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1 Introduction

1.1 Origins of quantum

In this chapter, we will be interested in essential logical steps that led to
quantum mechanics. We understand that quantum mechanics is a physical
theory (the most complete we have), meaning it is a mathematically consis-
tent theoretical construct which is able to explain and predict certain exper-
imental observations which can not be explained within the framework of
classical mechanics and classical (i.e. Maxwell) theory of electromagnetism.
The specific focus of this section will be on development of the concept of
wave-particle duality for both electromagnetic field and matter in the early
times of quantum mechanics. We do not intend to present detailed or com-
plete history of quantum theory which is beyond the scope of this course and
can be found elsewhere and neither we present complete overview of unique
features of quantum mechanics in this lecture as these will be subjects of
the other lectures of this course.

Further reading: The early stages of the development of quantum me-
chanics with detailed discussion of relevant experiments is presented in D.
Bohm, Quantum Theory, 1951. Also an excelent (and more historical) ac-
count of the same period (and particularly an important role played by
Einstein) can be found in A. Pais, Subtle is the Lord: The Science and the
Life of Albert Einstein, 1983.
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1.1.1 Black-body radiation problem

A black-body is a body that absorbes all the electromagnetic radiation
which falls on its surface. Rather than an ideally absorbing body, it can
be physically realized as a hollow cavity in which electromagnetic radiation
is trapped. The radiation is in thermal equilibrium with the surounding ma-
terial, that is, with material oscillators of the cavity wall which continuously
emit and absorb waves of any frequency. The higher is the temperature, the
higher is the mean frequency of radiation inside the cavity.

The electromagnetic energy distribution inside the cavity as a function
of frequency and temperature U(ν, T ) is proportional to the intensity of the
radiation per unit solid angle I(ν, T ) = c

4πU(ν, T ). This can be measured
through a small opening in the cavity (negligible compared to the area of the
cavity surface) which allows the radiation to escape from the cavity with-
out causing significant alteration of the radiation distribution inside. These
measurents, which have been carried out since late 19th century (e.g. par-
ticularly noticeable experiments are those by Rubens and Kurlbaum (1900)
due to their great precision and wide range of frequencies), revealed a single
peak in the frequency dependence of the intensity I(ν, T ). The experimen-
tal data however could not be entirely explained within the framework of
classical physics. This discrepancy between experimental data and classical
theoretical concepts constitutes what we know as the black-body radiation
problem. Let us see first classical attempts by Wien (1896), Rayleigh and
Jeans (1900) before going in more detail to quantum hypothesis by Planck
(1900) which is historically considered the beginning of quantum theory.

In 1896, Wien used empirical data and thermodynamical arguments to
explain the black-body radiation problem. He proposed the following dis-
tribution which is now known as the Wien law:

I(ν, T ) = aν3e−bν/kBT (1)

where a and b are empirical constants, and kB is the Boltzmann constant
(1.38× 10−23JK−1).

Wien’s law provided agreed very well with the experimental data for
high frequencies, but clearly deviated from the experimental data at short
frequencies where it showed lower intensity I(ν, T ) than observed. Moreover,
introduction of empirical constants (without really providing their physical
interpretation) made this theory semiempirical.

In an atempt to explain new observations by Rubens and Kurlbaum in
1900, Rayleight used classical electromagnetism and theormodynamics to



derive the radiation distribution from the first principles. His work comple-
mented by additional clarifications by Jeans resulted in the Rayleigh-Jeans
law:

I(ν, T ) =
2ν2

c2
kBT (2)

The formula well reproduces experimental observations at low frequencies
but rapidly diverges at high frequencies. This behaviour, i.e.monotonic in-
crease of radiation intensity with frequency, is known as ultraviolet catas-
trophe. Clearly this can not describe any realistic black-body radiation law.

The same year, Planck attacked the black-body problem by proposing
quantum hypothesis, i.e. that the energy of electromagnetic radiation of a
given frequency is emitted and absorbed in elementary packets called quanta,
so the energy of the radiation of a given frequency ν is given as:

En = nhν (3)

h is a new fundamental constant, known as the Planck constant (6.626 ×
10−34), and n is an integer. Planck then obtained the black-body radiation
distribution now know as the Planck law in the following form:

I(ν, T ) =
2hν3

c2
e−hν/kBT

1− e−hν/kBT
(4)

which perfectly reproduces experimental observations.

Outline of the Planck law derivation. The probability W (n) that an
classical oscillator has energy corresponding to its n-th harmonic (i.e. n-th
value) is given as W (n) ∝ e−E/kBT . Assuming that the same form holds also
in the case of a quantum mechanical oscillator, whose energy is En = nhν,
the probability is W (n) ∝ e−En/kBT . The normalization of this probability,
which ensures that

∑∞
n=0W (n) = 1, then lead to the equation

W (n) =
e−nhν/kBT∑∞
n=0 e

−nhν/kBT
= e−nhν/kBT (1− e−hν/kBT ) (5)

To get the left hand side (i.e. l.h.s.) of the equation, we used the formula∑∞
n=0(e−x)n = (1− e−x)−1.
Now we can calculate the mean energy

< E >=
∞∑
n=0

EnW (n) = hν(1− e−hν/kBT )
∞∑
n=0

ne−nhν/kBT (6)



which can be rewritten using the relation
∑∞

n=0 ne
−nx = − d

dx

∑∞
n=0 e

−nx =
− d
dx

1
1−e−x = e−x

(1−e−x)2 as

< E >=
hνe−hν/kBT

1− e−hν/kBT
(7)

and multiplying this by the density of oscillators with the frequency ν ,
which is given as 8π

c3
ν2, we get the energy distribution U(ν) and from that

the desired intensity as given by Eq. (4).(Remark: derivation of the U(ν)
is presented in D. Bohm, Quantum Theory, 1951; we may add this later to
these notes, however it is not essential in the present context).

The classical results by Wien and by Rayleigh and Jeans agree with
experimental data respectively at high and low frequencies. Hence, it must
be possible to reconstruct both classical laws as appropriate limits of the
Planck law. For small frequencies, i.e. hν

kBT
<< 1, we can use the Taylor

series to approximate e−hν/kBT as 1− −hνkBT
. Straightforward substitution of

this relation into Eq.(4) gives the Rayleight-Jeans law I(ν, T ) = 2ν2

c2
kBT .

In the opposite limit, i.e. hν
kBT

>> 1, the denominator in Eq.(4) can be
approximated 1 − e−hν/kBT ∼ 1 and thus neglected. Eq.(4) then acquires
the form of the Wien law I(ν, T ) = 2hν3

c2
e−hν/kBT . Note that the empirical

constant a and b now got meaning.

