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IntroductionIntroduction
Topological quantum computation and algorithmsTopological quantum computation and algorithms

•• Links and knotsLinks and knots
•• Jones polynomialJones polynomial

•• Braid groupBraid group
•• Approximating Jones polynomialApproximating Jones polynomial

Topological phases and natural faultTopological phases and natural fault--tolerancetolerance
•• Topological quantum field theoryTopological quantum field theory

•• Spectral properties of topological phasesSpectral properties of topological phases

AnyonsAnyons

Physical realizationPhysical realization
•• Fractional quantum Hall systemsFractional quantum Hall systems

•• Lattice models of topological phasesLattice models of topological phases

OutlineOutline



Quantum computationQuantum computation

NP-complete
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BQP
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ChallengesChallenges
Theory: Theory: algorithmsalgorithms, computational complexity, , computational complexity, ……
Implementations:Implementations: faultfault--tolerance, tolerance, ……
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Topological quantum computationTopological quantum computation
•• is a unique QC model (though equivalent to standard QCM) => newis a unique QC model (though equivalent to standard QCM) => new algorithmsalgorithms
•• natural fault tolerancenatural fault tolerance

NP-complete
• 3-SAT

P

BQP
• factorization

NP

• graph isomorphism

#P
• Jones polynomialapproximation Freedman et al., 

Commun. Math. Phys. 227, 
587 and 605 (2002)

Aharonov, Jones, Landau, 
STOC’06, quant-ph/0511069
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on 
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computer



Links and knotsLinks and knots
LinkLink
•• a finite family of disjoint, smooth, a finite family of disjoint, smooth, 
closed curves in closed curves in RR33 or equivalently or equivalently 
in Sin S33

KnotKnot
•• a link with one componenta link with one component

Knot complexity grows very fast:Knot complexity grows very fast:
# of crossings    # of knots# of crossings    # of knots

00 11
33 11
44 11
55 22
66 33
77 77
88 2121
99 3636

http://www.pims.math.ca/knotplot/zoo/



Jones polynomialJones polynomial
•• Laurent polynomial in tLaurent polynomial in t1/21/2,V,VLL(t)(t)
•• invariant of links and knots under invariant of links and knots under isotopyisotopy
•• #P#P--hard combinatorial problemhard combinatorial problem

-- classical algorithm is exponential in the number of crossingsclassical algorithm is exponential in the number of crossings

Jones, Bull. AMS 12, 103 (1985)

tt--11 V        V        -- t V        t V        = (t= (t1/21/2 -- tt--1/21/2) V        ) V        
skein relationskein relation

trivial knottrivial knot

V    V    = 1    = 1    
Examples:Examples:

= = -- (t(t--1/21/2 +  t+  t1/21/2)      )      V    V    

=     t + t=     t + t33 -- tt44V    V    right hand trefoil knot

“unlink”



Braid group Braid group BBnn Artin, Ann. Math. 48, 101 (1947)

A braid group for n strands (particles) hasA braid group for n strands (particles) has
n generators {1, n generators {1, σσ11, , …… , , σσnn--11} which} which
satisfy:satisfy: σσiiσσjj =  =  σσjjσσii for |j for |j -- i| > 1i| > 1 … …

1 i i+1 i+2i-1 n

ExampleExample: : σσii

Closures of braids are links and knotsClosures of braids are links and knots
plat closureplat closure trace closuretrace closure== YangYang--BaxterBaxter

equationequation

trefoil knottrefoil knot

i i+1 i+2 i i+1 i+2

σσiiσσi+1i+1σσii =  =  σσi+1i+1σσiiσσi+1i+1

Exchanging particles on a plane is not permutation but braiding:Exchanging particles on a plane is not permutation but braiding:

==

A braid group can be usefully represented A braid group can be usefully represented 
in in TemperleyTemperley--LiebLieb algebra algebra TLTLnn(d(d) which) which
permits a unitary representation (permits a unitary representation (qubitsqubits!!!)!!!)

tim
e

x
y

clockwise counterclockwise



Approximating Jones polynomialApproximating Jones polynomial

There is an efficient, explicit and simple quantum algorithm to There is an efficient, explicit and simple quantum algorithm to approximate Jones approximate Jones 
polynomial for all t = epolynomial for all t = e22ππi/ki/k::

Aharonov, Jones, Landau, STOC’06, quant-ph/0511069

Theorem 3Theorem 3
Approximating the Jones polynomial of the plat closure (Th.2) isApproximating the Jones polynomial of the plat closure (Th.2) is BQPBQP--complete.complete.

