0 and e
2π ix1

n1 where x0 and x1
are integers with 0 � x0 < n0 and 0 � x1 < n1. DoQO uses numeri-
cal labels given by x0 + x1n0 to refer to each of these eigenspaces.

2.4. Nearest neighbour exclusion

DoQO has the capability of working in a basis in which all
configurations obey a nearest neighbour exclusion condition. This
condition only allows configurations in which no two neighbouring
sites are occupied. The supersymmetric lattice models discussed in
[8] enforce this condition. Being able to work in this restricted ba-
sis significantly reduces the computational resource requirements
for treating these systems. To enable this feature in DoQO a pa-
rameter named ‘NN_EXCLUSION’ is added to the input file. Code
block 9 shows an example of how this parameter is used:

Code block 9 Parameter enabling nearest neighbour exclusion us-
ing adjacency file file.adj.
<SIMULATION>

<PARAMETERS>
....

<NN_EXCLUSION adjacency_file="file.adj">true
</NN_EXCLUSION>
....

</PARAMETERS>
</SIMULATION>

An XML file is also provided which provides information about
which sites are adjacent. An example of such a file for a four site
ring is shown in Code block 10:
Code block 10 File providing adjacency information for a four site
ring.
<?xml version="1.0" encoding="UTF-8"?>
<EDGES number="4">
<EDGE from="1" to="2" ></EDGE>
<EDGE from="2" to="3" ></EDGE>
<EDGE from="3" to="4" ></EDGE>
<EDGE from="4" to="1" ></EDGE>
</EDGES>

2.5. Additional parameters

DoQO supports additional parameters that can be specified in
the input file. A complete list of the possible parameters is as fol-
lows (required parameters are marked with a ∗).

MODEL_FILE∗: File describing the observable. Example of spin 1
2

operator in Code block 4.
TASK_LIST∗: The file containing the values of parameters for each

task that is to be run. Example in Code block 5.
OUTPUT_PREFIX∗: Prefix for output files.
MODEL_TYPE: The type of observable that is being used. Currently

supported options are SPIN_HALF and FERMIONIC. The default is
SPIN_HALF.

VERBOSITY: Specifies the level of verbosity to use. For minimal
output while the code is running choose a small value and for
more detailed output choose a higher value for the verbosity.
The range is from zero to fifteen with the default set to one.

EIGENVALUES: Number of eigenvalues to retrieve for each diago-
nalisation. Default is two.

NN_EXCLUSION: Specifies that neighbouring sites cannot be occu-
pied. Adjacency information required see Section 2.4 for more
details.

SAVE_STATES: Save states to disk for further analysis. Format can
be set to ‘ascii’ to output vectors in human readable ASCII for-
mat.

BENCHMARK: Set initial vector for solver to all ones to get con-
stant number of iterations for benchmarking purposes.

SOLVER_TYPE: Sets the type of solver to use. Any SLEPc eigen-
problem solver type can be used. To select a particular solver to
use one specifies the label for that solver. These are ‘arnoldi’ for
Arnoldi, ‘lanczos’ for Lanczos, ‘krylovschur’ for Krylov–Schur and
‘arpack’ for Arpack. The default is to use Krylov–Schur.

MAX_ITERATIONS: The maximum number of iterations of the
solver method to perform before giving up. Default is 500.

SAVE_MATRIX: Saves each matrix to a file on disk.
USE_DISK: Use shared disk in basis list construction when using

symmetries. Details at end of Section 3.1.2.
USE_BST: Use binary sorting tree instead of linked list in exchange

of basis indices. For further details see the last paragraph of Sec-
tion 3.1.3.

SOLVER_TOLERANCE: Tolerance for converged eigenvalues. Default
is 1.0e−13.

DEGENERACY_TOLERANCE: Tolerance for degeneracy analysis. De-
fault is 1.0e−10.

PHASE_TOLERANCE: Tolerance for comparing phases when ex-
ploiting translational invariance. Default is 1.0e−10.

As well as the parameters in the input file, it is possible to
pass command line arguments to change the behaviour of PETSc
and SLEPc. A complete list can be found in the PETSc and SLEPc
documentation. Some useful arguments are:

–eps_monitor: Option to print detail of convergence after iteration.
–eps_monitor_draw: Option to show plot monitoring convergence

(requires X11 graphical environment).
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–eps_plot_eigs: Option to plot approximations of converged eigen-
values (requires X11 graphical environment).

