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Quantum Information, Physics and Topology

• Encoding and manipulating QI in small physical systems is pledged by 
decoherence and control errors.

• Error correction can be employed to resolve this problem by using a (huge) 
overhead of qubits and quantum gates.

• An alternative method is to employ intrinsically error protected systems such 
as topological ones => properties are described by integer numbers! 

protected by macroscopic properties: hard to destroy.

• E.g. you can employ system with degenerate ground states:

– Make sure degeneracy is protected by topological properties (V)
– Make sure degenerate states are locally indistinguishable (X)
– Encode information in these degenerate levels

TOPOLOGICAL DEGENERACY



Overview

• Graphene: two dimensional layer of graphite –honeycomb lattice of C atoms
– Fullerene: C60, C70
– Nanotubes

• Conducting properties of these materials: zero energy modes.
• Can be used as miniaturized elements of circuits.

g=0 g=1 g=2

• Zero modes provide degeneracy of ground state: G zero modes               deg. 
Topological quantum computation

- Kitaev’s toric code
- Honeycomb lattice (same as graphene, but with “real” fermions)

G2⇒

• Conductivity can depend on topology. Euler 
characteristic

• Index theorem (Atiyah-Singer)
– Smooth, orientable, compact, Riemannian manifolds, M, with genus, g.
– Define elliptic operator D on M. Includes curvature and gauge fields.
– The index theorem relates the number of zero energy modes of D with g.



Different geometries of Graphene

Fullerene (C60):

Nanotubes:



Graphene: structure

The Hamiltonian of graphene is given by
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fermionic modes

E(kx,ky):

Fourier transformation:

Fermi points: E(k)=0

A       B



Graphene: structure
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Linearise energy           around a conical point,)(kE
r

Relativistic Dirac equation at the tip of a pencil!

Two types of spinors:
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±K are the Fermi points and A and B are the two triangular sub-lattices
zσNote:       rotation maps to states with the same energy, but opposite momenta



Graphene: curvature

To introduce curvature:
cut            sector and reconnect sites. 

This creates a single pentagon with no other 
deformations present. 
Results in a conical configuration.
To preserve continuity of the spinor field when 
circulating the pentagon one can introduce two 
additional fields:

-Spin connection Q:

-Non-abelian gauge field, A:

Resulting 4x4 Dirac equation can be decoupled by 
simple rotation to a pair of 2x2 Dirac equations (k=1,2):
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Mixes A and B components

elliptic operator



Graphene: curvature
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Continuous limit: Small energies => large wavelengths => 
insensitive to lattice spacing, conical singularity,…



Index Theorem

Consider operators, 
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Define operator:                                          with eigenvalues +1, -1 for 

Consider               the dimension of the null subspace of 

Then

Non-zero eigenvalues cancel in pairs.            Expression is t independent.
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non-zero modes come in pairs

Same number of zero modes as D



Index Theorem

can describe a general 2-dimensional Dirac operator defined over a
compact surface coupled with a gauge field.

One can evaluate that
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Index Theorem
We have
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Also

If D is defined on compact manifold then RHS is an integer (topological invariant), 
due to the quantization condition of the Dirac monopoles charge.
Thus, the number of zero modes depends on the gauge field configuration.

Continuous deformations of the gauge field will not change the number of zero 
modes. 

Surface curvature does not appear in the above result (only in 2-dims).



Index Theorem

The Index theorem states:

∫∫=−= −+ FD
π
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The integral is taken over the whole compact surface.

For compact manifolds the term on the r. h. s. is an integer. 
It is a  topological number: small deformations does not change
its value.

Open boundary conditions can give a discrepancy caused by boundary terms.

From this theorem you can obtain the least number of zero modes. The exact 
number is obtained if       or       is equal to zero.  +ν −ν

[Atiyah and Singer, Ann. of Math. 87, 485 (1968);...]



Index Theorem: Euler characteristic
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Euler characteristic for lattices on compact surfaces:

Consider folding of graphene in a compact manifold. The minimal violation is 
obtained by insertion of pentagons or heptagons that contribute positive or 
negative curvature respectively. Consider

– number of pentagons
– number of hexagons
– number of heptagons
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From the Euler characteristic formula:
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Index Theorem: Graphene application
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Least number of zero modes:
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Index Theorem: Graphene application

|1|6)(index gD −=−= −+ νν

C60: g=0 Nanotubes: g=1

Zero mode pairs No zero modes
[J. Gonzalez et al. Phys. Rev. Lett. 69, 172 (1992)]



Ultra-cold Fermi atoms and optical lattices

Single species ultra cold Fermi atoms superposed by 
optical lattices that form a hexagonal lattice.

- Very low temperatures: T~0.1TF

- Arbitrary filling factors: e.g. 1/2

See dependence of conductivity on disorder, 
impurities and lattice defects: e.g. insert pentagons 
at the edge of the lattice of effect of empty sites. 

Similar index theorem can be devised for open 
boundary conditions.

Measurement of conductivity in Fermi lattices has
already been performed in the laboratory:

t

[Duan et al. Phys. Rev. Lett. 91, 090402 (2003)]

[Ott et al. Phys. Rev. Lett. 92, 160601 (2004)]



Conclusions

• Index Theorem for compactified graphene sheets.
• Agrees well with known models of fullerenes and nanotubes.
• Gives conductivity properties for higher genus models:

sideways connected nanotubes.
• Predicts stability of spectrum under small deformations.

• Relate to topological models: 
– obtain topologically related degeneracy:
– encode and manipulate quantum information.
– apply reverse engineering to find new models with specific degeneracy 

properties.

• Related experiments with ultra-cold Fermi atoms can give insight to the 
properties of graphene. May be easier to implement than solid state setup.
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