Aharonov, Arad, quant-ph/0605181

Theorem 1Theorem 1
For a given braid B with n strands and m crossings, and a given For a given braid B with n strands and m crossings, and a given integer k, there is a integer k, there is a 
quantum algorithm which is polynomial in n, m, k which with all quantum algorithm which is polynomial in n, m, k which with all but exponentially small but exponentially small 
probability, outputs a complex number r with |r probability, outputs a complex number r with |r –– VVBBtrtr(e(e22ππi/ki/k)| < )| < εεddnn--11 where d = where d = --AA22 –– AA--22, , 
and and εε is inverse polynomial in n, m, k.is inverse polynomial in n, m, k.

Theorem 2Theorem 2
For a given braid B with n strands and m crossings, and a given For a given braid B with n strands and m crossings, and a given integer k, there is a integer k, there is a 
quantum algorithm which is polynomial in n, m, k which with all quantum algorithm which is polynomial in n, m, k which with all but exponentially small but exponentially small 
probability, outputs a complex number r with |r probability, outputs a complex number r with |r –– VVBBplpl(e(e22ππi/ki/k)| < )| < εεdd3n/23n/2/N where /N where 
d = d = --AA22 –– AA--22, and , and εε is inverse polynomial in n, m, k (N is an exponentially large fis inverse polynomial in n, m, k (N is an exponentially large factor).actor).

the trace closure case

the plat closure case

WocjanWocjan, Yard, quant, Yard, quant--ph/0603069ph/0603069

Freedman et al., Commun. Math. Phys. 227, 587 and 605 (2002)



Topological quantum computationTopological quantum computation

ReadoutReadout

ComputationComputation

InitializationInitialization

braidingbraiding tim
e

tim
e

trefoil knottrefoil knot

2D quantum system2D quantum system

excitations: nonexcitations: non--abelianabelian anyonsanyons

fusionfusion

Topological phaseTopological phasevacuumvacuum

•• is a unique QC model (though equivalent to standard QCM) => newis a unique QC model (though equivalent to standard QCM) => new algorithmsalgorithms
•• natural fault tolerancenatural fault tolerance



Topological phases: effective theoryTopological phases: effective theory

Freedman,et al., CMP 227, 605 (2002)

•• their effective description is given by topological quantum fietheir effective description is given by topological quantum field theoryld theory
(3 dimensional) defined e.g. by the (3 dimensional) defined e.g. by the ChernChern--Simons action:Simons action:

k =  1 k =  1 -- abelianabelian topological phase topological phase -- quantum memoryquantum memory
k k R 2 2 -- nonnon--abelianabelian
k =  3, 5 k =  3, 5 …… -- nonnon--abelianabelian and universal and universal -- universal QCuniversal QC

S = kk/4π 4dt d2x εμνρ aμvνaρ

Example: doubled SU(2)Example: doubled SU(2)kk ChernChern--Simons theory (PT invariant theory):Simons theory (PT invariant theory):

gauge field

•• topological phases are phases of twotopological phases are phases of two--dimensional manydimensional many--body quantum systems   body quantum systems   
whose properties depend only on topology of the manifold on whwhose properties depend only on topology of the manifold on whose surface a   ose surface a   
given phase is realizedgiven phase is realized

level of theory (integer) Γ (2+1)D manifold

Witten, Commun. Math. Phys. 121,  351 (1989)

no metric!!!

•• topological phases are invariant with local geometry and    topological phases are invariant with local geometry and    
hence quantum information stored in them is hence quantum information stored in them is 
invariant with local error processesinvariant with local error processes

no metric, no error!!!



