The Kitaev Honeycomb lattice

and some numerical observations

Graham Kells,
Niall Moran,
Timothy Stitt (ICHEC) ,
J iri Vala

CONQUEST
All-Island Conference on Quantum Information Science and Technology NUIM - April 19-20 2007

Overview

- Theory
- The model
- Vortices and Fermions
- Spectral Properties - phase diagram
- Numerical
- Sparse representations
- Results
- Toral hexagonal lattice structures
- Spectral Phase diagrams
- Future work
- ICHEC
- Larger Lattice systems

The Model

- Hexagonal lattice system with spin exchange parameter dependent on direction

$$
H=-J_{x x} \sum_{x x-\text { links }} \sigma_{j}{ }^{x} \sigma_{k}{ }^{x}-J_{y y} \sum_{y y-\text {-links }} \sigma_{j}^{y} \sigma_{k}^{y}-J_{z z} \sum_{z z-\text { links }} \sigma_{j}{ }^{z} \sigma_{k}{ }^{z}
$$

Anyons in an exactly solvable model and beyond, A. Kitaev, cond-mat/0506438

The Model

- Hexagonal lattice system with spin exchange parameter dependent on direction

$$
H=-J_{x x} \sum_{x x-\text { links }} \sigma_{j}{ }^{x} \sigma_{k}{ }^{x}-J_{y y} \sum_{y y-\text {-links }} \sigma_{j}^{y} \sigma_{k}^{y}-J_{z z} \sum_{z z-\text { links }} \sigma_{j}{ }^{z} \sigma_{k}{ }^{z}
$$

- Plaquette operators

$$
W_{p}=\sigma_{1}^{z} \sigma_{2}^{y} \sigma_{3}^{x} \sigma_{4}^{z} \sigma_{5}^{y} \sigma_{6}^{x}
$$

with eigenvalues $[-1,1]$.

- In the quasi-particle description to be described later we will call the -1 state a vortex and the +1 state vortex free. The vortices display anyonic statistics.

Anyons in an exactly solvable model and beyond, A. Kitaev, cond-mat/0506438

Vortices

- Commutes with Hamiltonian and therefore can be simultaneously diagonalised

$$
\left[W_{p}, H\right]=0
$$

- Any Energy eigenstate has expectation value

$$
w_{p}=\left\langle E_{n}\right| W_{p}\left|E_{n}\right\rangle= \pm 1
$$

- This allows us to split the Hilbert space into sectors labelled by a fixed configuration of plaquette
 eigenvalues.

$$
L=\underset{w_{1}, \ldots, w_{m}}{\oplus} L_{w_{1}, \ldots, w_{m}}
$$

Vortices

- Commutes with Hamiltonian and therefore can be simultaneously diagonalised

$$
\left[W_{p}, H\right]=0
$$

- Any Energy eigenstate has expectation value

$$
w_{p}=\left\langle E_{n}\right| W_{p}\left|E_{n}\right\rangle= \pm 1
$$

- This allows us to split the Hilbert space into sectors labelled by a fixed configuration of plaquette eigenvalues.

Vortex free sector

$$
L=\underset{w_{1}, \ldots, w_{m}}{\oplus} L_{w_{1}, \ldots, w_{m}}
$$

The Fermionic picture

- It is possible to map this spin $1 / 2$ model to a free majorana fermionic picture. (J ordan-Wigner Transformation)
- Represent each spin with 2 fermionic modes $a_{1} \& a_{2}$ so that the no-fermion state represents a spin up and 2 -fermion state represents a spin down.

- Majorana fermions are defined as the 'real' and 'imaginary' parts of the fermionic creation and annihilation operators in the following way

$$
c_{2 k-1} \equiv a_{k}+a_{k}^{+} \quad c_{2 k} \equiv \frac{a_{k}-a_{k}^{+}}{i}
$$

- They are Hermitian and satisfy the relations

$$
c_{i}=c_{i}^{+} \quad\left\{c_{i}, c_{j}\right\}=2 \delta_{i j}
$$

The Fermionic picture

- There are 4 Majorana operators corresponding to each spin

$$
\begin{array}{ll}
c_{1}=a_{1}+a_{1}^{+}=b^{x} & c_{3}=a_{2}+a_{2}^{+}=b^{z} \\
c_{2}=\frac{a_{1}-a_{1}^{+}}{i}=b^{y} & c_{4}=\frac{a_{2}-a_{2}^{+}}{i}=c
\end{array}
$$

