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The Model

Hexagonal lattice system with spin exchange parameter 
dependent on direction 
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In the quasi-particle 
description to be described later 
we will call the -1 state a vortex 
and the +1 state vortex free. 
The vortices display anyonic 
statistics.

The Model

Hexagonal lattice system with spin exchange parameter 
dependent on direction 

Plaquette operators                    

with eigenvalues [-1,1].
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Vortices

Commutes with Hamiltonian and 
therefore can be simultaneously 
diagonalised 

Any Energy eigenstate has 
expectation value

This allows us to split the Hilbert 
space into sectors labelled by a 
fixed configuration of plaquette 
eigenvalues.
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Vortices

Commutes with Hamiltonian and 
therefore can be simultaneously 
diagonalised 

Any Energy eigenstate has 
expectation value

This allows us to split the Hilbert 
space into sectors labelled by a 
fixed configuration of plaquette 
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The Fermionic picture

It is possible to map this spin ½ model to a free majorana 
fermionic picture. (Jordan-Wigner Transformation)

Represent each spin with 2 fermionic modes      &       so that the 
no-fermion state represents a spin up and 2-fermion state 
represents a spin down.

Majorana fermions are defined as the ‘real’ and ‘imaginary’ parts 
of the fermionic creation and annihilation operators in the 
following way

They are Hermitian and satisfy the relations
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The Fermionic picture

There are 4 Majorana operators corresponding to each spin

We need to be able to project the full 4-D space of states      of 
the 2 fermions back to the physical space of the spin states .

This is done with the ‘projection’ operator 

where

and

represent the Pauli spin operators on this extended space 
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Graphical Representation
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The Fermionic picture

Matrix representation:

Fermionic annihilation ops

4 Majorana operators bx, by, bz, c:
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Quadratic Hamiltonian

Recall that

The diagonalization of the Hamiltonian is re-expressed as the 
diagonalization of 

accompanied by the constraint                   .

Using this transformation we have                              with                 
to finally obtain

where   
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Quadratic Hamiltonian

The operators     commute with the Hamiltonian and with each 
other.
Similarly to before we use these to break the space up into 
sectors

To restrict the Hamiltonian to the sector we want we replace the
operators by the eigenvalues by ‘removing hats’ to get

This type of Hamiltonian can be solved exactly. In fact, so can 
any Hamiltonian that can be written as

Lieb, Schultz and Mattis, Annals of Physics, 16, pages 407-466 (1961)
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Spectral Properties   
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AyAx

B

gapped

gapless

,1=zJ 0== yx JJ

,1=xJ ,1=yJ 0== zx JJ0== yz JJ

Discrete or gapped spectrum implies local excitations
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Spectral Properties   
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Our approach 

Examine finite size effects of the spectrum of the system without 
external magnetic field.
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Our approach 

Examine finite size effects of the spectrum of the system without 
external magnetic field.

Study (B) phase with external magnetic field beyond the 
perturbative limit. 
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Our approach 

Examine finite size effects of the spectrum of the system without 
external magnetic field.

Study (B) phase with external magnetic field beyond the 
perturbative limit. 

Isolate and examine non-abelian anyons.
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Our approach 

A

AA
B

,1=zJ 0== yx JJ

,1=xJ ,1=yJ 0== zx JJ0== yz JJ

Examine finite size effects of the spectrum of the system without 
external magnetic field.

Study (B) phase with external magnetic field beyond the 
perturbative limit. 

Isolate and examine non-abelian anyons.

Examine phase-transition between abelian (A) and non-abelian 
phase (B).                      



Numerical Model

Spin Hamiltonian can be represented as sparse Matrix, e.g. 

Lower energy eigensolutions via the ARPACK library with LAW 
(Linear Algebra Wrapper) library to perform matrix multiplication
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Numerical Model

Spin Hamiltonian can be represented as sparse Matrix

Choose valid lattice configuration and label lattice sites
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Numerical Model

Spin Hamiltonian can be represented as sparse Matrix

Choose valid lattice configuration and label lattice sites

Configurations examined 
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Numerical Model

Spin Hamiltonian can be represented as sparse Matrix

Choose valid lattice configuration and label lattice sites

Configurations examined 
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Hardware

Currently calculating jobs for 
20 and 24 and 28 spin lattice 
configurations

Hamilton is a shared memory 
machine belonging to ICHEC 
(Irish Centre for High-End 
Computing),

32 Intel Itanium 2 processors 
and 256GB of RAM.



Hardware

Plans to write code that will 
run on a distributed memory 
cluster. 

Walton has
948 AMD Opteron cpus.
2.1 TB memory.
474 separate servers 
connected with gigabit 
Ethernet.

This would allow > 32 spins to 
be analysed.
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