Topological phases: Hamiltonian spectrumTopological phases: Hamiltonian spectrum

•• energy spectrum of matter in a topological phase is characterizenergy spectrum of matter in a topological phase is characterized byed by

finite topologyfinite topology--dependent ground state degeneracy, dependent ground state degeneracy, 
e.g. for the doubled SU(2)e.g. for the doubled SU(2)kk ChernChern--Simons theory: (k+1)Simons theory: (k+1)22gg

spectral gapspectral gap

Freedman et al. Ann. Phys. 310, 428 (2004)

e.g. in Coulomb gauge, a0 = 0:

•• are ground states of certain strongly correlated manyare ground states of certain strongly correlated many--body quantum systemsbody quantum systems

L = a2v0a1 – a1v0a2

vL vL
v(v0a1) v(v0a2)

HH = +                          - L = 00v0a2v0a1

=>

no metric, no energy!!!

genus

•• excitations of excitations of stray stray anyonsanyons, which may cause , which may cause 
errors via nonerrors via non--local processes, are exponentially local processes, are exponentially 
suppressed due to the spectral gap !!!suppressed due to the spectral gap !!!



Topological phases: ground state degeneracyTopological phases: ground state degeneracy
Example:Example: abelianabelian anyonsanyons on on torustorus torustorus (genus g=1 surface)(genus g=1 surface)

LL22
LL11 ==

LL22

LL11

with opposite sides 
identified

one one anyonanyon winds clockwise around the other:winds clockwise around the other:

TT22
--11TT11

--11TT22TT11 = e= e--i2i2θθ 11

tim
e

TT11

TT11
--11

TT22

TT22
--11

[T[T11, H] = 0 and [T, H] = 0 and [T2 2 , H] = 0, so T, H] = 0, so T11 ||αα> = > = eeiiαα ||αα>: >: TT11(T(T22)|)|αα> = e> = ei2i2θθTT22TT11||αα> = e> = ei2i2θθeeiiαα(T(T22)|)|αα>>
suppose that suppose that θθ is a rational multiple of is a rational multiple of ππ: : θ θ = = π π p/qp/q, then T, then T1 1 has q distinct has q distinct eigenvalueseigenvalues
(orbits: (orbits: αα + (2+ (2ππp/q)k(mod 2p/q)k(mod 2ππ), where k=0,1,), where k=0,1,……,q,q--1) and the ground state degeneracy is q.1) and the ground state degeneracy is q.

For genus g surface: For genus g surface: the ground state degeneracy is the ground state degeneracy is qqgg Preskill, Lecture notes



are excitations, quasiparticles, of a topological phase

AnyonsAnyons

OneOne--dimensional dimensional irrepsirreps of of BBnn correspond to correspond to abelianabelian fractional statistics:fractional statistics:

χθ (σ) = eiθ 2 U(1)

Higher dimensional Higher dimensional irrepsirreps correspond to correspond to nonabeliannonabelian fractional statistics: fractional statistics: 

Configuration space of  n indistinguishable particles in d dimensional space 
excluding diagonal points D:

- in two spatial dimensions the configuration space is multiply connected

MMnn = (= (RRndnd -- D)/D)/SSnn Leinaas and Myrheim’77
Wilczek’82

Exchanging particles on a plane is an element of braid group Exchanging particles on a plane is an element of braid group BBnn::

tim
e

x
y

==

χχθθ ((σσ) = ) = eeiiθΛθΛ e.g.e.g. 22 SU(2)SU(2)



• Hilbert space dimension for the trivial sector grows with the number of anyons
as the Fibonacci series: 0, 1, 1, 2, 3, 5, 8 …

Example: Fibonacci Example: Fibonacci anyonsanyons

0 1 1 1

|0>L |1>L

1 0

|NC> = non-computational

J. Preskill, Lecture notes

• are characterized by two possible values of  “q-deformed” spin quantum number
0 (trivial) and 1

• composition of q-spins is dictated by fusion rules (CFT):
1 x 1 = 0 + 1
0 x 0 = 0
0 x 1 = 1

• one logical qubit can be constructed with q-spin=1 anyons as follows 
(reminiscence of encoded universality)



=

are derived from fusion rules and consistency relations between braiding and
fusion operations know as pentagon and hexagon equations (quantum groups), 
the result is:

QC operations with Fibonacci QC operations with Fibonacci anyonsanyons

Bonesteel, et al.’05        

-iτ1/2e-iπ/10-τe-iπ/5

-iτ1/2e-iπ/10 -τ-e-i2π/5

e-iπ/5 0

0=

two-qubit operations 
• braiding between anyons of different logical qubits - requires optimization
• analogous to the concept of encoded universality

single-qubit operations:



Topological phases in physical systemsTopological phases in physical systems

•• fractional quantum Hall systemsfractional quantum Hall systems
particularly promising !!!particularly promising !!!