1.2 Heat capacities problem

For a few years after its conception, the Planck quantization hypothesis
lived only within the narrow field of black-body elelctromagnetic radiation.
In 1906, Einstein extended it also to material systems and used it to resolved
the problem of the specific heat capacities CV = ∂<E>

∂T of solids. The rele-
vant experimental observations showed that at high temperature the specific
heat capacity CV of solid materials converged to a plateau where CV = kB
while at low temperatures it converges to zero. To explain the temperature
dependence of CV , Einstein proposed that material oscilators (i.e. atoms
bind in crystal structure) are quantized and, in contrast to electromagnetic
waves which can have various frequencies, it permits only one frequency for
all oscillators. The mean energy is given by Eq.(7) and the specific heat
capacity is then expressed as

CV =
∂ < E >

∂T
=
h2ν2

kBT

e−hν/kBT

(1− e−hν/kBT )2
(8)



The high temperature limit when hν
kBT

→ 0 then properly reproduces ex-
perimental observations giving CV = kB. The low temperature behaviour

is given as CV = h2ν2

kBT 2 e
hν
kBT . Precise measurements reveal that the ex-

perimental data obtained for realistic materials differ from theoretical low
temperature behaviour; this is explained by mutual coupling of the material
oscillators neglected in Einstein’s approach.

1.3 Photoelectric effect

Photoelectric effect was first observed by Lennard (1902) and theoretically
explained by Einstein (1905) be proposing that light consists of particles
called photons. The photoelectric effect is the process where ultraviolet (UV)
light which falls on a metalic surface ejects electrons with the kinetic energy
1
2mev

2 from the metal. Here me and v are the electron mass and velocity
respectively. Important is that the kinetic energy of outgoing electrons only
depend on frequency of the incoming radiation but not on its intensity.
Obviously, the electrons absorb the energy only in quanta, so that their
kinetic energy is given as 1

2mev
2 = hν −W where W is a work function of

the metal (it is a material constant which characterizes the binding energy
of electron in the metal) and hν is the energy of the UV light. In 1905,
Einstein proposed that this experimental observations can be explain if we
accept that the reason why the light energy is absorbed in quanta is that
light consists of particles, photons, each carrying energy quantum hν.

1.4 Compton scattering

The Compton scattering, discovered experimentally by Compton (1922), is
a process when an electromagnetic radiation with the initial momentum ~pin
scatters through a stationary electron. The momentum of the outgoing elec-
tron is ~Pout. The electromagnetic radiation leaves the scattering event with
the momentum ~pout along the trajectory which is deflected from the original
trajectory by an angle θ. The wavelength of the outgoing radiation is shifted
compared to the incoming radiation as ∆λ = λout−λin. This experiment is
direct demonstration of the particle-like character of electromagnetic field.

1.5 de Broglie hypothesis

In 1923, de Broglie postulated particle-wave duality to material particles.
In analogy to light which can be regarded as both electromagnetic waves
and photons, every massive particle of the momentum ~p can be regarded as



a wave whose wavelength is given as

λ =
h

|~p|
(9)

where ~p = m~v is a momentum. It is worth to note that this hypothesis was
not based on any existing experimental observations but it rather predicted
that the wave-like phenomena of material particles to be seen in future.
This happened in experiments by Davisson and Germes in 1927, who ob-
served difraction of electrons from a crystal. With the de Broglie hypothesis,
the wave-particle duality becomes an essential property of every quantum
mechanical system.

1.6 Other developments

Rutherford experiments (1911-1913) with scattering of α particles through
atoms revealed that the most of the atomic mass is concentrated in the nu-
clei which is very small. This led to the idea of planetary model of atom in
which electrons are orbiting around the positively charged nucleus along Ke-
pler orbits. Clearly this idea was not sustainable on the ground of classical
physics as orbiting electron would be loosing energy by irradiating electro-
magnetic waves and would eventually collaps to the nucleus, making atoms
and thus matter quite unstable. The experiments by Franck and Hertz
(1913) showed that spectral terms En/h are stable and definitive for each
atom. Consequently Bohr postulated that a new model of atom in which
electrons are orbiting only on fixed discrete trajectories. This represents an
important step towards the quantum theory of atoms and molecules which
we will encounter towards the end of the course.

Other important developments include formulation of matrix mechan-
ics (1925), and also development of Schroedinger wave mechanics (1926).
It has been shown later that both approaches are equivalent. We will be
discussing these within the other lectures of this course along with other
strange features of quantum mechanics including e.g. uncertainty relations,
entanglement, measurement problem etc.



2 Mathematical foundations

A state of a physical system is represented by a vector in the Hilbert space.



Composition of Hilbert spaces Let H1 be a subspace of the Hilbert
space H. For ∀|ψ〉 orthogonal to all the vectors in H1 form a vector space
H⊥1 (an orthogonal complement H1) .

Let H1,H2, ...,Hn be subspaces of H (n can be infinite). An element
of H1 can be written as a linear combination of vectors from H1,H2, ...,Hn
for all i 6= k = 1, 2, ..., n and for all |ψi〉 ∈ Hi and |ψk〉 ∈ Hk such that
〈ψi|ψk〉 = 0, we say that H is a direct sum of (mutually orthogonal) sub-
spaces H1,H2, ...,Hn

H = H1 ⊕H2 ⊕ ...⊕Hn =
k=n⊕
j=1

Hk (10)

Important role in quantum mechanics is played by tensor product of
Hilbert spaces. Consider H1 and H2 of the dimension as N1 and N2 re-
spectively. Let |ψ(j)

n 〉, n = 1, 2, ..., N and j = 1, 2, form a basis of Hj . The
vectors |ψ(1)

n 〉|ψ(2)
m 〉 can be identified with elements of the orthonormal basis

of the Hilbert space H, with the dimension dim(H) = N1 ×N2

|φ〉 = |ψ(1)
n 〉|ψ(2)

m 〉 (11)

where j = (n− 1)N2 +m. The scalar product is defined as

〈φj |φj′〉 = 〈ψ(1)
n |ψ

(1)
n′ 〉〈ψ

(2)
n |ψ

(2)
n′ 〉 = δnn′δmm′ = δjj′ (12)

We say that H is a tensor product of H1 and H2, H = H1 ⊗H2.
For ∀φ ∈ H = H1 ⊗H2) can be written as

|φ〉 =
N∑
j=1

aj |φj〉 =
N1∑
n=1

N2∑
m=1

= anm|ψ(1)
n 〉|ψ(2)

m 〉 (13)

and if anm = αnβm, then |φ〉 = |A〉|B〉 where |A〉 =
∑N1

n=1 αn|ψ
(1)
n 〉 ∈ H

and |B〉 =
∑N2

m=1 βn|ψ
(2)
n 〉 ∈ H. we say that ketφ is a direct product of the

vectors |A〉 and |B〉.
We can define concepts analogous for real functions also for vector func-

tions. Let ξ ∈ C, a complex vector function is a map ξ → |ψ(ξ)〉 where
|ψ(ξ)〉 is a vector. For example we can define a derivative through the con-
cept of limit as done in mathematical analysis. We can use this to define
derivative of an inner product

d

dξ
〈φ(ξ)|ψ(ξ)〉 = (

d

dξ
〈φ(ξ) |)|ψ(ξ)〉+ 〈φ(ξ) |( d

dξ
|ψ(ξ)〉) (14)

where the first term of r.h.s. corresponds to the bra vector of the ket
d
dξ |φ(ξ)〉.



Examples of Hilbert spaces

1. Un space is n-dimensional Hilbert space formed by all (1×n)-matrices
whose entries are complex numbers

|ψ〉 =


a1

a2

...
an

 (15)

where multiplication by a complex scalar and sum are carried out in
a usual way. The inner product is defined as

Â =
(
a∗1a
∗
2...a

∗
n

)
a1

a2

...
an

 =
n∑
j=1

a∗jbj (16)

2. Space l2 is an infinite dimensional vector space of (1 × ∞)-matrices
such that

∑∞
j=1 |aj |2 <∞.