3. Description of the individual software components

In this section we provide technical details of some components
of the DoQO code. It is not essential to know these details to use
DoQO. However they provide a deeper understanding of how DoQO
works and shed light on possible performance issues. They are also
helpful when attempting to extend the functionality of DoQO.

3.1. Parallelism

DoQO can take advantage of modern massively parallel dis-
tributed memory machines. On these machines multiple DoQO
processes are run simultaneously on interconnected processing
nodes. The key data structures, including the matrix representation
of the observable as well as the vectors used during diagonalisa-
tion are partitioned among all the processes.

DoQO makes use of MPI as well as the PETSc [3–5] and SLEPc
[6] libraries. The MPI (Message Passing Interface) manages groups
of processes as well as allowing communication between the in-
dividual processes. PETSc (Portable, Extensible Toolkit for Scien-
tific computation) is built on top of MPI and provides distributed
vectors and matrix data structures and provides functionality for
performing basic operations on these efficiently in parallel. One
such operation of particular relevance to iterative diagonalisation
methods that is provided by PETSc is the sparse matrix vector mul-
tiplication routine. SLEPc (Scalable Library for Eigenvalue Problem
computations) is a library that leverages the functionality of PETSc
and implements a variety of iterative eigensolver methods making
use of the underlying PETSc data structures and operations. MPI,
PETSc and SLEPc have the added advantage of allowing DoQO to
be very portable.

3.1.1. Perfect mapping functions
Perfect mapping functions are used to index subsets of basis

elements such that the indices are consecutive integers. DoQO em-
ploys such functions when exploiting the symmetries which con-
serve filling and parity. Here we demonstrate how such functions
work in the case of symmetries that conserve filling. It can easily
be extended for symmetries which conserve parity.

To index all the possible configurations of c particles on n sites
a bijective function L is used which maps the set of bit strings
with length n, containing c ones and (n − c) zeros, to the set of
natural numbers less than

( n
c

)
. For example if we have four sites

with filling two the function operates as:

L(0011) = 0

L(0101) = 1

L(0110) = 2

L(1001) = 3

L(1010) = 4

L(1100) = 6

Given a bit string b of length n, with filling c and bits labelled
from left to right bi,1 � i � n, we can use the index

L(b) =
n∑

i=1

bi

(
n − i

c − (
∑i−1

j=1 b j)

)

for this bit string, where we have used the recursive relation(
n
)

=
(

n − 1
)

+
(

n − 1
)

, ∀c > 0

c c c − 1
The inverse function which given an index returns the corre-
sponding bit string can also be easily implemented. For n sites and
filling c the algorithm is:

(1) set i = 1 and set l to the value of the index,
(2) if l <

( n−i
c

)
then bi = 0,

(3) If l �
( n−i

c

)
then bi = 1, l → l − ( n−i

c

)
and c → c − 1,

(4) if i < n increment i and repeat from step two.

These functions can also be used for parity symmetries. In this
case we map the set of bit strings with length n containing either
an even or odd number of ‘1’s to the set of natural numbers less
than

∑
c∈P

( n
c

)
where P is the set of natural numbers less than n

with the desired parity.

3.1.2. Construction of the sorted distributed basis array
When exploiting translational invariance and/or using a model

with a nearest neighbour exclusion condition DoQO uses a dis-
tributed sorted array to index the basis elements. The valid basis
elements (VBE) are stored in this array and indexed by their po-
sition within the array. In the context of exploiting translational
invariance the VBEs are the representative configurations discussed
in Section 1.2. For models with a nearest neighbour exclusion con-
dition the VBEs are those configurations in which no two adjacent
sites are occupied. Two methods for populating these arrays in
parallel have been implemented in DoQO. Here we discuss the dif-
ficulties involved in populating this array in parallel and how each
method works.

In the absence of a deterministic method for finding and in-
dexing the VBEs DoQO iterates over the full list of possible basis
elements (PBEs) to find the set of all VBEs. Iterating over this list
of PBEs in parallel and efficiently populating a sorted distributed
array with the VBEs is a non-trivial task. This is because the VBEs
are not in general uniformly distributed throughout this list.

The first and default method can be broken into three steps:

(1) Partitioning the list of PBEs equally among all processes, then
iterating over each of these partitions on each process and
counting the number of VBEs in each partition. These indi-
vidual counts are then communicated to all processes using a
collective MPI gather operation.