•• ppxx+ip+ipyy superconductorssuperconductors
SrSr22RuORuO44
HeliumHelium--33

•• quantum lattice systems quantum lattice systems 
atoms in optical latticesatoms in optical lattices
polar moleculespolar molecules
JosephsonJosephson--junction arraysjunction arrays

•• rotating Boserotating Bose--Einstein condensatesEinstein condensates

•• nuclear matternuclear matter

DasDas SarmaSarma, et al., Phys. Rev. , et al., Phys. Rev. LettLett. 94, 166802 (2005). 94, 166802 (2005)

DasDas SarmaSarma, et al., Phys. Rev. B 73, 220502 (2006), et al., Phys. Rev. B 73, 220502 (2006)

DuanDuan, et al., Phys. Rev. , et al., Phys. Rev. LettLett. 91, 040902 (2003). 91, 040902 (2003)

MicheliMicheli et al., Nature Phys. 2, 341 (2006)et al., Nature Phys. 2, 341 (2006)

IoffeIoffe et al., Nature 415, 503 (2002)et al., Nature 415, 503 (2002)

SalomaaSalomaa, , VolovikVolovik, Rev. Mod. Phys. 59, 533 (1989), Rev. Mod. Phys. 59, 533 (1989)



Fractional quantum Hall effectFractional quantum Hall effect

VVxx

VVyy

IIxxBB

Longitudinal resistance Longitudinal resistance 
RRxxxx = = VVxx / I/ Ixx

Transverse (Hall) resistance Transverse (Hall) resistance 
RRxyxy = = VVyy / I/ Ix  x  = h / = h / νν ee22

Eisenstein, Eisenstein, StormerStormer, Science 248, 1461 (1990), Science 248, 1461 (1990)

StormerStormer, , TsuiTsui, , GossardGossard, Phys. Rev. , Phys. Rev. LettLett. 48, 1559 (1982). 48, 1559 (1982)
Rev. Mod. Phys. 71, S298 (1999)Rev. Mod. Phys. 71, S298 (1999)

TheoryTheory
nonabeliannonabelian quantum Hall phases at quantum Hall phases at νν=5/2 and 12/5 =5/2 and 12/5 

Experiment Experiment 
detecting these phases in high mobility samplesdetecting these phases in high mobility samples

XiaXia et al., Phys. Rev. et al., Phys. Rev. LettLett. 93, 176809 (2004). 93, 176809 (2004)

Read, Read, RezayiRezayi, Phys. , Phys. Rev.BRev.B 59, 8084 (1999)59, 8084 (1999)



quantum 
Hall fluid

Fractional quantum Hall systemsFractional quantum Hall systems
•• nonnon--abelianabelian topological phases predicted in FQH systems attopological phases predicted in FQH systems at
the filling the filling νν=5/2 and 12/5 =5/2 and 12/5 

•• experimental tests of fractional statistics using Laughlin inteexperimental tests of fractional statistics using Laughlin interferometerrferometer

•• relation between boundary (CFT) and bulk (TQFT) relation between boundary (CFT) and bulk (TQFT) –– holographic principleholographic principle

•• topologically protected topologically protected qubitqubit

edge 
currents

antidots

gate electrodes DasDas SarmaSarma, Freedman, , Freedman, NayakNayak Phys. Rev. Phys. Rev. LettLett. 94, 166802 (2005). 94, 166802 (2005)

Camino, Zhou, Goldman, Phys. Rev. B 72, 075342 (2005)

t1 t2 t3



Topological phases in quantum lattice systemsTopological phases in quantum lattice systems
•• ToricToric code (code (KitaevKitaev))

abelianabelian topological phasetopological phase
quantum memoryquantum memory

•• KitaevKitaev honeycomb lattice modelhoneycomb lattice model
abelianabelian topological field in zero magnetic fieldtopological field in zero magnetic field
nonnon--abelianabelian topological phase in the presence of magnetic fieldtopological phase in the presence of magnetic field
realizations proposed using atoms in optical lattices and polar realizations proposed using atoms in optical lattices and polar moleculesmolecules
graphenegraphene

