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Part I: Some Theory of Anyon ModelsPart I: Some Theory of Anyon Models

 Want: algorithmic calculation of topological transition amplitudes Want: algorithmic calculation of topological transition amplitudes   
(for example for Quantum Gate/Algorithm design)(for example for Quantum Gate/Algorithm design)

 Need: Information that characterizes the model Need: Information that characterizes the model   
 (input for the algorithm) (input for the algorithm)     
Here F-symbols and R-symbolsHere F-symbols and R-symbols

 Get these from much more basic information (fusion rules), using Get these from much more basic information (fusion rules), using 
consistency (pentagon and hexagon equations)consistency (pentagon and hexagon equations)



    

Fusion TheoryFusion Theory

Fusion/splitting histories and States, bra vs. ket, Fusion/splitting histories and States, bra vs. ket, 
can build up multiparticle states, inner products, operators (“computations”) etc.can build up multiparticle states, inner products, operators (“computations”) etc.

Recoupling, F-matrix / F-symbolsRecoupling, F-matrix / F-symbols
Needed a.o. for reduction to a standard (computational) basisNeeded a.o. for reduction to a standard (computational) basis

ab
cN

Dimensions of these
spaces:

Fusion rules:
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Standard vs. Nonstandard StatesStandard vs. Nonstandard States

Standard

a b c d e

f

a b c d e

f

No Longer Standard

LHS gives an “intermediate charge basis” 
for the abcde-f Hilbert space

RHS could be an evolution of LHS,
(top half can be viewed as operator)
This is some superposition of basis states



    

Reduction StrategyReduction Strategy

Strategy: Remove loops (surplus vertices) to reach a tree. 
 Then move branches around to get the chosen standard tree 

= 0
Note: tadpoles vanish = d

a
abut

F F F

Two vertices removed at the end (only the term with a disconnected loop survives); 
We can build an algorithm for complete reduction out of this.
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Braiding, R-symbols, TwistBraiding, R-symbols, Twist

Braiding, R-matrixBraiding, R-matrix

Braiding acting on splitting spaces: R-symbolsBraiding acting on splitting spaces: R-symbols

a b

c
=

a b

c

ab
cR

aihe π2= 

Twists, spin factors

a a



    

Removing CrossingsRemoving Crossings

Need F-Symbols and R-symbols for this

1

F R

The two extra crossings can be removed by F-moves later on.

The suggested algorithm is very slow in general
(the number of terms generated is likely exponential in vertices/crossings)

But that's why we can have/need the quantum computer :) 



    

Braiding and Fusion RequirementsBraiding and Fusion Requirements



    

Consistency of Fusion: The PentagonConsistency of Fusion: The Pentagon

Taken from Alexei Kitaev's notes



    

More Consistency of Braiding and Fusion: the Hexagons More Consistency of Braiding and Fusion: the Hexagons 



    

Properties of the pentagon and hexagon equationsProperties of the pentagon and hexagon equations

● Third order polynomial equations in many variables
● Many more equations than variables: solutions do not always exist
● “Gauge” freedom (basis choices) gives parameter families of equivalent 
   solutions

● Ocneanu rigidity: 
  only discrete solutions can exist modulo gauge freedom

● Once gauge freedom is fixed the equations can (in principle)
  be solved algorithmically, using Groebner bases (uses rigidity)
 (scales very badly with the number of variables)

● Number of variables can be drastically reduced by noting that 
  many equations are linear in at least one variable 

A program to solve the pentagon/hexagon using these observations 
and automated gauging can solve theories up to 6 particles (and many more),
provided that the gauge can be fixed (Parsa Bonderson, JKS, in preparation) 



    

The “periodic system” of TQFTs (Zhenghan Wang)The “periodic system” of TQFTs (Zhenghan Wang)



    

  S-matrix etc.S-matrix etc.

S-matrix gives fusion by Verlinde's formula:S-matrix gives fusion by Verlinde's formula:

Using Ocneanu rigidity, S almost determines the theory!Using Ocneanu rigidity, S almost determines the theory!

Trace and ‘S-matrix’Trace and ‘S-matrix’

∑=
x x

xcbxaxc
ab S

SSS
N
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Part II: Quantum Hall InterferometryPart II: Quantum Hall Interferometry

Turns out:Turns out:
Only the normalized monodromy matrix M is important for Hall interferometry:Only the normalized monodromy matrix M is important for Hall interferometry:

1|| ≤abMNoteNote

1=abM signals trivial monodromysignals trivial monodromy

● Quantum Hall systems are closest to experimental realisation of nonabelions
● Have proposals to detect these by interferometry, experiments underway
 
● What will we need from TQFT to describe the experiments?
● Conversely will we learn about the Hall TQFTs?