3. Space L2(a, b) is formed by all complex functions A(ξ) of a real variable
ξ that are square integrable (in the sense of the Lebesgue integral), i.e.∫ b

a
|A(ξ)|2dξ <∞ (17)

The scalar product is defined as follows

〈A|B〉 =
∫ b

a
A(ξ)∗B(ξ)dξ (18)



2.1 Operator theory

Definition. An operator Â between the Hilbert spaces U and V is a func-
tion which to every vector |ψ〉 ∈ U assigns a vector |ψ〉′ ∈ V. We write

|ψ〉′ = Â|ψ〉 (19)

Û is called the domain of the operator Â, D(Â). The set R(Â) = {|ψ〉′ =
Â|ψ〉|∀|ψ〉 ∈ U} is called the range of the operator Â.

Examples. We list several simple examples of operators:

1. The operator Â1 = λ ∈ C acts on a vector |ψ〉 as Â1|ψ〉 = λ|ψ〉.
Note that if λ = 1, this operator acts as the identity operator 1̂:
1̂|ψ〉 = |ψ〉.

2. Â2|ψ〉 = 1√
〈ψ|ψ〉
|ψ〉 normalizes a vector |ψ〉.

3. Â3|ψ〉 = 〈ψ|ψ〉|ψ〉 multiplies a vector |ψ〉 by the square of its norm.

4. Â4 = |φ〉〈φ | acts as Â4|ψ〉 = 〈φ|ψ〉|φ〉.
The operators Â4 and Â3 look similar but there is actually a funda-
mental difference between them. We can see this if we apply them on
a quantum state |ψ〉 = c1|ψ1〉+ c2|ψ2〉:

Â4|ψ〉 = Â4(c1|ψ1〉+ c2|ψ2〉) = c1Â4|ψ1〉+ c2Â4|ψ2〉 (20)

here we say that the operator Â4 is linear. However no such relation
holds for Â3 as we can see from the following

Â3|ψ〉 = 〈ψ|ψ〉|ψ〉 =
(|c1|2〈ψ1|ψ1〉+ c∗1c2〈ψ1|ψ2〉+ c1c

∗
2〈ψ2|ψ1〉+ |c2|2〈ψ2|ψ2〉)|ψ〉 6=

c1Â3|ψ1〉+ c2Â3|ψ2〉 = c1〈ψ1|ψ1〉|ψ1〉+ c2〈ψ2|ψ2〉|ψ2〉 (21)

Linearity and basic algebraic properties of operators. Linearity of
operators is a very important property as operators relevant to quantum
mechanics are linear operators. We say that an operator Â is linear iff it
satisfies

Â
∑
i

ci|ψ〉 =
∑
i

ciÂ|ψ〉 (22)

In this sense, quantum mechanics is a linear theory.
Let Â, B̂ and Ĉ be linear operators. We say that



1. Â and B̂ are equal, Â = B̂, if

Â|ψ〉 = B̂|ψ〉
D(Â) = D(B̂). (23)

for ∀|ψ〉.

2. Ĉ is a sum of Â and B̂, Ĉ = Â+ B̂, if

Ĉ|ψ〉 = Â|ψ〉+ B̂|ψ〉. (24)

for ∀|ψ〉.

3. Ĉ is a product of Â and B̂, Ĉ = ÂB̂,

Ĉ|ψ〉 = ÂB̂|ψ〉 = Â(B̂|ψ〉) = Â| B̂ψ〉. (25)

for ∀|ψ〉.

Specifically, note that Â2 = ÂÂ and analogously Ân = ÂÂn−1. If a function
f can be expanded in a power series

f(ξ) =
∑
n

anξ
n (26)

where ξ is a variable, then by the function of an operator f(Â) we mean

f(Â) =
∑
n

anÂ
n (27)

A very useful example is an exponential function

eÂ =
∞∑
n=0

1
n!
Ân (28)

Commutator and anti-commutator. In contrast to numbers, real or
complex, a product of operators is generally not commutative which means
that ÂB̂ 6= B̂Â.

For example, let us have three vectors |x〉, | y〉, and | z〉, and the operators
R̂x and R̂y such that

R̂x|x〉 = |x〉
R̂x| y〉 = | z〉
R̂x| z〉 = −| y〉
R̂y|x〉 = −| z〉
R̂y| y〉 = | y〉
R̂y| z〉 = |x〉 (29)



then
R̂xR̂y| z〉 = R̂x|x〉 = |x〉 6= R̂yR̂x| z〉 = −R̂y| y〉 = −| y〉 (30)

An operator [Â, B̂] = ÂB̂ − B̂Â is called commutator of the operators
Â and B̂. If [Â, B̂] = 0, we say that Â and B̂ commute. If [Â, B̂] = 0 then
also [f(Â), f(B̂)] = 0.

An operator {Â, B̂} = ÂB̂ + B̂Â is called anticommutator of the opera-
tors Â and B̂. If {Â, B̂} = 0, we say that Â and B̂ anticommute.

Basic properties of commutators and anticommutators are summarized
below:

[Â, B̂] = −[B̂, Â] (31)
[Â, B̂ + Ĉ] = [Â, B̂] + [Â, Ĉ] (32)
[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ] = {Â, B̂}Ĉ − B̂{Â, Ĉ} (33)
[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂ = Â{B̂, Ĉ} − {Â, Ĉ}B̂ (34)

{Â, B̂} = {B̂, Â} (35)
{Â, B̂Ĉ} = {Â, B̂}Ĉ − B̂[Â, Ĉ] = B̂{Ĉ, Â} − [B̂, Â]Ĉ (36)
{ÂB̂, Ĉ} = Â{B̂, Ĉ} − [Â, Ĉ]B̂ = {Ĉ, Â}B̂ − Â[B̂, Ĉ] (37)

Another important property is given by the Jacobi identity:

[Â[B̂, Ĉ]] + [B̂[Ĉ, Â]] + [Ĉ[Â, B̂]] = 0 (38)

Classes of operators An operator Â is called bounded iff ∃β > 0 such
that:

‖Â|ψ〉‖ ≤ β‖|ψ〉‖ (39)

for ∀|ψ〉 ∈ D(Â). The symbol ‖.‖ means the norm. The infimum of β
is called the norm of an operator. In finite dimensional Hilbert spaces, all
operators are bounded. Sum and product of bounded operators is a bounded
operator because

‖Â+ B̂‖ ≤ ‖Â‖+ ‖B̂‖
‖ÂB̂‖ ≤ ‖Â‖‖B̂‖ (40)

Specially
‖λÂ‖ = |λ|‖Â‖ (41)

An operator Â is called symmetric if

〈ψ1|Âψ2〉 = 〈Âψ1|ψ2〉 (42)



for ∀|ψ1〉, |ψ2〉 ∈ D(Â) (dense in the Hilbert space H).
An operator Â is called hermitian if it is bounded and symmetric. It is

called antihermitian if the operator iÂ is hermitian.
Let Â be a bounded operator with the domain dense in the Hilbert space

H, then there is an adjoint operator Â† such that

〈ψ1|Â†ψ2〉 = 〈Âψ1|ψ2〉 (43)

that is
〈ψ1|Â†ψ2〉 = 〈ψ2|Âψ1〉∗ (44)

for ∀|ψ1〉, |ψ2〉 ∈ D(Â).
The following identities hold

‖Â†‖ = ‖Â‖ (45)
(Â†)† = Â (46)

(Â+ B̂)† = Â† + B̂† (47)
(ÂB̂)† = B̂†Â† (48)
(λÂ)† = λ∗Â† (49)

and, for some fixed vectors |φ1〉 and |φ2〉 we can define an operator Âj,k =
|φj〉〈φk | (where j, k ∈ {1, 2}) then

Â†j,k = Âk,j (50)

An operator Â is self-adjoint if

Â† = Â (51)

These operators are particularly important in quantum mechanics as they
represent observable physical quantities; hence we call these operators ob-
servables. As we will see later, they possess real spectrum, i.e. their eigen-
values are real numbers R.

