Anyon models – Theory, Interferometry, Bose condensation

Joost Slingerland, UC Riverside/Caltech Maynooth, January 2007

Based in part on work with

Parsa Bonderson, Kirill Shtengel, Sander Bais, Bernd Schroers

- Bonderson, Kitaev, Shtengel. PRL 96, 016803 (2006)
- Bonderson, JKS, Shtengel. PRL 97, 016401 (2006)
- Bonderson, JKS, Shtengel. Quant-ph/0608119, tbp in PRL
- Bais, Schroers, JKS. PRL 89:18601, 2002
- Bais, Schroers, JKS. JHEP 05:068, 2003
- Bais, Mathy, cond-mat/0602101, cond-mat/0602109, cond-mat/0602115

Part I: Some Theory of Anyon Models

- Want: algorithmic calculation of topological transition amplitudes (for example for Quantum Gate/Algorithm design)
- Need: Information that characterizes the model (input for the algorithm) Here F-symbols and R-symbols
- Get these from much more basic information (fusion rules), using consistency (pentagon and hexagon equations)

Fusion Theory

Fusion/splitting histories and States, bra vs. ket, can build up multiparticle states, inner products, operators ("computations") etc.

$$(d_a d_b d_c)^{-1/4} \bigvee_{a \not b}^{c \not \mu} = \langle a, b; c, \mu | \in V_{ab}^c$$
$$(d_a d_b d_c)^{-1/4} \bigvee_{c \not \mu}^{b \not \mu} = |a, b; c, \mu \rangle \in V_c^{ab}$$

Dimensions of these spaces: N_c^{ab} Fusion rules: $a \times b = \sum_{c} N_c^{ab} c$

Recoupling, F-matrix / F-symbols Needed a.o. for reduction to a standard (computational) basis

$$a \not e \not b \\ \alpha \not e \not \beta = \sum_{f,\mu,\nu} \left[F_{d,c}^{a,b} \right]_{(e,\alpha,\beta),(f,\mu,\nu)} a \not f \not \mu c$$

Standard vs. Nonstandard States

No Longer Standard

LHS gives an "intermediate charge basis" for the abcde-f Hilbert space

RHS could be an evolution of LHS, (top half can be viewed as operator) This is some superposition of basis states

Reduction Strategy

Strategy: Remove loops (surplus vertices) to reach a tree. Then move branches around to get the chosen standard tree

Two vertices removed at the end (only the term with a disconnected loop survives); We can build an algorithm for complete reduction out of this.

Braiding, R-symbols, Twist

Braiding, R-matrix

$$R_{ab} = \bigwedge_{a} \bigwedge_{b}, \qquad R_{ab}^{-1} = \bigwedge_{b} \bigwedge_{a},$$

Braiding acting on splitting spaces: R-symbols

Twists, spin factors

а

$$e^{2\pi i h_a}$$

Removing Crossings

Need F-Symbols and R-symbols for this

The two extra crossings can be removed by F-moves later on.

The suggested algorithm is very slow in general (the number of terms generated is likely exponential in vertices/crossings)

But that's why we can have/need the quantum computer :)

Braiding and Fusion Requirements

Consistency of Fusion: The Pentagon

Taken from Alexei Kitaev's notes

More Consistency of Braiding and Fusion: the Hexagons

Properties of the pentagon and hexagon equations

- Third order polynomial equations in many variables
- Many more equations than variables: solutions do not always exist
- "Gauge" freedom (basis choices) gives parameter families of equivalent solutions
- Ocneanu rigidity: only discrete solutions can exist modulo gauge freedom
- Once gauge freedom is fixed the equations can (in principle) be solved algorithmically, using Groebner bases (uses rigidity) (scales very badly with the number of variables)
- Number of variables can be drastically reduced by noting that many equations are linear in at least one variable

A program to solve the pentagon/hexagon using these observations and automated gauging can solve theories up to 6 particles (and many more), provided that the gauge can be fixed (Parsa Bonderson, JKS, in preparation)

The "periodic system" of TQFTs (Zhenghan Wang)

	1		A=abelian N=non-abelian U=universal for #=number of UN	anyonic QC IITARY theories
	A 2	N 2		
	SU(2) ₁ Semion=Z ₂	SO(3) ₃ Fib U2		
A 2	N 8	N 2		
Z ₃	SU(2) ₂ Ising	SO(3) ₅		
(v=1/3)	(v=5/2)	U4		
A 4	N 4	N 2	N 4	A 6
Z ₄ SU(2) ₃		SO(3) ₇	Fib×Fib	$Z_2 \times Z_2$
	(v=12/5) U	U6	U	

S-matrix etc.

