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Quantum computation
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« Jones polynomial

NP-complete
o 3-SAT

NP
e graph isomorphism

BQP
« factorization

Certain computational complexity
classes and their (rather empirical)
relations

- Non-deterministic
Polynomial

-+ Bounded-error
Quantum Polynomial

-+ Polynomial

algorithms, computational complexity, ...
fault-tolerance, ...




Topological quantum computation

e is a unigue QC model (though equivalent to standard QCM) => new algorithms
e natural fault tolerance
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Links and knots

Link ‘ ’ ) |
 a finite family of disjoint, smooth, |ESFRE. s gogy
f:losed curves in R3 or equivalently 84::" Sﬁ L, O B 8 8 -
in S8 SO IS EH D

Knot
e a link with one component

Knot complexity grows very fast:
# of crossings  # of knots
0

http://www.pims.math.ca/knotplot/zoo/



Jones polynomial

e Laurent polynomial in t¥2,V(t) Jones, Bull. AMS 12, 103 (1985)
e invariant of links and knots under isotopy
e #P-hard combinatorial problem
- classical algorithm is exponential in the number of crossings
skein relation

-1 i — (+1/2 _ $-1/2
t V\ tV/, (t t )VX

X

trivial knot

VO:1

Examples:

V - (112 4 t1/2 eunfink”
OO (t t ) link

Vi\-)] t + t3 - t4 right hand trefoil knot




Braid group B,

Artin, Ann. Math. 48, 101 (1947)

Exchanging particles on a plane is not permutation but braiding:

clockwise >< wa >< counterclockwise

A braid group for n strands (particles) has Example: G,

n generators {1, 64, ... , o} Which )
1 i-1 i i+l 2 n

GiGj+10;j = Gi+10i0j+1

J J
Closures of braids are links and knots

Yang-Baxter plat closure trace closure
equation

i i+l Q42 I i+l 42 ’
A braid group can be usefully represented
In Temperley-Lieb algebra TL (d) which
permits a unitary representation (qubits!!!) trefoil knot




Approximating Jones polynomial

Freedman et al., Commun. Math. Phys. 227, 587 and 605 (2002)
Aharonov, Jones, Landau, STOC’06, quant-ph/0511069

There is an efficient, explicit and simple quantum algorithm to approximate Jones
polynomial for all t = g2k

Theorem 1 the trace closure case

For a given braid B with n strands and m crossings, and a given integer k, there is a
quantum algorithm which is polynomial in n, m, k which with all but exponentially small
probability, outputs a complex number r with |r — Vg (e2™/K)| < ed™! where d = -A? — A2,
and ¢ iIs inverse polynomial in n, m, k.

Theorem 2 the plat closure case
For a given braid B with n strands and m crossings, and a given integer k, there is a
quantum algorithm which is polynomial in n, m, k which with all but exponentially small
probability, outputs a complex number r with |r — Vgpi(e2™/K)| < ed3V2/N where

d =-A?—- A~ and ¢ is inverse polynomial in n, m, k (N is an exponentially large factor).

Theorem 3
Approximating the Jones polynomial of the plat closure (Th.2) is BQP-complete.

Aharonov, Arad, quant-ph/0605181
Wocjan, Yard, quant-ph/0603069




Topological quantum computation

e is a unigue QC model (though equivalent to standard QCM) => new algorithms
e natural fault tolerance

fusion

Computation - >
braiding

Initialization  -.......: >
excitations: non-abelian anyons trefoil knot

Topological phase

vacuum 2D quantum system




opological phases: effective theory

» topological phases are phases of two-dimensional many-body quantum systems

whose properties depend only on topology of the manifold on whose surface a
given phase is realized

» their effective description is given by topological quantum field theory
(3 dimensional) defined e.g. by the Chern-Simons action:

Witten, Commun. Math. Phys. 121, 351 (1989)

S =kl4r jdt d2x ervP a 0.a

L=veep
I < (2+1)D manifold gauge field

level of theory (integer)

Example: doubled SU(2), Chern-Simons theory (PT invariant theory):

] ] Freedman,et al., CMP 227, 605 (2002)
k=1 - abelian topological phase - quantum memory

k > 2 - non-abelian
k=3,5... - non-abelian and universal - universal QC

o topological phases are invariant with local geometry and
hence quantum information stored in them is
Invariant with local error processes




opological phases: Hamiltonian spectrum

e are ground states of certain strongly correlated many-body quantum systems

e.g. in Coulomb gauge, a,=0: L= a,0,a, - a,0,a,

oL oL
0@,a) 01 B@gay) 2% L

e energy spectrum of matter in a topological phase is characterized by

finite topology-dependent ground state degeneracy,
e.g. for the doubled SU(2), Chern-Simons theory: (k+1)%

N Freedman et al. Ann. Phys. 310, 428 (2004)
V

spectral gap

e excitations of , which may cause (()
errors via non-local processes, are exponentially

suppressed due to the spectral gap !!!




opological phases: ground state degeneracy

Example: abelian anyons on torus torus (genus g=1 surface)

with opposite sides
identified

one anyon winds clockwise around the other:

A | — @20 |
p

[T,H]=0and [T,,H]=0,50 T, o> =¢€|a> T,(T,)|o>=e?T,T,|a> = e?0%el(T,)|o>
suppose that 0 is a rational multiple of =: © = &t p/q, then T, has q distinct eigenvalues
(orbits: a + (2zp/g)k(mod 27), where k=0,1,...,9-1) and the ground state degeneracy is q.