An operator Â is positive if 〈ψ |Â|ψ〉 ≥ 0for∀|ψ〉.
An operator Â is normal if [Â, Â†] = 0.
Let Â be an operator. If there exist an operator Â−1 such that ÂÂ−1 =

Â−1Â = 1̂, then it is called an inverse operator to Â. The following proper-
ties hold

(ÂB̂)−1 = B̂−1Â−1 (52)
(Â†)−1 = (Â−1)†. (53)



Remark: in finite dimensional space ÂB̂ = 1 implies B̂Â = 1 but this is
generally not true in the infinite dimensional spaces and that is why we
need both ÂÂ−1 and Â−1Â above.

An operator Û is called unitary if Û † = Û−1 and D(Û) = H. This
is a very important class of operators as they are formal solution of the
Schödinger equation and thus represent quantum dynamics. Also important
groups of symmetries are unitary.

The unitary operators are isometric 〈Ûψ1|Ûψ2〉 = 〈ψ1|ψ2〉.Also, let the
set {|ψi〉} is a basis of the Hilbert space H and Û is a unitary operator,
then {Û |ψi〉} is also a basis of H.

The fundamental theorem by Wigner significantly restricts what oper-
ators can represent symmetry operation on the Hilbert space of physical
states. Consider maps of H onto itself |ψ〉 → |ψ′〉 such that |〈ψ1|ψ2〉 =
〈ψ′1|ψ′2〉, ∀|ψ1,2〉 ∈ H, then |ψ′〉 = eiω(ψ)Û |ψ〉 where Û is a unitary operator
which is either linear or antilinear and ω(ψ) ∈ R is a phase that may depend
on |ψ〉.

A bounded operator P̂ satisfying

P̂ = P̂ † = P̂ 2 (54)

is called a projection operator or simply projector. This class of opera-
tors is very important in quantum mechanics, particularly in the context of
quantum measurement.

Let P̂1 be a projector, then P̂2 = 1̂ − P̂1 is also a projector, with the
following properties:

P̂1 + P̂2 = 1̂ (55)
P̂1P̂2 = 0 (56)

where the earlier is called the completeness relation (se below) and the latter
expresses orthogonality.

For every vector |ψ〉 ∈ H the following holds

|ψ〉 = |ψ1〉+ |ψ2〉
〈ψ1|ψ2〉 = 0
|ψ1〉 = P̂1|ψ〉 (57)
|ψ2〉 = P̂2|ψ〉 (58)

All vectors |ψj〉, (j = 1, 2) for a subspace Hj ⊂ H, that is the projectors P̂1

and P̂2 assign to each vector from H its projection onto the subspace H1



and H2 respectively. These projections are mutually orthogonal as can be
see from the relations above.

If the projector operators P̂1 and P̂2 satisfy P̂1P̂2 = P̂1 then the corre-
sponding subspaces satisfy H1 ⊂ H2; we then say P̂1 ≤ P̂2.

Let |ψk〉 be a normalized vector, then the operator

P̂k = |ψk〉〈ψk | (59)

is projection onto one-dimensional space spanned by all vectors linearly de-
pendent on |ψk〉.

If vectors {|ψk〉} form a basis of H1 then∑
k

P̂k =
∑
k

|ψk〉〈ψk | (60)

is projection operator onto H1. Furthermore if H1 = H then this projection
is an identity operator ∑

k

|ψk〉〈ψk | = 1̂ (61)

This relation known as the completeness relation has a prominent role in
quantum mechanics.

Composition of operators Let H1 ⊂ H. We say that H1 is invariant
with respect to an operator Â if ∀|ψ1〉 ∈ H1, Â|ψ1〉 ∈ H1.

We say that H1 reduces Â if the subspace H1 and its orthogonal com-
plement H⊥1 are invariant with respect to Â.

Let Hi, i = 1, 2, ..., k, reduce the operator Â. Let us define operators Âi
with domain D(Âi) = Hi such that ∀|ψi〉 ∈ Hi, Âi|ψi〉 = Â|ψi〉. Then

Â|ψi〉 =
k∑
i=1

Âi|ψi〉 (62)

We say that Â is a direct sum of the operators Âi

Â = Â1 ⊕ Â2 ⊕ ...⊕ Âk =
k⊕
i=1

Âi (63)

Example: An operator Â in the Hilbert space U5



Â =


a11 a12 0 0 0
a21 a22 0 0 0
0 0 a33 a34 a35

0 0 a43 a44 a45

0 0 a53 a54 a55

 (64)

is the direct sum Â = Â1 ⊕ Â2 of the operators Â1 and Â2

Â1 =
(
a11 a12

a21 a22

)
(65)

Â2 =

 a33 a34 a35

a43 a44 a45

a53 a54 a55

 (66)

where Â1 and Â2 act in the Hilbert spaces U2 and U3 respectively.
The following properties of the direct sum are important

Tr(Â1 ⊕ Â2) = TrÂ1 + TrÂ2 (67)
det(Â1 ⊕ Â2) = detÂ1.detÂ2 (68)

If Â = Â1 ⊕ Â2 and B̂ = B̂1 ⊕ B̂2, and Â1 and B̂1 act in the same Hilbert
space, and so does Â2 and B̂2 , then ÂB̂ = Â1B̂1 ⊕ Â2B̂2 .

A particularly important in the context of quantum mechanics is the
direct product of operators which describes the composition of operators
acting on distinct subsystems of a quantum mechanical system. Let H =
H1⊗H2, and Âj , j = 1, 2 is an operator in Hj with the domain D(Âj). An
operator Â = Â1 ⊗ Â2 in H is a direct product of Â1 and Â2 and is defined
as

Â|ψ1〉|ψ2〉 = | Â1ψ1〉| Â2ψ2〉 (69)

for ∀|ψj〉 ∈ D(Âj), and its domain is D(Â) = D(Â1)D(Â2).
A useful example of a direct product of operators can be again given

within the finite dimensional case. Let us have the operators

B̂ =

 b11 b12 b13

b21 b22 b23

b31 b32 b33

 (70)

Ĉ =
(
c11 c12

c21 c22

)
(71)



the direct product is then constructed as

Â = B̂ ⊗ Ĉ =



b11c11 b11c12 b12c11 b12c12 b13c11 b13c12

b11c21 b11c22 b12c21 b12c22 b13c21 b13c22

b21c11 b21c12 b22c11 b22c12 b23c11 b23c12

b21c21 b21c22 b22c21 b22c22 b23c21 b23c22

b31c11 b31c12 b32c11 b32c12 b33c11 b33c12

b31c21 b31c22 b32c21 b32c22 b33c21 b33c22

 (72)

We of course notice that

Â = B̂ ⊗ Ĉ =

 b11Ĉ b12Ĉ b13Ĉ

b21Ĉ b22Ĉ b23Ĉ

b31Ĉ b32Ĉ b33Ĉ

 (73)

Eigenvalues and eigenvectors. Let |ψα〉 be a nonzero vector such that

Â|ψα〉 = α|ψα〉 (74)

then α is called an eigenvalue of Â and |ψα〉 is called an eigenvector of Â
corresponding to the eigenvalue α. If there is n > 1 vectors satisfying this
equation for α we then say that eigenvalue α is n-fold degenerate.