Trace and 'S-matrix'

$$S_{ab} = \frac{1}{D} \left[a \bigoplus_{a} b \right], \qquad \bigoplus_{b} a = \frac{S_{ab}}{S_{1b}} b$$

S-matrix gives fusion by Verlinde's formula:

$$N_{ab}^{c} = \sum_{x} \frac{S_{ax}S_{bx}S_{cx}}{S_{1x}}$$

Using Ocneanu rigidity, S almost determines the theory!

Part II: Quantum Hall Interferometry

• Quantum Hall systems are closest to experimental realisation of nonabelions

- Have proposals to detect these by interferometry, experiments underway
- What will we need from TQFT to describe the experiments?
- Conversely will we learn about the Hall TQFTs?

Turns out: Only the normalized monodromy matrix M is important for Hall interferometry:

$$M_{ab} = \frac{S_{ab}S_{11}}{S_{a1}S_{b1}}$$
Note $|M_{ab}| \le 1$
 $M_{ab} = 1$ signals trivial monodromy

The Quantum Hall Effect

B ~ 10 Tesla T ~ 10 mK

On the Plateaus:

- Incompressible electron liquids
- Off-diagonal conductance:

values $v \frac{e^2}{h}$ Filling fraction $v = \frac{p}{q}$

Vortices with fractional charge
+AB-effect: fractional statistics

(Abelian) ANYONS!

Eisenstein, Stormer, Science 248, 1990

An Unusual Hall Effect

Filling fraction 5/2: even denominator!

Now believed to have

- electrons paired in ground state (exotic p-wave 'superconductor')
- halved flux quantum
- charge e/4 quasiholes (vortices) which are Non-Abelian Anyons

(exchanges implement non-commuting unitaries)

Moore, Read, Nucl. Phys. B360, 362, 1991

Can use braiding interaction for Topological Quantum Computation (not universal for 5/2 state, but see later)

Willett et al. PRL 59, 1776, 1987

Experimental Progress

Pan et al. PRL 83, 1999 Gap at 5/2 is 0.11 K

Xia et al. PRL 93, 2004, Gap at 5/2 is 0.5 K, at 12/5: 0.07 K

Quantum Hall Interferometry

Interference suppressed by [M]: effect from non-Abelian braiding! (This should actually be easier to observe than the phase shift from Abelian braiding...)

Actual experiments (abelian Anyons)

Camino, Zhou, Goldman, Phys. Rev. B72 075342, 2005

Part III

Topological Symmetry Breaking and Bose Condensation

Can describe topological order by extended "symmetry" concepts: >TQFTs, Tensor Categories, Hopf Algebras, Quantum Groups

Fusion Braiding Twist

Particle types Tensor Product R-matrix Ribbon Element

IDEA:

Relate topological phases by "Symmetry Breaking"

Mechanism? Bose Condensation! Break the Quantum Group to the "Stabiliser" of the condensate's order parameter

On Bosons

- What is a boson? A particle with
 - trivial twist factor/ integer conformal weight
 - trivial self braiding in at least on fusion channel,
 - i.e. at least one of the fusion products also has trivial twist/integer weight

 Have a boson in the Pfaffian state (below) and lots of bosons in the higher RR-states (k=4 upwards)

Symmetry breaking scheme

Confined Excitation

Quantum group symmetry breaking: What we will use here

Fusion

$$a \times b = \sum_{c} N_{c}^{ab}c$$
Twist

$$a = e^{2\pi i h_{a}}$$
Monodromy

$$a = e^{2\pi i (h_{c} - h_{a} - h_{b})}$$

"Symmetry breaking" from the dual side

Inspired by usual algebra symmetry breaking, introduce branchings for topological sectors:

$$a \rightarrow \sum_{i} n_{a,i} a_{i}$$

Note: condensate must branch to vacuum (+ possibly more)