(2) These counts and linear interpolation are then used to repar-
tition the list of PBEs so that the VBEs are more evenly dis-
tributed among the partitions. Each process then iterates over
the new partitions and counts the VBEs in each partition. The
counts from the first iteration are used where possible to make
this process more efficient. The counts are again communi-
cated among all the processes.

(3) The counts of VBEs from the different processes are summed
to determine the total number of VBEs. From this the size of
the portion of the final sorted distributed array on each pro-
cess is calculated and the space for this array is allocated.
Using the counts from each process it is also possible to de-
termine the indices in the final sorted distributed array of the
first and last VBEs in each partition. Each process then uses
this information and starts iterating from the appropriate po-
sition in the list of PBEs to populate its local portion of the
final sorted distributed array.

Fig. 1 illustrates how this process works using four processes with
possible full basis set of 256 elements of which 76 are valid basis
elements.

The second method makes use of a shared filesystem to create
the sorted distributed array. This method performs better in situa-
tions where the VBEs are very sparsely distributed over the set of
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Fig. 1. Figures showing the construction of the sorted distributed array of basis
elements using four processes with 76 elements out of a possible 256 elements.
(a) Shows the initial partitioning of possible basis elements amongst the four pro-
cesses with the indices along the left and the number of elements found within
each partition shown within the partition itself. (b) Shows the repartitioned pos-
sible basis set and as can be seen the basis elements are more evenly distributed
among the partitions. The arrows indicate the places in the possible basis set from
which the iterations begin to populate the portions of the final distributed array. At
the partition points the correct global indices in the array are known so it is possi-
ble to begin from these points on each process simultaneously. (c) Shows the sorted
distributed array as it is stored across the memory of the four processes. The lines
to (b) show to which range of the possible basis the valid basis elements belong.

PBEs. This is the case for models with a nearest neighbour exclu-
sion condition. Here the set of PBEs is partitioned as in the first
method. Each process then iterates over these partitions but this
time writes each VBE it finds to a file on the shared filesystem.
Once this has completed each process communicates how many
elements it found within its own partition to the other processes.
Each process then allocates space for its portion of the array and
populates this by reading from the appropriate positions in the
files on the shared filesystem. To enable this method in DoQO the
USE_DISK parameter is set to true in the input file as mentioned in
Section 2. This method requires that a shared filesystem is avail-
able and its performance will depend on the performance of this
filesystem.

3.1.3. Constructing the matrix using the sorted distributed array
In DoQO the matrix representation of a quantum observable is

stored in a distributed sparse matrix data structure provided by
PETSc. Each process has ownership over a range of rows and stores
all the non-zero elements for those rows. When using a sorted
distributed array to index the basis elements, the row and column
indices of a matrix element 〈ψa|O |ψb〉 correspond to the global
indices of the basis elements |ψa〉 and |ψb〉 in this array respec-
tively. On each process the indices of the basis elements for each
local row are easily obtained from the local portion of the sorted
distributed array. However to determine the column indices it is
necessary to communicate with the process that has that basis el-
ement in its portion of the sorted distributed array. The fact that
the distributed array is sorted makes it possible to identify the
process on which a particular basis element is stored.

In DoQO the interprocess communication required to exchange
indices is done in an organised fashion using only peer to peer
communication. In this way synchronisation issues from collective
communication operations are avoided and the method is scalable.
Each process works out all the basis elements it will need indices
for. It then requests the indices for these from the relevant pro-
cesses. Once these have been retrieved each process can populate
its own portion of the matrix. The amount of additional memory
required by each process to store these basis elements and indices
is in the worst case equal to the amount required to store the non-
zero elements of the final sparse matrix. This memory is freed up
once the matrix has been created and is available during the diag-
onalisation.

A data structure is required on each process to accumulate the
basis elements corresponding to the columns for which indices are
required. This data structure stores the basis elements so they are
sorted to avoid duplicate entries and to facilitate the communica-
tion. Two different data structures can be used for this purpose in
DoQO. The default is the doubly linked list implementation from
the C++ standard template library and the alternative is the AVL
tree implementation from the BOOST intrusive package. The AVL
tree is more efficient and should be used where possible. However
not all C++ compilers support the BOOST intrusive package so in
these cases the doubly linked list can be used.

When using the doubly linked list it takes O (n2) to insert n
items into a sorted list. This results from the fact that it takes O (n)

to find the correct position in the list to insert an item. The max-
imum length of list possible is the size of the partition of basis
elements stored on each process. This is the basis size divided by
the number of processes N/M . For basis sets of O (109) even us-
ing O (103) processes the individual lists on each process will be
O (106). The number of operations required to fill each of these
lists is on the order of trillions or O (1012). This very quickly be-
comes the main performance bottleneck.