- We need to be able to project the full 4-D space of states \tilde{L} of the 2 fermions back to the physical space of the spin states L.
- This is done with the 'projection' operator

$$
D=-b^{x} b^{y} b^{z} c \quad \text { where } \quad|\psi\rangle \in L \Leftrightarrow D|\psi\rangle=|\psi\rangle
$$

and

$$
\tilde{\sigma}^{x}=i b^{x} c \quad \tilde{\sigma}^{y}=i b^{y} c \quad \tilde{\sigma}^{z}=i b^{z} c
$$

represent the Pauli spin operators on this extended space

Graphical Representation

The Fermionic picture

Matrix representation:
\circ Fermionic annihilation ops $\quad a_{1}=\left[\begin{array}{cccc}0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \quad a_{2}=\left[\begin{array}{cccc}0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$

- 4 Majorana operators b^{x}, b^{y}, b^{z}, c :
$b^{x}=-\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right] \quad b^{y}=\left[\begin{array}{cccc}0 & 0 & i & 0 \\ 0 & 0 & 0 & 0 \\ -i & 0 & 0 & i \\ 0 & -i & 0 & 0\end{array}\right] \quad b^{z}=\left[\begin{array}{cccc}0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \quad c=\left[\begin{array}{cccc}0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \\ 0 & 0 & 0 & -i \\ 0 & 0 & i & 0\end{array}\right]$
- Stabilizer

$$
D=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Quadratic Hamiltonian

- Recall that

$$
H=-J_{x} \sum_{x x-\text { links }} \sigma_{j}{ }^{x} \sigma_{k}{ }^{x}-J_{y} \sum_{y y-\text { links }} \sigma_{j}{ }^{y} \sigma_{k}{ }^{y}-J_{z} \sum_{z z-\text { links }} \sigma_{j}{ }^{z} \sigma_{k}{ }^{z}
$$

- The diagonalization of the Hamiltonian is re-expressed as the diagonalization of

$$
H\left(\sigma_{j}^{\alpha}\right)=H\left(\left\{i b_{j}^{\alpha} c_{j}\right\}\right)
$$

accompanied by the constraint $D_{j}|\psi\rangle=|\psi\rangle$.

- Using this transformation we have $\sigma_{j}{ }^{\alpha} \sigma_{k}{ }^{\alpha}=-i \hat{u}_{j k} c_{j} c_{k} \quad$ with $\hat{u}_{j k}=i b_{j}^{\alpha} b_{k}^{\alpha}$ to finally obtain

$$
\tilde{H}=\frac{i}{4} \sum_{j, k} \hat{A}_{j, k} c_{j} c_{k} \quad \text { where } \quad \hat{A}_{j, k}=\left\{\begin{array}{cl}
2 J_{\alpha} \hat{u}_{j, k}, & \begin{array}{l}
\text { if } \mathrm{j} \text { and } \mathrm{k} \text { are } \\
\text { connected } \\
0,
\end{array} \\
\text { otherwise } .
\end{array}\right.
$$

Quadratic Hamiltonian

- The operators $\hat{u}_{j k}$ commute with the Hamiltonian and with each other.
- Similarly to before we use these to break the space up into sectors

$$
\tilde{L}=\underset{u}{\oplus} \tilde{L}_{u}
$$

- To restrict the Hamiltonian to the sector we want we replace the operators by the eigenvalues by 'removing hats' to get

$$
\tilde{H}=\frac{i}{4} \sum_{j, k} A_{j, k} c_{j} c_{k}
$$

- This type of Hamiltonian can be solved exactly. In fact, so can any Hamiltonian that can be written as

$$
H=\sum_{j k}\left(\alpha_{j k} a_{j} a_{k}^{+}+\alpha_{j k}^{*} a_{j}^{+} a_{k}+\beta_{j k} a_{j} a_{k}+\beta_{j k}^{*} a_{j}^{+} a_{k}^{+}\right)
$$