The eigenvalues of a self-adjoint operator Â, which represent physical
quantities in quantum mechanics, are real numbers:

α〈ψα|ψα〉 = 〈ψα|Âψα〉 = 〈Âψα|ψα〉∗ = α∗〈ψα|ψα〉 (75)

and thus α = α∗ which is indeed possible only for real numbers.
Eigenvectors of self-adjoint operators corresponding to distinct eigenval-

ues are orthogonal. If β 6= α is also an eigenvalue of Â then 〈ψα|Âψβ〉 =
β〈ψα|ψβ〉 and also

〈ψα|Âψβ〉 = 〈ψβ|Âψα〉∗ = α〈ψβ|ψα〉∗ = α〈ψα|ψβ〉 (76)

which implies that 〈ψα|ψβ〉 = 0.
Operator is uniquely defined from its action on the basis vectors of the

Hilbert space. Let B = {|ψj〉} is a basis of H(= D(Â)),

Â|ψj〉 =
∑
k

|ψk〉〈ψk |Â|ψj〉 =
∑
k

Akj |ψk〉 (77)

where Akj = 〈ψk |Â|ψj〉 are the matrix elements of the operator Â in the
matrix representation given by the basis B.



For practical calculations we write the operator Â as

Â =
∑
kj

|ψk〉〈ψk |Â|ψj〉〈ψj | =
∑
kj

Akj |ψk〉〈ψj | (78)

We can now define an operator by its eigenrepresentation. Assume that
the eigenvectors of Â define a basis of the Hilbert space, B = {|ψj〉} , then
Akj = 〈ψk |Â|ψj〉 = αjδkj . Operator in its eigenrepresentation is a diagonal
matrix with eigenvalues on the diagonal

Â =
∑
kj

|ψk〉〈ψk |Â|ψj〉〈ψj | =
∑
kj

Akj |ψk〉〈ψj | (79)

=
∑
j

αj |ψj〉〈ψj | =
∑
j

αjÊj (80)

where Êj is a projector to a one-dimensional space defined by |ψj〉. We call
the last expression also a spectral decomposition of the operator Â.

Process of obtaining eigenvalues and eigenvectors of operators is the most
important part of solving quantum mechanical systems. Let A be a matrix
representation of the operator Â. To find the eigenvalues (and eigenvectors),
we are looking for unitary matrix U that would transform the matrix A into
its diagonal form D, D = U †AU . Two operators commute iff there exist a
unitary transformation which diagonalizes them simultaneously.

In practice, to get the eigenvalues, we have to solve the characteristic (or
secular) equation defined as

det(A− λ1) = 0 (81)

where 1 is the identity matrix.
Given a spectral decomposition of an operator Â =

∑
j αjÊj . A function

of the operator Â can be defined as f(Â) =
∑

j f(αj)Êj . Specially if f = 1
we get the completeness relation 1 =

∑
j Êj .

Complete set of observables. Let Â(1), Â(2), ..., Â(M) be a set of mutu-
ally commuting operators. We say that these operators form a complete set
of commuting operators if each of the nonzero operators

Î
(12...M)
j1j2...jM

= Î
(1)
j1
Î

(2)
j2
...Î

(M)
jM

(82)

project to ne-dimensional subspace, i.e. for each M -tuple of eigenvalues
α

(1)
j1
α

(2)
j2
...α

(M)
jM

, there is maximally one linearly independent vector

|α(1)
j1
, α

(2)
j2
, ..., α

(M)
jM
〉 (83)



satisfying

Â(k)|α(1)
j1
, α

(2)
j2
, ..., α

(M)
jM
〉 = α

(k)
jk
|α(1)

j1
, α

(2)
j2
, ..., α

(M)
jM
〉 (84)

where k = 1, ...,M and ‖ |α(1)
j1
, α

(2)
j2
, ..., α

(M)
jM
〉 ‖= 1. In this case the projec-

tors are explicitly

Î
(12...M)
j1j2...jM

= |α(1)
j1
, α

(2)
j2
, ..., α

(M)
jM
〉〈α(1)

j1
, α

(2)
j2
, ..., α

(M)
jM
| (85)

Mutually commuting operators Â(1), Â(2), ..., Â(M) form a complete set of
commuting operators iff an arbitrary operator commuting with all Â(k),
k = 1, ...,M is a function of the operators Â(1), Â(2), ..., Â(M).

Generalization to the continuous spectrum Let Â is an arbitrary
operator with a continuous spectrum Â|α〉 = α|α〉. The normalization is
given as 〈α|α′〉 = δ(α − α′) where δ(α − α′) which we can understand as a
generalization of the Kronecker delat for the continuous case (more details
about the delta function as presented at lectures can be found in C. Cohen-
Tannoudji, Quantum Mechanics II, the Appendix II).

The spectral decomposition in the continuous case is defined as

Â =
∫ αmax

αmin

α|α〉〈α |dα (86)

and the completeness relation is∫ αmax

αmin

|α〉〈α |dα = 1 (87)

We can use the completeness relation to define or change the representation
of a state vector.

We can define a complex function of a real variable α, a wavefunction,

ψ(α) = 〈α|ψ〉 (88)

and the inner product of wavefunctions

〈ψ1|ψ2〉 =
∫ αmax

αmin

ψ∗1(α)ψ2(α) (89)

Remark: The mathematical foundations of quantum mechanics are well
(though slightly differently) presented in C. Cohen-Tannoudji et al., Quan-
tum Mechanics I, Chapter II.



3 Formalism of quantum mechanics

Classically, the result of any measurement of a system of N particles can be
predicted if the values of 3N coordinates and 3N momenta are known. A
state of a system is known if results of all independent measurements are
known.

Quantum mechanically, it is impossible to carry out simultaneous mea-
surement of coordinate and momenta with arbitrary accuracy. A state of a
quantum mechanical system is determined by the most complete measure-
ment, i.e. simultaneous measurement of all independent physical quantities
which are compatible. These quantities form the complete set of observables.

The quantities A and B are compatible if the measurement of A in no
way disturbs the measurement of B. If A is compatible with B, then B is
compatible with A. A and B can be measured simultaneously.

For measurements of some observables, the results form a discrete spec-
trum which is characteristic for a given observable of the system.

Values {a1}, {a2}, ... , {an}, ... which can be obtained for measurement
of the complete set of observables {A} are called eigenvalues of {A}.