An AVL tree is a self-balancing binary search tree which takes
O (n log(n)) to insert n items. This is a significant improvement
over the O (n2) it takes to insert n items into the doubly linked
list. This feature is enabled by setting the USE_BST parameter to
true in the DoQO input file. DoQO must be compiled with BOOST
for this to work. See README for further details in relation to com-
piling DoQO with BOOST.

4. DoQO in operation

To date DoQO has been used to treat a number of spin 1
2 and

spinless fermionic systems. Calculations performed using DoQO
were used to verify DMRG results for models related to valence
bond states in [9]. DoQO was also used to verify the analytical
treatment of the finite size effects in the Kitaev honeycomb lat-
tice model in [10]. In addition we have been able to use DoQO
to diagonalise the 36 spin system and verify analytical expecta-
tions regarding the topological ground state degeneracy. Work is
currently being undertaken to use DoQO to investigate the spin-
less fermionic supersymmetric lattice models first proposed in [8].
For these models the nearest neighbour exclusion condition along
with the fact that filling is conserved means that it is possible for
DoQO to treat systems with up to approximately fifty sites.

4.1. Thin torus limit of the Kitaev honeycomb lattice model

Here we demonstrate the importance of exact techniques for
validating the results of approximative and analytical approaches.
Using the thin torus limit of the Kitaev honeycomb lattice model
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Fig. 2. Thin torus lattice limit with 12 spins. Here the lattice has been compactified
along the z-link direction, the opposite horizontal sides are identified.

we compare the results from DoQO against the results from DMRG
and the analytical solution of the model [11].

The Kitaev honeycomb lattice model [12] is a spin 1
2 model

consisting of two body interactions on a honeycomb lattice. This
model exhibits both abelian and non-abelian topological phases.
The Hamiltonian is given as:

H = − J x

∑
x links

σ x
i σ x

j − J y

∑
y links

σ
y

i σ
y
j − J z

∑
z links

σ z
i σ z

j

The thin torus limit of this model results from reducing the size
of the lattice in the direction of the z links until we end up with
a 1D ladder system. Fig. 2 shows a thin torus ladder with twelve
spins. In the thermodynamic limit there are phase transitions at
J x = J y + J z and J y = J x + J z . Here we focus on the point where
J x = 1

2 , J y = J z = 1
4 there is indications that the model is criti-

cal. Calculations of the excitation gap for various lattice sizes were
calculated to see how it scales as the system size is increased.

Using DoQO it was possible to calculate the energies of the
ground state and first excited states for systems with up to 32
spins. The conservation of parity along each row was exploited to
reduce the basis size by a factor of four. For each of the eigen-
states returned the expectation value of the sum of the plaquette
operators was calculated. From this the number of vortices in each
state is determined. Here the plaquettes operators are defined as
W p = σ x

1 σ
y

2 σ z
3 σ x

4 σ
y

5 σ z
6 around each plaquette, the spins are la-

belled in the anti-clockwise direction starting at the lowermost
spin of each plaquette.

The DMRG tool from ALPS [13] was used to calculate the ener-
gies of the ground state and first excited states for systems with
up to 72 spins as well as the entanglement entropy of each state.
For these calculations 30 sweeps were performed and up to 400
states were kept from each sweep. DMRG [14,15] is an approxima-
tive method which attempts to truncate the Hilbert space to the
most physically relevant subspace. It has been very successful but
is limited to 1D and results must be checked against exact tech-
niques to gauge both qualitative and quantitative accuracy. With
DMRG the entanglement entropy for each state is easily obtained
as a result of the calculation of the density matrix at each step.

The exact solution used in this case is based on fermionization
[11]. Using this solution energies for the ground state and first ex-
cited states in the zero vortex sector for systems with up to 200
sites were calculated.

The results from each method are shown in the plot in Fig. 3. As
expected the results from DoQO and those from the analytical so-
lution match exactly. The DMRG results show good agreement up
to five decimal places for all points except for the 28 spin system.
In this case DMRG converges to the energy of the ground state of
the four vortex sector and thus gives a qualitatively incorrect re-
sult. The exact diagonalisation results from DoQO show that there
is a level crossing in the vortex sectors close to this point that ex-
plains to the DMRG convergence problem.

