# Two-photon Interference — From HBT interferometer toward incoherent diffraction imaging

### Shanghai Institute of Optics and Fine Mechanics



# Light propagates as a straight line



"景光之人煦若射,下者之入也高,高者 之入也下。" ——《墨经》

# X-ray attenuate imaging





# X-ray Computed Tomography



X-ray CT scan taken through the kidneys. G. N. Hounsfield, "Computed medical imaging", Nobel Lecture, 8 December, 1979.



### Light propagates as Electromagnetic Wave





# X-ray Diffraction Pattern From a Haemoglobin Crystal



Max F. Perutz, "X-ray analysis of haemoglobin", Nobel Lecture, December 11, 1962

## **Diffraction patterns from yeast cells**



#### (Results from Stony Brook group)



### Attenuate Imaging, Phase-contrast Imaging and Fourier-transform Diffraction



- Near contact: only absorption contrast
- Fresnel: feature of size  $\zeta$  appears in phase contrast
- Fraunhofer: ψ Fourier transform of q (e.g., protein crystallography)

#### (One-photon absorption and interference)

## Transverse Coherent Length for Thermal Source and Fraunhofer Distance

Transverse coherence length:

 $X_{coh} = wavelength^{*}D_{obj}/(2^{*}pi^{*}R_{source});$ 

Fraunhofer distance:

 $Z >> D_F = pi^* X_{sample}^2$ /wavelength;

For  $R_{source} = 100um$ , wavelength=1nm,  $D_{obj}=60m$ ,  $X_{sample} = X_{coh}$ :

$$X_{coh} = 100 um, L_F = 30 m$$

# **Coherent X-ray Diffractive Imaging**

Is it possible to get coherent diffractive pattern with incoherent illumination? No limits on the source size\sample size! Unnecessary for long objective distance!

Is it possible to get Fourier-transform diffraction pattern at Fresnel distance?

Unnecessary for long Fraunhofer distance !

**Conventional Optics** 



### HBT Interferometer The two photon interference



Ordinary (Amplitude) interferometry measures  $G^{(1)}(r,t,r',t') = \langle E^{(-)}(r,t)E^{(+)}(r',t') \rangle$ Intensity interferometry measures  $G^{(2)}(r,t,r',t') = \langle E^{(-)}(r,t)E^{(-)}(r',t')E^{(+)}(r',t')E^{(+)}(r,t) \rangle$ 

# Two-photon Interference in Imaging



In 1994, Belinsky and Klyshko found that "ghost" imaging (diffraction) can be performed with entangled incoherent light by exploiting the spatial correlation between two entangled photons.

# "Ghost" Imaging or Quantum Imaging

"Ghost imaging" is named because the imaging of an object, diffractive or geometrical, would appear as a function of the position in the path that actually never pass the object.

Is the quantum entanglement necessary for "ghost" imaging?

Can we perform "ghost" imaging with thermal incoherent light?





## Experiment on Lensless Fourier-transform "Ghost" Diffractive Imaging



The pseudo-thermal source is obtained by illuminating a pulsed Nd:YAG laser beam with the wavelength of 0.532 um into a slowly rotating ground glass disk.

A non-polarizing beam splitter splits the radiation into two distinct optical paths.

Experimental setup for the lensless Fourier-transform ghost diffractive imaging

$$d = d_1 + d_2$$

### Experiment on Lensless Fourier-transform "Ghost" Diffractive Imaging





Second correlation function of the pseudo-thermal light:  $g^{(2)} = 1 \longrightarrow$  coherent light;  $g^{(2)} = 2 \longrightarrow$  thermal light;



The two slits are separated by 302um and have a width of 105um.

Fresnel diffraction pattern recorded in the test arm when the Young's double-slit was illuminated by laser;



Instantaneous intensity distribution (top) and the cross-sections of averaged intensity distribution (bottom) of 1-reference arm, 2-test arm when the object was illuminated by pseudo-thermal light;



Fourier-transform diffraction pattern obtained by the correlation of the intensity fluctuations when the object was illuminated by pseudo-thermal light.



Standard Fourier-transform pattern got by a singlelens 2-f system (f=75mm) illuminated by laser





The purephase object was made by etching two grooves with width of 225um and separated by 375um on a quartz glass

Fresnel diffraction patterns recorded in the test arm when the pure-phase double-slit was illuminated by laser



Instantaneous intensity distribution (top) and the cross-sections of averaged intensity distribution (bottom) of 1-reference arm, 2test arm when the object was illuminated by pseudo-thermal light



Fourier-transform diffraction pattern obtained by the correlation of the intensity fluctuations when the pure-phase double-slit was illuminated by pseudo-thermal light.



Standard Fourier-transform pattern got by a singlelens 2-f system (f=75mm) illuminated by laser



### 部分实验结果



(a) (b) (c) (a) 反射式"中"字圆环样品图;(b) 反射式"中"字圆环强度关 联无透镜傅立叶变换像;(c) 反演恢复得到成像物体。

📄 中国