Example: For a spinless particle the complete set of observables is given
by the energy Ê, angular momentum l̂ and a component of angular momen-
tum l̂z, {Ê, l̂, l̂z}. The corresponding eigenvalues form the set {Ej , lj ,mj}.

3.1 The concept of filter

The devices defined below will allow us to present formalism of quantum
theory in a unified fashion. A good example of these devices is Stern-Gerlach
apparatus which is well described in C. Cohen-Tannoudji et al., Quantum
Mechanics I, Chapter 4.

Separator S{A} . A separator is a device such that the measurement of
the complete set of observables on a system which passed through its j-th
channel always gives the eigenstate {aj}.

Recorder R{A} . This devices records the channel through which the
system has passed.

Measurement apparatus M{A} . This apparatus consists of the sepa-
rator S{A} and the recorder R{A}.



Filter FP
{a}j . The filter is a separator with shutters which close some

of the channels.

3.2 Filter with ideal resolution F{a}j

A filter with ideal resolution is the filter with only one channel open.
Measurement of the complete set of observables {A} on a system which

has passed through the filter F{a}j is the eigenvalue {a}j . A studied system
is associated with the Hilbert space H. We assign a projector P̂{a}j to
the filter F{a}j . The projector projects onto the one-dimensional subspace
represented by a normalized vector | {a}j〉:

P̂{a}j = | {a}j〉〈{a}j | (90)

We assign a vector | {a}j〉 to a system which has passed through the filter
F{a}j . We say that a given system is in the eigenstate {A} corresponding
to the eigenvalue {a}j , or briefly to the state | {a}j〉 = | {A} = {a}j〉.

Eigenstates {A} corresponding to different eigenvalues are related to
different vectors and we will require these vectors to be orthogonal

〈{a}j |{a}i〉 = δji (91)

A system prepared in a state | {a}i〉 will pass through the filter F{a}j iff
j = i:

P̂{a}j | {a}i〉 = | {a}j〉〈{a}j |{a}i〉 = δji| {a}j〉 (92)

If the system passes through the filter, the state on l.h.s. is nonzero and
describes the state of the system after passage through the filter. The coef-
ficient δji in front of the normalized vector | {a}j〉 on the r.h.s. is the proba-
bility that the measurement of {A} on the state | {a}i〉 gives the eigenvalue
{a}j .

Consider now a complete set of observables {B} such that {B} 6= {A},
i.e. some observables in {B} are incompatible with some in {A}, then for
all {a}i, the result of the measurement {B} on the state | {a}i〉 can not be
predicted with certainty.

Now our goal will be to predict probability that a system in the state
| {a}i〉 will pass through the filter F{b}j . We first apply the relevant projector
onto the initial state

P̂{b}j | {a}i〉 = | {b}j〉〈{b}j |{a}i〉 = A{a}i→{b}j | {b}j〉 (93)



Interpreting A{a}i→{b}j = 〈{b}j |{a}i〉 as the desired probability (i.e. a real
number) would not allow interference phenomena. These troubles disappear
if we define the desired probability as

W{a}i→{b}j = |A{a}i→{b}j |
2 (94)

The quantity A{a}i→{b}j = 〈{b}j |{a}i〉 is called the probability amplitude
for the transition from the state | {a}i〉 to the state | {b}j〉.

Important remarks.

• A{a}i→{b}j = 〈{b}j |{a}i〉 implies that W{a}i→{b}j = W{b}j→{a}i , i.e.
the probability to find {b}j when the measurement {B} is carried out
on the state | {a}i〉 is teh same as the probability to find {a}i when
the measurement {A} is carried out on the state | {b}j〉.

• The fact that some value {b}j will be found when measurement of {B}
is carried out is expressed as∑

j

W{a}i→{b}j = 1 (95)

that is ∑
j

〈{a}i|{b}j〉〈{b}j |{a}i〉 = 1 (96)

and as this is valid for any ket | {a}i〉 then∑
j

| {b}j〉〈{b}j | = 1 (97)

This important relation is known as the completeness relation. It is
essential fo mathematical structure of quantum theory and important
for practical calculations. For example, it allows to write the vector
| {a}i〉 as the expansion in terms of the set {| {b}j〉}

| {a}i〉 =
∑
j

| {b}j〉〈{b}j |{a}i〉 =
∑
j

〈{b}j |{a}i〉| {b}j〉

=
∑
j

A{a}i→{b}j | {b}j〉 (98)



• At this point, it seems obvious to associate the probabilityW{a}i→{b}j
with the square of the norm of the vector P̂{b}j | {a}i〉:

W{a}i→{b}j = ||P̂{b}j | {a}i〉||
2 = 〈{a}i |P̂{b}j | {a}i〉 (99)

Note that here we used the idempotence of the projection operator,
P̂ 2 = P̂ .

• Eigenstate {A} with eigenvalue {a}i can be described not only by a
normalized vector | {a}i〉 but an arbitrary vector | {a}′i〉 = λ| {a}i〉
where λ 6= 0. We then get for the probability

W{a}i→{b}j =
〈{a}′i |P̂{b}j | {a}′i〉
〈{a}′i|{a}′i〉

(100)

• Vectors linearly independent on | {a}i〉 can not be describe the eigen-
state {A} with the eigenvalue {a}i. Let |ψ〉 6= 0 describes such a state,
then using Eq.(100) for {A} = {B}, i = j, we get

W{a}i→{a}i =
|〈ψ|{a}i〉|2

〈ψ|ψ〉
≤ 〈ψ|ψ〉〈{a}i|{a}i〉

〈ψ|ψ〉
= 1 (101)

We used that 〈{a}i|{a}j〉 = δij , and the Schwartz inequality |〈φ|ψ〉| ≤
||φ||.||ψ|| where the equality in the last expression is valid only if |φ〉
and |ψ〉 are linearly dependent.

Note that when the measurement of {A} on the system which passed
through the filter F{a}i is carried out , it always gives the eigenvalue
{a}i with certainty: W{a}i→{a}i = 1.

In conclusion, no two linearly independent vectors in H can describe
the same state.

3.3 Filter with finite resolution

We assign to a filter FP
{b}j a projector P̂P

{b}j with the following properties

• If the system enters the filter in a state |φ〉 then it will pass through
with the following probability

W =
〈φ |P̂P

{b}j |φ〉
〈φ|φ〉

(102)



and will be in the final state

P̂P
{b}j |φ〉 (103)

where P̂ 2P
{b}j = P̂P

{b}j (idempotence).

Consider first a filter with infinitely low resolution, i.e. all channels
are open and it is impossible to distinguish through which the system
passed through. This filter is described by an operator of identity
P̂P
{b}j =

∑
j | {b}j〉〈{b}j | =

∑
j P̂{b}j .

• Let the initial state be | {a}i〉, then the state after the filter is

|ψ〉 = P̂P
{b}j | {a}i〉 (104)

and the probability is

W{a}i→P
{b}j = 〈{a}i |P̂P

{b}j | {a}i〉 (105)

where
W{a}i→P

{b}j =
∑
j

W{a}i→{b}j (106)

3.3.1 Quantum effects

Up to this point, our discussion of the formalism of quantum theory has
been understandable in classical terms.Now we proceed to quantum effects
and particularly the interference effect.