For genus g surface: the ground state degeneracy is ¢ Preskill, Lecture notes




Anyons

are excitations, quasiparticles, of a topological phase

Configuration space of n indistinguishable particles in d dimensional space
excluding diagonal points D:

Mn = (Rnd = D)ISn Leinaas and Myrheim’77

Wilczek’82
- In two spatial dimensions the configuration space is multiply connected

Exchanging particles on a plane is an element of braid group B,

S A

One-dimensional irreps of B, correspond to abelian fractional statistics:

%o (o) =e" < U(1)

Higher dimensional irreps correspond to nonabelian fractional statistics:

Yo (0) = eor eg. € SU(2)




Example: Fibonacci anyons

J. Preskill, Lecture notes

e are characterized by two possible values of *“g-deformed” spin quantum number
O (trivial) and 1

« composition of g-spins is dictated by fusion rules (CFT):
1x1=0+1
0x0=0
Ox1=1

e Hilbert space dimension for the trivial sector grows with the number of anyons
as the Fibonacci series: 0,1, 1, 2, 3,5, 8 ...

» one logical qubit can be constructed with g-spin=1 anyons as follows
(reminiscence of encoded universality)




QC operations with Fibonacci anyons

are derived from fusion rules and consistency relations between braiding and
fusion operations know as pentagon and hexagon equations (quantum groups),
the result is:

single-qubit operations:

_Te-in/5 _itl/Ze—inllo

_iTI/Ze-in/10 -T

two-qubit operations
e braiding between anyons of different logical qubits - requires optimization
 analogous to the concept of encoded universality

Bonesteel, et al.”05




e fractional quantum Hall systems
particularly promising !!!

* p,+ip, superconductors
Sr,RuQ,
Helium-3

e quantum lattice systems
atoms in optical lattices
polar molecules
Josephson-junction arrays

e rotating Bose-Einstein condensates

e nuclear matter

opological phases in physical systems

Das Sarma, et al., Phys. Rev. Lett. 94, 166802 (2005)

Das Sarma, et al., Phys. Rev. B 73, 220502 (2006)
Salomaa, Volovik, Rev. Mod. Phys. 59, 533 (1989)

Duan, et al., Phys. Rev. Lett. 91, 040902 (2003)
Micheli et al., Nature Phys. 2, 341 (2006)
loffe et al., Nature 415, 503 (2002)




Fractional guantum Hall effect

Stormer, Tsui, Gossard, Phys. Rev. Lett. 48, 1559 (1982)
Rev. Mod. Phys. 71, S298 (1999)

Longitudinal resistance
R.=V, /Il

15;7
/5
Jlll‘ Lns 8

Transverse (Hall) resistance
ny = Vy / Ix =h/ve? Magnetlc Field (T)
Eisenstein, Stormer, Science 248, 1461 (1990)

Theory

nonabelian quantum Hall phases at v=5/2 and 12/5
] Read, Rezayi, Phys. Rev.B 59, 8084 (1999)
Experiment

detecting these phases in high mobility samples
Xia et al., Phys. Rev. Lett. 93, 176809 (2004)




Fractional guantum Hall systems

 non-abelian topological phases predicted in FQH systems at
the filling v=5/2 and 12/5

o experimental tests of fractional statistics using Laughlin interferometer

Camino, Zhou, Goldman, Phys. Rev. B 72, 075342 (2005)
o relation between boundary (CFT) and bulk (TQFT) — holographic principle
o topologically protected qubit

antidots

quantum ! : : edge
Hall fluid | 1 i 5 /' currents

gate electrodes Das Sarma, Freedman, Nayak Phys. Rev. Lett. 94, 166802 (2005)




Topological phases in quantum lattice systems

e Toric code (Kitaev) Kitaev,
abelian topological phase i g v
guantum memory

o Kitaev honeycomb lattice model Kitaev,
abelian topological field in zero magnetic field e
non-abelian topological phase in the presence of magnetic field
realizations proposed using atoms in optical lattices and polar molecules
graphene

e Quantum loop gas model Freedman et al.,
abelian topological phases (k=1) Aot
non-abelian topological phases (k=2) 94, 066401 (2005).

concrete physical representation — extended Hubbard model

e Trivalent graph (spin-1) model Fendley, Fradkin,

hierarchy of topological phases i

e String nets condensation Levin, Wen,

. - Phys. Rev. B
general hierarchy of topological phases 71 045110 (2005)




Quantum loop gas

Two dimensional sea of fluctuating loops

___________ \ / \ formed for example by dimers on a quantum lattice with
/ YA a fixed
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Extended Hubbard model

- 1/6 filled Kagome lattice Kagome lattice

Sl e S S T
b el Eb X ahh Ak

H=U, Zi (ni.]_)ni + - U, is infinite, excluding , !
doubly-occupied sites and
hence preventing collisions

2 i +

- potential terms are
U %u nin; + P

diagonal in the occupation
basis, V and p terms are

> V.nn + color dependent
S Vi

2 t(c*c;+ ¢*C;) - tunneling between nearest
J AT T J -l :
neighbors, color dependent

-U>>;, VL

M. H. Freedman, C. Nayak, K. Shtengel,
cond-mat/0309120; PRL 94, 066401 (2005).




Topological phase in EHM

Topological conditions: quantum loop gas

2. d-isotopy

av [0] = [0

mm) extensively degenerate ground state

RN LTI

PR

M. H. Freedman, C. Nayak, K. Shtengel,
cond-mat/0309120; PRL 94, 066401 (2005).




Challenges

Topological phases

e microscopic models which are
- universal for quantum computation
- based on local interactions
- experimentally conceivable

e physical realization
- quantum Hall systems, etc.

e classification

Topological quantum computing operations
e braiding
» measurement (Aharonov-Bohm-like experiment)

Algorithms
e approximation of certain statistical mechanical problems (e.g. Potts model)
o approximation of NP-complete problems
e graph theoretical problems

Complexity
* BQP-complete problems