5. Performance

A performance study of DoQO was undertaken to determine
the most relevant factors influencing the performance of DoQO.
A benchmark system was chosen and results were obtained for a
Fig. 3. Gap scaling with 1
L (where L is the chain length) for the thin torus limit of

the Kitaev honeycomb lattice model. For the 28 spin ladder the energies of the first
and second excited states are very close together. In this case the DMRG method
fails to converge past the second excited state to the true first excited state. The
numerical error is approximately 0.002 and is highlighted in the inset. For these
DMRG calculations 30 sweeps were performed and 400 states were kept at each
step.

Fig. 4. Scaling behaviour of benchmark on Opteron basis gigabit Ethernet cluster
using up to 128 cores.

variety of lattice sizes and numbers of processors on different ma-
chines.

The benchmark system chosen was the Kitaev honeycomb lat-
tice model [12] with parameters J x = −0.1, J y = −0.45, J z =
−0.45. Two eigenvalues were calculated using the Krylov–Schur
algorithm for systems of 16, 20, 24 and 28 spins and to keep the
number of iterations constant for each system size the initial vec-
tor was set to all ones (set BENCHMARK parameter to true in the
input file).

The machines used were an Opteron based gigabit Ethernet
cluster, an IBM Blue Gene/P and a Xeon based SGI ICE cluster with
ConnectX Infiniband interconnect. Plots of the strong scaling are
shown in Figs. 4, 5 and 6. The speedup in each case is calculated
as s = mtm

tn
where n is the number of processors for which the

scaling is being calculated, m is the minimum number of proces-
sors on which the given system can be treated on and ti is the
time taken on i processors.

On the Opteron based gigabit Ethernet cluster (Fig. 4) a speedup
is observed for the 20 and 24 spin systems up to 96 proces-
sors. This machine consists of nodes with two AMD Opteron 250
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Fig. 5. Scaling behaviour of benchmark on Blue Gene/P using up to 2048 cores.

Fig. 6. Scaling behaviour of benchmark on SGI ICE system using up to 2048 cores.

2.4 GHz processors connected by a core routed gigabyte Ethernet
switch.

On the Blue Gene/P system (Fig. 5) impressive scaling is ob-
served all the way up to 2048 cores for 24 and 28 spin systems.
The Blue Gene/P is made up nodes consisting of four PowerPC 450
cores running at 850 MHz and 2 GB of memory. These are con-
nected with multiple networks including a high speed low latency
3D toroidal network used for peer to peer communication. Peaks
can be seen in the plot at 512 and 1024 cores and troughs in-
between. It is thought that these are due to the fact that there are
512 cores on each mid-plane and thus a more optimal mapping of
the cores occurs when using multiples of 512 cores [16].

On the SGI ICE machine (Fig. 6) good scaling is observed for
the 28 spin system up to 2048 cores. For the 24 spin system the
speedup drops off towards 2048 cores. The nodes of this machine
each consist of two quad core Intel Xeon E5462 processors run-
ning at 2.8 GHz. These are connected via a ConnectX Infiniband
interconnect.

5.1. Performance conclusions

From the performance study undertaken we conclude that the
principle factors that influence the performance of DoQO are the
performance of the communications network and the available
memory bandwidth.

The matrix vector multiplication operation which is the cen-
tral operation in DoQO involves significant interprocess communi-
cation. The gigabit Ethernet interconnect has substantially higher
latency and lower bandwidth than the interconnects found on the
Blue Gene/P and the SGI ICE machines. This explains the poor
scaling performance past 64 processors which was observed. The
multiple special purpose networks used on the Blue Gene/P for
interprocess communication accounts for the superior scaling be-
haviour observed.

With sparse matrix vector multiplication the memory band-
width is of central importance to ensure that the processing cores
are fully utilised. Even though each core on the SGI ICE is signifi-
cantly faster than those found on the Blue Gene/P the time taken
for the calculations on the same numbers of cores is compara-
ble. This perhaps indicates that the Xeon cores are not being fully
utilised due to insufficient memory bandwidth. Evidence of this is
observed by running DoQO on two and four cores of a Xeon quad
core processor. There is almost no perceptible gain in speed while
using four cores over two cores.

6. Conclusions

DoQO is a versatile tool which can be used for a broad range
of interesting models on a large range of platforms. Without ex-
ploiting any symmetries DoQO can typically treat systems with up
to around twenty particles on standard workstations, 24 particles
on commodity distributed memory machines with relatively small
numbers of processes and 30 and possibly more particles on large
capability machines with high performance interconnects and large
memory capacities. With symmetries and restrictions on the basis
DoQO is capable of treating still larger systems.