What is the probability that a measurement apparatus M{C} after the
filter FP

{b}j records the value {c}k if the initial state was | {a}i〉?
The state of the system after FP

{b}j is described by an unnormal-
ized state |ψ〉 = P̂P

{b}j | {a}i〉. The probability that the result of mea-
surement {C} on the system in the state |ψ〉 will be {c}k is given by
||P̂{c}k P̂P

{b}j | {a}i〉||2:

W{a}i→P
{b}j→{c}k = 〈ψ |P̂{c}k |ψ〉 (107)

that is

W{a}i→P
{b}j→{c}k = |

∑
j

〈{c}k|{b}j〉〈{b}j |{a}i〉|2

= |
∑
j

A{a}i → {b}jA{b}j → {c}k|2 (108)



The last equation documents the origin of quantum interference effect.
To provide a concrete example, we focus on the case when only two channels
{b}1 and {b}2 are open in the filter FP

{b}j . The probability that a mea-
surement apparatus M{C} after the filter F{b}1+{b}2 records the value {c}k
if the initial state was | {a}i〉 is given as

W{a}i→{b}1+{b}2→{c}k =

= |A{a}i→{b}1A{b}1→{c}k +A{a}i→{b}2A{b}2→{c}k |
2

= |α1β1 + α2β2|2 =
= |α1β1|2 + |α2β2|2 + 2Re(α1β1α

∗
2β
∗
2) (109)

where α1 = A{a}i→{b}1 , β1 = A{b}1→{c}k , α2 = A{a}i→{b}2 , β2 = A{b}2→{c}k .
If we shut of of the channels in the filter FP

{b}j , we obtain the following
probabilities

W{a}i→{b}1→{c}k = |α1β1|2

W{a}i→{b}2→{c}k = |α2β2|2

These terms in Eq.(109), correspond to probabilities that a classical particle
will pass either through the channel {b}1 or {b}2. Quantum particle how-
ever passes through both channels simultaneously leading to the quantum
interference effect represented by the last term in Eq(109), 2Re(α1β1α

∗
2β
∗
2).

We can observe the interference effect for example in the Young double slit
experiment (detailed discussion of this experiment can for example be found
in Feynmann’s Lectures in Physics, Vol. III, Chapter 1).

Principle of superposition and reduction of state. Let vectors |ψ1〉
and |ψ2〉 describe two positive states of a system, then the system can also
exist in a state |ψ〉 = α1|ψ1〉+ α2|ψ2〉.

If we found {b}k by the measurement, then the system has collapsed to
the state | {B} = {b}k〉. This is also called reduction of a state.

3.4 Uncertainty relation

Uncertainty of a result of measuring an observable Â in a given state is
characterized by fluctuation ∆a =

√
< Â2 > − < Â >2, where ∆a = 0 if

the state is an eigenstate of Â.
Only compatible, i.e. commuting, observables can be measured simulta-

neously with arbitrary precision. Let us have two incompatible observables,



Â and B̂, with the commutation relation [Â, B̂] = iĈ. We will now derive
the uncertainty relation.

We first introduce the following operators

∆Â = Â− ā (110)
∆Â = Â− ā (111)

where ā = 〈ψ |Â|ψ〉 and b̄ = 〈ψ |B̂|ψ〉 and define vectors

|φ〉 = ∆Â|ψ〉 (112)
|χ〉 = ∆B̂|ψ〉 (113)

The fluctuations of the observables Â and B̂ in the state |ψ〉 satisfy

(∆a)2(∆b)2 = 〈ψ |(∆Â)2|ψ〉〈ψ |(∆B̂)2|ψ〉 =‖ φ ‖2‖ χ ‖2 (114)

and according to the Schwartz inequality ‖ φ ‖2‖ χ ‖2≥ |〈φ|χ〉|2

〈φ|χ〉 = 〈ψ |∆Â∆B̂|ψ〉 =
1
2

(〈ψ |{∆Â,∆B̂}|ψ〉+ 〈ψ |[∆Â,∆B̂]|ψ〉) =

=
1
2

(〈ψ |{∆Â,∆B̂}|ψ〉+ i〈ψ |Ĉ|ψ〉) (115)

As the operators Â and B̂ are self-adjoint operators with real eigenvalues,
we can rewrite

|〈φ|χ〉|2 =
1
4

[(〈ψ |{∆Â,∆B̂}|ψ〉)2 + (〈ψ |Ĉ|ψ〉)2] (116)

The inequality ‖ φ ‖2‖ χ ‖2≥ |〈φ|χ〉|2 remains satisfied if we neglect the
term1

4(〈ψ |{∆Â,∆B̂}|ψ〉)2 in the equation above. We obtain then

∆a∆b ≥ 1
2
|〈ψ |Ĉ|ψ〉| (117)

Example: Let Â = X̂ and B̂ = P̂ , the one-dimensional coordinate and
momentum operators respectively. The canonical commutation relation is
[X̂, P̂ ] = i~, so Ĉ = ~. We define ∆X̂ = X̂ − x0 and ∆P̂ = P̂ − p0,
and following the derivation above, we can easily formulate the Heisenberg
uncertainty relation

∆x∆p ≥ ~
2

(118)

In mutidimentional systems, the following holds ∆xi∆pj ≥ ~
2δij .



3.5 Energy, time and Schrödinger equation

Time evolution of quantum mechanical systems described by a state vector
|ψ(t)〉 is governed by the Schrödinger equation

i~
d|ψ(t)〉
dt

= Ĥ|ψ(t)〉 (119)

where the operator Ĥ is called the Hamiltonian and represents the total
energy of the system, i.e. Ĥ = T̂ + V̂ where T̂ s the kinetic energy and V̂ is
the potential energy.

The general solution of the Schrödinger equation can be obtained by
separation of variables and integration from the initial time t0 to the final
time tf . We consider the most general case of the Hamiltonian which is
explicitly time dependent, Ĥ(t),∫ tf

t0

d|ψ(t)〉
|ψ(t)〉

= − i
~

∫ tf

t0

Ĥ(t)dt

[ln(|ψ(t)〉)]tft0 = − i
~

∫ tf

t0

Ĥ(t)dt

ln|ψ(tf )〉 − ln|ψ(t0)〉 = − i
~

∫ tf

t0

Ĥ(t)dt

|ψ(tf )〉 = e−
i
~

R tf
t0

Ĥ(t)dt|ψ(t0)〉 = Û(t0, tf ) (120)

The operator Û(t0, tf ) = e−
i
~

R tf
t0

Ĥ(t)dt is the quantum evolution operator
which propagates quantum mechanical system from the initial state at time
t0 to the final state at time tf . If the Hamiltonian is not explicitely time
dependent, i.e. Ĥ 6= Ĥ(t), the expression for the evolution operator acquires
a simpler form

Û(t0, tf ) = e−
i
~ Ĥt (121)

Remark: The formalism of quantum mechanics discussed in the Sec. 3
is well (though slightly differently) treated in C. Cohen-Tannoudji et al.,
Quantum Mechanics I, Chapter III.