11
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The Quantum Hall EffectThe Quantum Hall Effect

Eisenstein, Stormer, Science 248, 1990

B ~ 10 TeslaB ~ 10 Tesla
T ~ 10 mKT ~ 10 mK

On the Plateaus: On the Plateaus: 
•  Incompressible electron liquidsIncompressible electron liquids
•  Off-diagonal conductance:Off-diagonal conductance:

h
e2ν

•  Vortices with fractional chargeVortices with fractional charge
•+AB-effect: fractional statistics+AB-effect: fractional statistics

q
p=νvaluesvalues Filling fractionFilling fraction

(Abelian) (Abelian) ANYONS!ANYONS!  



    

An Unusual Hall Effect An Unusual Hall Effect 

Willett et al. PRL 59, 1776, 1987

Filling fraction 5/2: even denominator!Filling fraction 5/2: even denominator!

Now believed to haveNow believed to have

•  electrons paired in ground stateelectrons paired in ground state
    (exotic p-wave ‘superconductor’)(exotic p-wave ‘superconductor’)
•  halved flux quantumhalved flux quantum
•  charge e/4 quasiholes (vortices)charge e/4 quasiholes (vortices)
    which arewhich are
    Non-Abelian AnyonsNon-Abelian Anyons
(exchanges implement non-commuting unitaries)(exchanges implement non-commuting unitaries)

Moore, Read, Nucl. Phys. B360, 362, 1991Moore, Read, Nucl. Phys. B360, 362, 1991
    
Can use braiding interaction forCan use braiding interaction for
Topological Quantum ComputationTopological Quantum Computation
  (not universal for 5/2 state, but see later)(not universal for 5/2 state, but see later)



    

Experimental ProgressExperimental Progress

Pan et al. PRL 83, 1999Pan et al. PRL 83, 1999
Gap at 5/2 is 0.11 KGap at 5/2 is 0.11 K Xia et al. PRL 93, 2004, Xia et al. PRL 93, 2004, 

Gap at 5/2 is 0.5 K, at 12/5: 0.07 KGap at 5/2 is 0.5 K, at 12/5: 0.07 K



    

Quantum Hall Interferometry Quantum Hall Interferometry 

aa

bb

Interference suppressed by |M|: effect from non-Abelian braiding!Interference suppressed by |M|: effect from non-Abelian braiding!
(This should actually be easier to observe than the phase shift from Abelian braiding…)(This should actually be easier to observe than the phase shift from Abelian braiding…)



    

Actual experiments (abelian Anyons)Actual experiments (abelian Anyons)

Camino, Zhou, Goldman, Phys. Rev. B72 075342, 2005



    

Part IIIPart III
Topological Symmetry Breaking and Bose CondensationTopological Symmetry Breaking and Bose Condensation

 Can describe topological order by extended “symmetry” concepts: Can describe topological order by extended “symmetry” concepts: 
TQFTs, Tensor Categories, Hopf Algebras, TQFTs, Tensor Categories, Hopf Algebras, Quantum GroupsQuantum Groups

Particle types                Irreducible representations
Fusion                           Tensor Product
Braiding                         R-matrix
Twist                              Ribbon Element

 IDEA: 
     Relate topological phases by “Symmetry Breaking”

 Mechanism? Bose Condensation! 
     Break the Quantum Group to the “Stabiliser” of the 
     condensate’s order parameter 



    

• What is a boson? A particle with 
  - trivial twist factor/ integer conformal weight
  - trivial self braiding in at least on fusion channel,
    i.e. at least one of the fusion products also has trivial twist/integer weight

• Have a boson in the Pfaffian state (below) 
  and lots of bosons in the higher RR-states (k=4 upwards)

e-

qh

        Contains

U(1) conformal 
primary with hb=1,
Trivial self-braiding

ϕ2ie

On BosonsOn Bosons



    

Symmetry breaking schemeSymmetry breaking scheme

Quantum group
D(H)

Intermediate (Hopf) symmetry 
T

Unconfined algebra 
U

Irreps classify excitations
of unbroken phase

Reps classify excitations 
in broken phase 

Reps classify unconfined 
reps in broken phase 

Symmetry breaking 

by condensate

Confinement

Hopf kernel  Ker 

Irreps   Ker 

label domain walls

Injective  map

Surjective  map



    

