Two-photon Interference

— From HBT interferometer toward incoherent diffraction imaging

Shanghai Institute of Optics and Fine Mechanics
Light propagates as a straight line

“景光之入煦若射，下者之入也高，高者之入也下。” ——《墨经》
X-ray attenuate imaging
X-ray Computed Tomography

X-ray CT scan taken through the kidneys. G. N. Hounsfield, ”Computed medical imaging”, Nobel Lecture, 8 December, 1979.
Light propagates as Electromagnetic Wave
X-ray Diffraction Pattern From a Haemoglobin Crystal

Diffraction patterns from yeast cells

(Results from Stony Brook group)
Attenuate Imaging, Phase-contrast Imaging and Fourier-transform Diffraction

\[q(X,Y) \]

\[R << \frac{\zeta^2}{\lambda} \]

\[R \sim \frac{\zeta^2}{\lambda} \]

\[R >> \frac{\zeta^2}{\lambda} \]

- Near contact: only absorption contrast
- Fresnel: feature of size \(\zeta \) appears in phase contrast
- Fraunhofer: \(\psi \) Fourier transform of \(q \) (e.g., protein crystallography)

(One-photon absorption and interference)
Transverse Coherent Length for Thermal Source and Fraunhofer Distance

Transverse coherence length:

\[X_{coh} = \frac{\text{wavelength} \times D_{obj}}{2 \times \pi \times R_{source}}; \]

Fraunhofer distance:

\[Z \gg D_F = \frac{\pi \times X_{sample}^2}{\text{wavelength}}; \]

For \(R_{source} = 100\,\mu m, \text{wavelength}=1\,\text{nm}, \)
\(D_{obj} = 60\,\text{m}, X_{sample} = X_{coh}: \)

\[X_{coh} = 100\,\mu m, \quad L_F = 30\,\text{m} \]
Coherent X-ray Diffractive Imaging

Is it possible to get coherent diffractive pattern with incoherent illumination?
No limits on the source size\sample size!
Unnecessary for long objective distance!

Is it possible to get Fourier-transform diffraction pattern at Fresnel distance?
Unnecessary for long Fraunhofer distance!

Conventional Optics No!
HBT Interferometer
The two photon interference

R. Hanbury Brown and R. Q. Twiss
Intensity interferometry
Two square-law detectors

Ordinary (Amplitude) interferometry measures $G^{(1)}(r,t,r',t')=<E^-(r,t)E^+(r',t')>$

Intensity interferometry measures $G^{(2)}(r,t,r',t')=<E^-(r,t)E^-(r',t')E^+(r',t')E^+(r,t)>$
In 1994, Belinsky and Klyshko found that “ghost” imaging (diffraction) can be performed with entangled incoherent light by exploiting the spatial correlation between two entangled photons.
“Ghost” Imaging or Quantum Imaging

- “Ghost imaging” is named because the imaging of an object, diffractive or geometrical, would appear as a function of the position in the path that actually never pass the object.
- Is the quantum entanglement necessary for “ghost” imaging?
- Can we perform “ghost” imaging with thermal incoherent light?
The pseudo-thermal source is obtained by illuminating a pulsed Nd:YAG laser beam with the wavelength of 0.532 um into a slowly rotating ground glass disk.

A non-polarizing beam splitter splits the radiation into two distinct optical paths.

\[d = d_1 + d_2; \]
Experiment on Lensless Fourier-transform “Ghost” Diffractive Imaging

Second correlation function of the pseudo-thermal light:
\[g^{(2)} = 1 \quad \Rightarrow \quad \text{coherent light}; \quad g^{(2)} = 2 \quad \Rightarrow \quad \text{thermal light}; \]
Lensless Fourier-transform “Ghost” Diffractive Imaging for Amplitude-only Sample

The two slits are separated by 302um and have a width of 105um.

Fresnel diffraction pattern recorded in the test arm when the Young’s double-slit was illuminated by laser;
Lensless Fourier-transform “Ghost” Diffractive Imaging for Amplitude-only Sample

Instantaneous intensity distribution (top) and the cross-sections of averaged intensity distribution (bottom) of 1-reference arm, 2-test arm when the object was illuminated by pseudo-thermal light;
Lensless Fourier-transform “Ghost” Diffractive Imaging for Amplitude-only Sample

Fourier-transform diffraction pattern obtained by the correlation of the intensity fluctuations when the object was illuminated by pseudo-thermal light.
Lensless Fourier-transform “Ghost” Diffractive Imaging for Amplitude-only Sample

Standard Fourier-transform pattern got by a single-lens 2-f system (f=75mm) illuminated by laser
Lensless Fourier-transform “Ghost” Diffractive Imaging for Amplitude-only Sample
Lensless Fourier-transform “Ghost” Diffractive Imaging for Pure-phase Sample

Fresnel diffraction patterns recorded in the test arm when the pure-phase double-slit was illuminated by laser.

The pure-phase object was made by etching two grooves with width of 225um and separated by 375um on a quartz glass.
Instantaneous intensity distribution (top) and the cross-sections of averaged intensity distribution (bottom) of 1-reference arm, 2-test arm when the object was illuminated by pseudo-thermal light.
Lensless Fourier-transform “Ghost” Diffractive Imaging for Pure-phase Sample

Fourier-transform diffraction pattern obtained by the correlation of the intensity fluctuations when the pure-phase double-slit was illuminated by pseudo-thermal light.
Lensless Fourier-transform “Ghost” Diffractive Imaging for Pure-phase Sample

Standard Fourier-transform pattern got by a single-lens 2-f system (f=75mm) illuminated by laser
Lensless Fourier-transform “Ghost” Diffractive Imaging for Pure-phase Sample
部分实验结果

(a) 反射式“中”字圆环样品图；(b) 反射式“中”字圆环强度关联无透镜傅立叶变换像；(c) 反演恢复得到成像物体。