
The Toric Code and the Quantum Double

Ville Lahtinen

Quantum Information Group, School of Physics and Astronomy,

University of Leeds, Leeds LS2 9JT, UK

January 11, 2007

The toric code is a topological quantum error correcting code, which can be understood

as a Z2 gauge theory on a lattice [2]. Consider a k × k lattice on a plane with spins residing

at each link. There are then altogether Ns = k2 sites s and Np = k2 plaquettes p. The

Hamiltonien of the model is given by

H = −
∑

s

Xs −
∑

p

Zp, (1)

where the site and plaquette operators,

Xs =
∏
i∈s

σx
i , Zp =

∏
i∈p

σz
i , (2)

are de�ned as the products of Pauli operators acting on all the spins meeting at each site or

plaquette. In the gauge theory language the spins residing at the links are considered as Z2

valued gauge potentials, the operators Xs are gauge transformations and the operators Zp

measure the magnetic �eld on plaquette p. Because [Xs, Zp] = 0, the Hamiltonian is gauge-

invariant and the ground states of the model are given by all the states |ξ〉 ∈ H satisfying

both of the stabilizer conditions

Xs|ξ〉 = |ξ〉, ∀s, (3)

Zp|ξ〉 = |ξ〉, ∀p. (4)

The energy corresponding to the ground states is given by

H|ξ〉 = −(Np +Ns)|ξ〉. (5)

Since the operators Xs are understood as the gauge transformations, the stabilizer condition

(3) can be interpreted as the condition for the gauge invariance for all the physical states

|ψ〉 ∈ H. If |ψ〉 satis�es also (4), the gauge �eld corresponds to a �at connection [2].

Excitations are created by violating the stabilizer conditions. Applying σx (σz) on a spin

creates an excited state, which can be interpreted as �ux - anti-�ux (charge - anti-charge)

pair living on the two plaquettes (sites) sharing the spin link. Since (σx)2 = (σz)2 = 1, both
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�uxes and charges are their own anti-particles. The corresponding quantum states can be

expressed as

|X〉 ≡ σx|ξ〉, H|X〉 = −(Ns + (Np − 2)− 2)|X〉 = −(Ns +Np − 4)|X〉, (6)

|Z〉 ≡ σz|ξ〉, H|Z〉 = −((Ns − 2)− 2 +Np)|Z〉 = −(Ns +Np − 4)|Z〉. (7)

The energies corresponding to the excited states show that the system has an energy gap with

a creation of a single excitation costing the energy E = 2. It is possible to have also a third

kind of excitation Y , which can be thought of as a bound state of the X and Z particles. The

quantum state corresponding to it can be de�ned by

|Y 〉 ≡ σy|ξ〉 ≡ iσxσz|ξ〉, (8)

H|Y 〉 = −((Ns − 2)− 2 + (Np − 2)− 2)|Y 〉 = −(Ns +Np − 8)|Y 〉. (9)

Since the particles are created or annihilated by applying the Pauli operators on the ground

state, the fusion rules are obtained up to overall phases as the multiplication of the elements

of the group Z2 × Z2 generated by σx and σz. The respective fusion rules are

X ×X = 1, Z × Z = 1, Y × Y = 1, X × Z = Y, X × Y = Z, Y × Z = X, (10)

where 1 denotes the vacuum. The X and Z particles are bosons, whereas Y particles are by

fermions [5]. However, the mutual statistics between all the three distinct particle types are

anyonic.

The Construction of D(Z2)

The excitations appearing in the toric code model can be captured in the uni�ed picture, which

is provided by quasitringular Hopf algebras, i.e. quantum groups [1, 4]. In general, the excita-

tions appearing in any two-dimensional system with a discrete symmetry H can be classi�ed

by the irreducible representations of the so called quantum double of H, D(H). Furthermore,

this algebraic structure allows also an elegant derivation of the quantum statistics.

Consider the discrete group Z2 = {e, a}, a2 = e, which describes the gauge symmetry in

the toric code model. The elements of D(Z2) = F [Z2]× C[Z2] are given by the set

D(Z2) = {Pee, Pea, Pae, Paa}, (11)

whose elements are de�ned to obey a multiplication rule

PhgPh′g
′ = δh,gh′g−1Phgg

′, h, h′, g, g′ ∈ Z2. (12)

The irreducible representations ΠΓ
C ofD(Z2) are carried by vector spaces V Γ

C = VC⊗V Γ labeled

by the conjugacy classes C of Z2 and the irreducible representations Γ of the corresponding

normalizer subgroups N [1]. The former describe the �ux degrees of freedom whereas the
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latter account for the charge degrees of freedom. The orthonormal basis in the space V Γ
C is

given by the states

|k, i〉, 〈k′, i′|k, i〉 = δk′,kδi′,i, k ∈ C, i = 1, . . . ,dim(Γ). (13)

Since Z2 is an abelian group, every element forms its own conjugacy class and the correspond-

ing normalizers are given by the whole group,

C(e) = {e}, N(e) = {e, a} = Z2, (14)

C(a) = {a}, N(a) = {e, a} = Z2. (15)

One needs only the irreducible representations of Z2, which are given by the trivial and sign

representations

Z2 e a

Γ1 1 1
Γ−1 1 −1

(16)

All the conjugacy classes contain only a single element, and all the normalizer representations

are one-dimensional, dim(V Γ
C ) = 1. This means that the physical particles do not carry any

internal degrees of freedom. This is a general property of all abelian models.