Confined ExcitationConfined Excitation  



    

Quantum group symmetry breaking: What we will use hereQuantum group symmetry breaking: What we will use here

∑=×
c

ab
c cNba

aihe π2

Fusion
a b

c

Twist

Monodromy

= 

a a

a b

c
= 

a

c

b

)(2 bac hhhie −−π



    

Inspired by usual algebra symmetry breaking, 
introduce branchings for topological sectors:

Note: condensate must branch to vacuum (+ possibly more) 

Requirements

1. The new labels themselves form a fusion model 
    (need associativity, vacuum and charge conjugation)
2. Branching and fusion commute,

This implies preservation of quantum dimensions (useful in calculations) 

““Symmetry breaking” from the dual sideSymmetry breaking” from the dual side

∑→
i

iia ana ,

)()( ,, ∑∑ ⊗→⊗
i

iib
i

iia bnanba



    

Breaking Breaking SU(2)SU(2)44

SU(2)4

€  
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h 0 = 0

h 1 = 1 / 8

h 2 = 1 / 3

h 3 = 5 / 8

h 4 = 1
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2011
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+=×
+=×
+=×
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2 × 2 = 0 + 2 + 4

2 × 3 = 1 + 3

2 × 4 = 2
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3 × 3 = 0

3 × 4 = 1
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4×4=0

€  

d 0 = 1

d 1 = 3

d 2 = 2

d 3 = 3

d 4 = 1



    

Condensate,  splitting and identificationCondensate,  splitting and identification

€  

0

1

2 : = 2 1 + 2 2

3 ⇔ 1

4 ⇔ 0

Assume a bosonic condensate forms in the 4 rep of SU(2)4: 
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+=⇒
++=++=×
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1 × 1 = 0 + 2 1 + 2 2

1 × 3 = 0 + 2 1 + 2 2

⇒ 1 ⇔ 3

€  

1 × 1 = 0 + 1

1 × 2 1 = 1

1 × 2 2 = 1 022
222

21

211

=×
=×

122 222 =×

possible because d2=2

€ 

i f  2 1 × 2 1 = 2 1

t h e n  2 2 × ( 2 1 × 2 1 ) = 2 2 × 2 1 = 0

        ( 2 2 × 2 1 ) × 2 1 = 0 × 2 1 = 2 1

⇒ 2 1 × 2 1 = 2 2  a n d  2 2 × 2 2 = 2 1



    

To see which of the particles in the broken theory are confined, look at braiding 
with the condensed particle. 
How? For particle ai, look in all channels of the old theory that cover aix1=ai 

Now notice: Fields that cover 1 have trivial twist factor (condensate is bosonic). 
Hence braiding with the vacuum is trivial and ai is not confined precisely when 
all the fields that branch to ai have equal twist factors (or conformal dimensions 
that differ by integers). 

The non-confined particles all have well defined monodromies with each other, 
given by their twist factors (which are unambiguously defined from the 
branching).

Confinement and BraidingConfinement and Braiding



    

Confinement for Confinement for SU(2)SU(2)44

From branching rules and conformal weights one finds that
the 1 and 3 are  confined.

The unconfined algebra becomes SU(3)1:

€  

2 1 × 2 1 = 2 2

2 1 × 2 2 = 0

2 2 × 2 2 = 2 1

€  

3 × 3 = 3

3 × 3 = 1

3 × 3 = 3



    

Relation to Conformal EmbeddingRelation to Conformal Embedding

Example: SU(2)4 ==> SU(3)1  (c=2)

Central charges satisfy c(G) = c(H)  ==> c(G/H) = 0
Coset algebra is trivial.
==> Finite branching of inf. Dim. KM representations  

SU(3)1
Irreps: 

€  

d 1 = 1

d 3 = 1

d
3
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= 1 3
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1 → 0 + 4

3 → 2

3 → 2

branching



    

Summary and OutlookSummary and Outlook

Results
• Extended Topological symmetry breaking to TQFTs with non-integer 
  quantum dimensions 
• Found connection to conformal embeddings
• Had a first go at application to nonabelian FQH states

Questions/Future Work
• Found Fusion and twist factors. 
  How to determine the rest of the TQFT (half-braidings, F-symbols…) ?
  Note: often fixed by consistency (always?)
• Work suggests conformal embeddings of coset chiral algebras. 
  Interesting CFT problem…
• Further Physical applications….