Requirements

 The new labels themselves form a fusion model (need associativity, vacuum and charge conjugation)
 Branching and fusion commute,

$$a \otimes b \rightarrow (\sum_{i} n_{a,i}a_{i}) \otimes (\sum_{i} n_{b,i}b_{i})$$

This implies preservation of quantum dimensions (useful in calculations)

Breaking SU(2)₄

SU(2)₄

	d = 1	h = 0				
· ·						
1	$d_1 = \sqrt{3}$	$h_1 = 1 / 8$	$1 \times 1 = 0 + 2$			
1	d = 2	h = 1/3	$1 \times 2 = 1 + 3$	$2 \times 2 = 0 + 2 + 4$		
L '	u 2 – 2	$n_2 = 175$	$1 \times 3 - 2 + 4$	$2 \times 3 - 1 + 3$	$3 \times 3 = 0$	
3	$d_3 = \sqrt{3}$	$h_{3} = 5 / 8$	1× 3 = 2 + +	$2 \times j = 1 \pm j$	0 1 1	
	d – 1	h — 1	$1 \times 4 = 3$	$2 \times 4 = 2$	$3 \times 4 = 1$	4≫4=0
1	u 1	$n_{1} - 1$				

Condensate, splitting and identification

Assume a bosonic condensate forms in the 4 rep of $SU(2)_4$:

 $2 \times 2 = 0 + 2 + 4 = 0 + 2 + 0$ $\Rightarrow 2 := 2_{1} + 2_{2} \text{ possible because } d_{2} = 2$ $2_{1} \times 2_{1} + 2_{1} \times 2_{2} + 2_{2} \times 2_{1} + 2_{2} \times 2_{2} = 0 + 2_{1} + 2_{2} + 0$ $\Rightarrow 2_{1} \times 2_{2} = 0$ if $2_{1} \times 2_{1} = 2_{1}$ th en $2_{2} \times (2_{1} \times 2_{1}) = 2_{2} \times 2_{1} = 0$ $(2_{2} \times 2_{1}) \times 2_{1} = 0 \times 2_{1} = 2_{1}$ $\Rightarrow 2_{1} \times 2_{1} = 2_{2} \text{ and } 2_{2} \times 2_{2} = 2_{1}$ $\Rightarrow 1 \Leftrightarrow 3$

1 $2 := 2_1 + 2_2$ $3 \Leftrightarrow 1$

4 ⇔ 0

 $1 \times 1 = 0 + 1$ $1 \times 2_{1} = 1$ $1 \times 2_{2} = 1$ $2_{1} \times 2_{2} = 0$ $2_{2} \times 2_{2} = 2_{1}$

Confinement and Braiding

To see which of the particles in the broken theory are confined, look at braiding with the condensed particle. How? For particle a_i , look in all channels of the old theory that cover $a_i x 1 = a_i$

Now notice: Fields that cover 1 have trivial twist factor (condensate is bosonic). Hence braiding with the vacuum is trivial and a_i is not confined precisely when all the fields that branch to a_i have equal twist factors (or conformal dimensions that differ by integers).

The non-confined particles all have well defined monodromies with each other, given by their twist factors (which are unambiguously defined from the branching).

Confinement for $SU(2)_4$

From branching rules and conformal weights one finds that the 1 and 3 are confined.

The unconfined algebra becomes $SU(3)_1$:

$$2_{1} \times 2_{1} = 2_{2}$$

$$3 \times 3 = \overline{3}$$

$$2_{1} \times 2_{2} = 0$$

$$3 \times \overline{3} = 1$$

$$3 \times \overline{3} = 3$$

Relation to Conformal Embedding

Central charges satisfy c(G) = c(H) => c(G/H) = 0Coset algebra is trivial. ==> Finite branching of inf. Dim. KM representations

Example: $SU(2)_4 ==> SU(3)_1 (c=2)$

Summary and Outlook

Results

- Extended Topological symmetry breaking to TQFTs with non-integer quantum dimensions
- Found connection to conformal embeddings
- Had a first go at application to nonabelian FQH states

Questions/Future Work

- Found Fusion and twist factors.
 How to determine the rest of the TQFT (half-braidings, F-symbols...)?
 Note: often fixed by consistency (always?)
- Work suggests conformal embeddings of coset chiral algebras. Interesting CFT problem...
- Further Physical applications....