Spectral Properties

- Discrete or gapped spectrum implies local excitations

$$
H=-J_{x} \sum_{x x-\text { links }} \sigma_{j}{ }^{x} \sigma_{k}{ }^{x}-J_{y} \sum_{y y-\text { links }} \sigma_{j}{ }^{y} \sigma_{k}{ }^{y}-J_{z} \sum_{z z-\text { links }} \sigma_{j}{ }^{z} \sigma_{k}{ }^{z}
$$

Spectral Properties

$$
H=-J_{x} \sum_{x x-\text {-links }} \sigma_{j}{ }^{x} \sigma_{k}{ }^{x}-J_{y} \sum_{y y-\text { links }} \sigma_{j}{ }^{y} \sigma_{k}^{y}-J_{z} \sum_{z z-\text { links }} \sigma_{j}{ }^{z} \sigma_{k}^{z}
$$

External Magnetic Field

$$
+\sum_{n} B_{x} \sigma_{n}{ }^{x}+B_{y} \sigma_{n}^{y}+B_{z} \sigma_{n}{ }^{z}
$$

Our approach

- Examine finite size effects of the spectrum of the system without external magnetic field.

Our approach

- Examine finite size effects of the spectrum of the system without external magnetic field.
- Study (B) phase with external magnetic field beyond the perturbative limit.

Our approach

- Examine finite size effects of the spectrum of the system without external magnetic field.
- Study (B) phase with external magnetic field beyond the perturbative limit.
- Isolate and examine non-abelian anyons.

Our approach

- Examine finite size effects of the spectrum of the system without external magnetic field.
- Study (B) phase with external magnetic field beyond the perturbative limit.
- Isolate and examine non-abelian anyons.
- Examine phase-transition between abelian (A) and non-abelian phase (B).

Numerical Model

$$
\begin{aligned}
& \qquad \begin{aligned}
& H=-J_{x} \sum_{x x-\text { links }} \sigma_{j}{ }^{x} \sigma_{k}^{x}-J_{y} \sum_{y y-\text { links }} \sigma_{j}^{y} \sigma_{k}^{y}-J_{z} \sum_{z z-\text { links }} \sigma_{j}{ }^{z} \sigma_{k}{ }^{z} \\
& \text { External Magnetic Field }+\sum_{n} B_{x} \sigma_{n}{ }^{x}+B_{y} \sigma_{n}{ }^{y}+B_{z} \sigma_{n}{ }^{z}
\end{aligned}
\end{aligned}
$$

- Spin Hamiltonian can be represented as sparse Matrix, e.g.

$$
\sigma_{1}{ }^{x} \sigma_{2}{ }^{x}=\sigma^{x} \otimes \sigma^{x} \otimes I \otimes I \otimes I \otimes I
$$

- Lower energy eigensolutions via the ARPACK library with LAW (Linear Algebra Wrapper) library to perform matrix multiplication

Numerical Model

- Spin Hamiltonian can be represented as sparse Matrix
- Choose valid lattice configuration and label lattice sites

Numerical Model

- Spin Hamiltonian can be represented as sparse Matrix
- Choose valid lattice configuration and label lattice sites

Numerical Model

- Spin Hamiltonian can be represented as sparse Matrix
- Choose valid lattice configuration and label lattice sites

Numerical Model

- Spin Hamiltonian can be represented as sparse Matrix
- Choose valid lattice configuration and label lattice sites

Numerical Model

- Spin Hamiltonian can be represented as sparse Matrix
- Choose valid lattice configuration and label lattice sites
- Configurations examined

Numerical Model

- Spin Hamiltonian can be represented as sparse Matrix
- Choose valid lattice configuration and label lattice sites
- Configurations examined

Numerical Model

- Spin Hamiltonian can be represented as sparse Matrix
- Choose valid lattice configuration and label lattice sites
- Configurations examined

Numerical Model

- Spin Hamiltonian can be represented as sparse Matrix
- Choose valid lattice configuration and label lattice sites
- Configurations examined

Hardware

- Currently calculating jobs for 20 and 24 and 28 spin lattice configurations
- Hamilton is a shared memory machine belonging to ICHEC (I rish Centre for High-End Computing),
- 32 Intel Itanium 2 processors and 256 GB of RAM.

Hardware

- Plans to write code that will run on a distributed memory cluster.
- Walton has
- 948 AMD Opteron cpus.
- 2.1 TB memory.
- 474 separate servers connected with gigabit Ethernet.

THANK YOU FOR YOUR ATTENTION