Matrix free methods allow diagonalisation of quantum observ-
ables without requiring that the matrix elements be stored in
memory. This results in reduced memory requirements and an
ability to perform calculations for larger systems. These meth-
ods were investigated in the context of DoQO, however problems
were encountered while attempting to achieve acceptable scalabil-
ity whilst maintaining the desired generality to deal with arbitrary
spin 1

2 and spinless fermionic systems. As a result the current
version of DoQO does not use matrix free methods but this may
change in future versions.

DoQO currently addresses systems of spin 1
2 and spinless

fermionic particles on arbitrary lattices and graphs. The methods
used are not specific to these particle types and in future DoQO
may be extended to be more general. Currently DoQO is capable of
exploiting symmetries which conserve parity, filling and momen-
tum. Future versions may extend this capability to include other
common symmetries.
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Appendix A. Matrix memory requirements

Here we discuss how to work out an upper bound on the
amount of memory required to store the non-zero elements of a
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matrix operator. Each term of an operator can contribute at most
one non-zero entry per row.

Matrices are stored using Compressed Sparse Row (CSR) format.
To store the matrix each non-zero entry requires an integer for the
column index, a double for storing the value (two doubles in the
case of complex values) and for each row an integer is required to
point to the starting position in the values and columns arrays for
that row. For systems with thirty two particles and above, eight
byte integers are required to accommodate the column and row
indices but for smaller systems four byte integers are sufficient.

If n is the number of spins in the system and t is the number of
terms then the upper bound on the amount of memory required
to store all the non-zero elements using double and complex arith-
metic and four and eight byte integers are listed below (where D
indicates double arithmetic and C complex arithmetic and the four
and eight specify the number of bytes used for storing integers in
each case):

MD4 = 2n(12t + 4)

MC8 = 2n(16t + 8)

MD4 = 2n(20t + 4)

MC8 = 2n(24t + 8)

As well as requiring memory to store the non-zero elements,
additional memory is needed to store meta data. This data en-
ables efficient matrix vector multiplication operations in parallel.
The amount of memory required for this depends on the number
of processes and the structure of the matrix. Typically it is on the
order of an additional 20%–30%.

Appendix B. Operator construction

The matrices representing the operators are generally extremely
sparse. These matrices are stored in sparse matrix format where
only the non zero elements and their indices are stored. This data
is distributed uniformly across the available processes.

B.1. Spin 1
2 systems

This section provides explicit demonstrations of how quantum
operators are built up for the benefit of readers that are not fa-
miliar with these concepts. The matrix for a spin 1

2 operator for a
finite quantum system is made up of a sum of terms. Each term
can be a single site term or an interaction term acting on multi-
ple sites. Terms are written in terms of the Pauli matrices and the
identity matrix.

The term σ x
1 σ

y
2 is an interaction term between the spin at po-

sition one and the spin at position two. The matrix corresponding
to this term results from taking the tensor product of the matrices
for the individual operators.

σ x
1 σ

y
2 := σ x

1 ⊗ σ
y

2 =
(

0 1
1 0

)
⊗

(
0 −i
i 0

)
=

⎛
⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎠
When constructing the matrix for a term implicit identity ma-
trices are used for the sites not mentioned. For a three spin system
the term σ x

1 σ
y

2 becomes σ x
1 ⊗ σ

y
2 ⊗ I3.

The column index and value of the non-zero entry correspond-
ing to a given term on a given row can be calculated easily. The
process is as follows:

(1) Set the column index to the given row index. Set the non-zero
value to one.

(2) For each σ x and σ y operator in the term flip the appropriate
bit in the binary representation of the column index. The bit to
flip is the one in the position corresponding to the site index
of the σ x or σ y operator in question. A bitwise exclusive or
operator can be used to do this efficiently.

(3) For each σ z operator in the term check if there is a 1 in the bi-
nary representation of the row index in the position on which
the σ z acts. If there is multiply the value by minus one.

(4) For each σ y operator in the term check if there is a 1 in the
binary representation of the column index in the position on
which the σ y acts. If there is multiply the value by −i and if
not then multiply the value by i.

Using this process one can determine the values and column in-
dices of all the non-zero values for a given row. Each process then
loops over its local chunk of rows and sets the non-zero values for
those rows without any communication with the other processes.
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