•• Quantum loop gas model Quantum loop gas model 
abelianabelian topological phases (k=1)topological phases (k=1)
nonnon--abelianabelian topological phases (k=2)topological phases (k=2)
concrete physical representation concrete physical representation –– extended Hubbard modelextended Hubbard model

•• Trivalent graph (spinTrivalent graph (spin--1) model 1) model 
hierarchy of topological phaseshierarchy of topological phases

•• String nets condensation String nets condensation 
general hierarchy of topological phasesgeneral hierarchy of topological phases

Kitaev, 
cond-mat/0506438

Fendley, Fradkin, 
Phys. Rev. B
72, 024412

Levin, Wen,
Phys. Rev. B
71, 045110 (2005)

Freedman et al., Freedman et al., 
condcond--mat/0309120; mat/0309120; 
Phys. Rev. Phys. Rev. LettLett.  .  
94, 066401 (2005).94, 066401 (2005).

Kitaev, 
quant-ph/9707021
Ann. Phys. 303, 2 (2003)



Quantum loop gasQuantum loop gas
TwoTwo--dimensional sea of fluctuating loopsdimensional sea of fluctuating loops

formed for example  byformed for example  by dimersdimers on a quantum lattice with on a quantum lattice with 
a fixeda fixed background background dimerdimer coveringcovering



- 1/6 filled Kagome lattice
- U0 is infinite, excluding
doubly-occupied sites and
hence preventing collisions

- potential terms are 
diagonal in the occupation 
basis, V and μ terms are 
color dependent

- tunneling between nearest 
neighbors, color dependent 

- U >> μi, Vij , tij

H = U0 Σi (ni-1)ni +  

Σi μini + 

U Σi,j ninj + 

Σi,jVijninj + 

Σi,j tij (ci
+cj + cj

+ci )

M. H. Freedman, C. Nayak, K. Shtengel, 
cond-mat/0309120; PRL 94, 066401 (2005).

Kagome lattice

Dual lattice

Extended Hubbard modelExtended Hubbard model



Topological phase in EHMTopological phase in EHM

quantum loop gasquantum loop gas

M. H. Freedman, C. M. H. Freedman, C. NayakNayak, K. Shtengel, , K. Shtengel, 
condcond--mat/0309120; PRL 94, 066401 (2005).mat/0309120; PRL 94, 066401 (2005).

3. consistent surgery conditions 3. consistent surgery conditions ––
JonesJones--WenzlWenzl idempotentsidempotents, , e.ge.g

where d=2cos(where d=2cos(ππ/(k+2))/(k+2))

Topological conditions:Topological conditions:

ddΨΨ[ ][ ] = = ΨΨ[ ][ ]

1. 1. isotopyisotopy

extensively degenerate ground stateextensively degenerate ground state

2. 2. dd--isotopyisotopy

ddΨΨ[ ][ ] = = ΨΨ[ ][ ]

ΨΨ[ ][ ] = = ΨΨ[ ][ ]

Topological phaseTopological phase



ChallengesChallenges
Topological phasesTopological phases

•• microscopic models which are microscopic models which are 
-- universal for quantum computationuniversal for quantum computation
-- based on local interactionsbased on local interactions
-- experimentally conceivableexperimentally conceivable

•• physical realizationphysical realization
-- quantum Hall systems, etc.quantum Hall systems, etc.

•• classificationclassification

Topological quantum computing operationsTopological quantum computing operations
•• braidingbraiding
•• measurement (measurement (AharonovAharonov--BohmBohm--likelike experiment)experiment)

AlgorithmsAlgorithms
•• approximation of certain statistical mechanical problems (e.g. approximation of certain statistical mechanical problems (e.g. Potts model)Potts model)
•• approximation of NPapproximation of NP--complete problemscomplete problems
•• graph theoretical problemsgraph theoretical problems

ComplexityComplexity
•• BQPBQP--complete problemscomplete problems