The irreducible representations ΠΓ
C of D(Z2) are given by matrices which act in the spaces

V Γ
C as

ΠΓ
C(Phg)|k, i〉 = δh,gkg−1 |gkg−1,Γ(g)i〉, ∀Phg ∈ D(Z2), (17)

where Γ(g) is the matrix assigned to the element g in the representation Γ (16). This action

can be thought of as corresponding to �rst implementing a global g ∈ Z2 gauge transformation

and subsequently projecting onto the �ux eigenstate labeled by h ∈ Z2. Since dim(V Γ
C ) = 1,

the matrices ΠΓ
C are just numbers, which are summarized in the following table

ΠA ≡ ΠΓ
C ΠA(Phg) e a

Π1 ≡ Π1
e Pe 1 1

Pa 0 0

ΠX ≡ Π−1
e Pe 1 −1

Pa 0 0

ΠZ ≡ Π1
a Pe 0 0

Pa 1 1

ΠY ≡ Π−1
a Pe 0 0

Pa 1 −1

(18)

The conjugacy class C(e) of the trivial element corresponds to having no �ux degrees of

freedom. Likewise, the trivial representation Γ1 corresponds to having no charge degrees of

freedom. Based on this observation, the four irreducible representations of D(Z2) have been
identi�ed with the four di�erent excitations appearing in the toric code model.
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The fusion rules for particles A and B can by evaluated by calculating the Clebsch-Gordan

series

ΠA ⊗ΠB =
⊕

C∈{1,X,Z,Y }

NC
ABΠC , (19)

where the fusion multiplicities NC
AB can be calculated by using the orthogonality of the char-

acters

NC
AB =

1
2

∑
g,h,h′∈Z2

tr (ΠA(Ph′g)) tr (ΠB(Ph′−1hg)) tr (ΠC(Phg)) . (20)

Now tr(ΠA) = ΠA, and the fusion multiplicities can be calculated by using the appropriate

entries from the table (18). This gives

NA
1A = 1, NB

AA = δB,1, ∀A,
NY

XZ = NZ
XY = NX

Y Z = 1,
(21)

which describe the same fusion rules as derived on the spin lattice level (10).

Braiding and Statistics

The fusion rules can also be derived using an alternative method, which provides also the mu-

tual statistics between the particles. Quasitriangular Hopf algebras contain a special element

called the universal R-matrix R ∈ D(Z2)⊗D(Z2), which satis�es the Yang-Baxter equation

[1]. This means that it can be used to construct representations of the braid group, which

governs the statistics in two spatial dimensions. For D(Z2), it is de�ned by

R =
∑

h,g∈Z2

Pge⊗ Phg. (22)

A representation of R acting in the space VA ⊗ VB can be de�ned by

RAB = σ ◦ (ΠA ⊗ΠB)(R), (23)

where σ : a⊗b 7→ b⊗a is a transposition map. The operators RAB can be taken to implement

the counter-clockwise interchange of the particles A and B on the plane. The statistical phases

associated with single interchanges can be expressed in a compact form in terms of the matrix

R =


1 1 1 1
1 1 −1 −1
1 1 1 1
1 1 −1 −1

 . (24)

Similarly, one can de�ne the monodromy operators (R2)AB = RBARAB, which describe par-

ticle A propagating along a closed loop around particle B. In the matrix form it reads

R2 =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 . (25)
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The mutual statistics of the particles can be inferred from the matrices (23) and (25). X and

Z particles are bosons, because RXX = RZZ = (R2)XX = (R2)ZZ = 1. On the other hand,

the Y particles are fermions, because RY Y = −1, but (R2)Y Y = 1. In general, the elements

of R2 for which (R2)AB = 1 describe either bosonic or fermionic statistics between A and B.

The elements (R2)AB 6= 1 describe mutual anyonic statistics. Based on these observations,

one expects X and Z be spin 1 particles, whereas Y is expected to be spin 1
2 particle. These

can be veri�ed by considering the representations of the central element

CA = ΠA(C), C =
∑
h∈Z2

Phh, (26)

which implements the transformations corresponding to the �ux sector on the charge sector. In

the picture of anyons as �uxes attached to charges, this corresponds to rotating the particle by

2π. The object containing the spin factors is known as the modular T-matrix, whose elements

are de�ned by

TAB =
δA,B

dim(CA)
tr(CA) = e2πisA , (27)

where sA is the spin of particle A. Evaluating the matrix elements gives T11 = TXX = TZZ =
1, which corresponds to integer spin, whereas TY Y = −1 corresponds to half-integer spin.

Finally, the fusion rules can be obtained by considering the so called modular S-matrix,

which contains all the information concerning the fusion rules. Its elements are de�ned by

SAB =
1
|H|

tr
(
(R2)AB

)
. (28)

Since the elements of R2 are numbers, the modular S-matrix is given by S = 1
2R

2. The fusion

rules are obtained by using the Verlinde formula [1]

NC
AB =

∑
D∈{1,X,Z,Y }

SADSBDS
∗
CD

S1D
, (29)

which gives the same fusion multiplicities as (21).

Discussion

The quantum double construction D(H) can be used to derive the particle spectrum as well

as the braid statistics for any two-dimensional model with a discrete and �nite symmetry

group H. This was veri�ed by considering the toric code model, which can be understood

as a Z2 gauge theory. This case is trivial in the sense that same properties could be inferred

directly by considering the group operations of Z2×Z2 describing the fusion and propagation

of the excitations. The real advantage of the quantum double formalism lies in applying

it to non-abelian models, i.e. to cases when H is a non-abelian group. The generalization

is straightforward, but more involved. The standard reference is [1]. It is hoped that the

presented elementary example gives a �avor of how quantum groups can be used provide a

uni�ed language for describing any anyon model. This language is closely related to topological

quantum �eld theories, which are discussed in the context of anyons models in [3].
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