4 Applications to simple quantum mechanical sys-
tems

4.1 One-particle systems

Hilbert space. Classically, to characterize a one-particle system we need
three coordinates {x1, x2, x3} and three momenta {p1, p2, p3}. Quantum
mechanically, these are represented by self-adjoint operators X̂j and P̂j ,
j = 1, 2, 3, such that [X̂j , X̂k] = 0, [P̂j , P̂k] = 0 and [X̂j , P̂k] = i~δjk. The
Hilbert space will have tensor product structureH = H1⊗H2⊗H3 = h⊗h⊗h
and the corresponding operators will become

X̂1 = X̂ ⊗ 1̂⊗ 1̂, P̂1 = P̂ ⊗ 1̂⊗ 1̂,
X̂2 = 1̂⊗ X̂ ⊗ 1̂, P̂1 = 1̂⊗ P̂ ⊗ 1̂,
X̂3 = 1̂⊗ 1̂⊗ X̂, P̂1 = 1̂⊗ 1̂⊗ P̂

where 1̂ is an identity operator and the self-adjoint operators X̂ and P̂ are
defined so that they satisfy the canonical commutation relation [X̂, P̂ ] = i~.
The values of X̂ are continuous and from (−∞,∞).

The most suitable Hilbert space on which these conditions for X̂ are
satisfied is the one on which the operator X̂ forms a complete set of com-
muting operators h = L2(R). This Hilbert space is formed by all complex
functions A(ξ) of a real variable ξ for which there exists a (Lebesgue) integral∫∞
−∞ |A(ξ)|2dξ <∞.

Let us have the vectors |A〉, |B〉 ∈ L2(R), where |A〉 = A(ξ) and |B〉 =
B(ξ) are square integrable functions

∫∞
−∞ |A(ξ)|2dξ <∞ and

∫∞
−∞ |B(ξ)|2dξ <

∞ (meaning their norm is finite). The linear combination of these vectors is
defined as α|A〉+ β|B〉 = αA(ξ) + βB(ξ), and the inner product is defined
as

〈A|B〉 =
∫ ∞
−∞

A∗(ξ)B(ξ)dξ (122)

Coordinate and momentum representations. The spectral represen-
tation of X̂ is given as

X̂ =
∫ ∞
−∞

x|x〉〈x |dx (123)

and the completeness relation is

X̂ =
∫ ∞
−∞
|x〉〈x |dx = 1 (124)



Every vector |φ〉 ∈ h is in the coordinate representation (or X-representation)
described by a wavefunction

φ(x) = 〈x|φ〉 (125)

which are coefficients in the expansion of the vector |φ〉 in terms of the
eigenstates of the operator X̂: |φ〉 =

∫∞
−∞ |x〉〈x|φ〉dx =

∫∞
−∞ φ(x)|x〉dx.

For |φ〉1, |φ〉2 ∈ h, the inner product is defined as

〈φ1|φ2〉 =
∫ ∞
−∞

φ∗1(x)φ2(x)dx (126)

The operator P̂ has to satisfy the canonical commutation relation [X̂, P̂ ] =
i~, i.e. X̂P̂ |φ〉 − P̂ X̂|φ〉 = i~|φ〉. In the coordinate representation, this is

xP̂ (X)φ(x)− P̂ (X)xφ(x) = i~φ(x) (127)

which is satisfied by

P̂ (X) = −i~ d

dx
(128)

This operator is self-adjoint.
For ∀p ∈ R, there is a solution of the equation

−i~ d

dx
ψp(x) = pψp(x) (129)

and every solution linearly depends on function

ψp(x) =
1√
2π~

e
i
~px (130)

which satisfies the normalization condition∫ ∞
−∞

ψ∗p′(x)ψp(x)dx = δ(p− p′) (131)

Similarly ∫ ∞
−∞

ψ∗p(x
′)ψp(x)dx = δ(x− x′) (132)

ψp(x) is an eigenfunction of P̂ in the coordinate representation corre-
sponding to the eigenvalue p. The completeness relation is∫ ∞

−∞
| p〉〈p |dp = 1 (133)



and the spectral representation of P̂ is

P̂ =
∫ ∞
−∞

p| p〉〈p |dp (134)

Every vector |φ〉 ∈ h in the momentum representation (or P-representation)
corresponds to the wavefunction

φ(P )(p) = 〈p|φ〉 (135)

where

φ(P )(p) =
∫ ∞
−∞
〈p|x〉〈x|φ〉dx =

1√
2π~

∫ ∞
−∞

e−
i
~pxφ(x)dx (136)

This relation shows that the wavefunction φ(P )(p) which describes the
vector |φ〉 in the momentum representation is related to φ(x) which describes
the same vector in the coordinate representation by the Fourier transform.

Let us have specially |φ〉 = X̂|ψ〉,

X̂(P )ψP (x) = 〈p |X̂|x〉 =
1√
2π~

∫ ∞
−∞

e−
i
~px〈x |X̂|ψ〉dx =

=
1√
2π~

∫ ∞
−∞

e−
i
~pxxψ(x)dx

=
i~√
2π~

d

dp

∫ ∞
−∞

e−
i
~pxψ(x)dx (137)

that is
X̂(P )ψP (x) = i~

d

dp
ψP (x) (138)

In the momentum representation, the operator X̂ is therefore defined as
X̂(P ) = i~ d

dp .

Schrödinger equation in coordinate representation. So far we have
dealt with the Hamiltonian (in the context of time evolution) on an ab-
stract operator level (end of the Sect. 3). Now we would like to arrive to
a concrete form and representation of the Hamiltonian. We start from a
classical Hamiltonian, which we will quantize by using the correspondence
principle, i.e. we assign relevant quantum operators to classical variables.
The classical Hamiltonian has the following form

H(~x, ~p) =
~p2

2m
+ V (~x) (139)



where the first term represents the kinetic energy and the second term is the
potential energy. By assigning the operator ~̂X to the classical coordinate ~x
and the operator ~̂P to the classical momentum ~p, we obtain (note that we
deal in general with three-dimensional case)

Ĥ =
~̂P

2m
+ V ( ~̂X) (140)

In order to proceed to the coordinate representation, we apply the canonical
quantization, that is, we perform the following substitutions

~̂X → ~x (141)

~̂P → −i~
3∑
j=1

∂2

∂x2
j

= −i~∆ (142)

The quantum Hamiltonian in the coordinate representation then becomes

Ĥ = − ~2

2m
∆ + V ( ~̂X) (143)

In the special case that the potential energy V ( ~̂X) = 0, we say that the
Hamiltonian describes a free particle.

4.2 Fourier transform

Our presentation of the Fourier transform followed C. Cohen-Tannoudji et
al., Quantum Mechanics II, Appendix I.

4.3 δ function

C. Cohen-Tannoudji et al., Quantum Mechanics II, Appendix II.

4.4 Free particle

C. Cohen-Tannoudji et al., Quantum Mechanics I, Chapter I, Sections B
and C.

4.5 Particle in time-independent scalar potential

C. Cohen-Tannoudji et al., Quantum Mechanics I, Chapter I, Section D and
Appendix HI .



4.6 One-dimensional harmonic oscillator

C. Cohen-Tannoudji et al., Quantum Mechanics I, Chapter V.



Remark: Please note the the lecture notes may contain typos. It would
be appreciated if you let me know in the case you find any. Also, if there is
anything you consider unclear or incomplete, or if you have any questions
regarding the notes please do not hesitate to contact me.


