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Outline

� Stabilizer codes
- Transversal gates. Reed-Muller codes and universality. 

� Topological stabilizer codes
- Surface codes.

� 2-Colexes
- 2D-lattice. Stabilizer.
- Strings and string-nets.
- Implementation of the Clifford group.

� 3-Colexes
- Universal quantum computation.



Stabilizer Codes

� A stabilizer code1 C of length n is a subspace of the 
Hilbert space of a set of n qubits. It is defined by a 
stabilizer group S of Pauli operators, i.e.,  tensor products 
of Pauli matrices.

� It is enough to give the generators of S. For example:

� Operators O that belong to the normalizer of S

leave invariant the code space C. If they do not belong to 
the stabilizer, then they act non-trivially in the code 
subspace.

{ZXXZI, IZXXZ,ZIZXX,XZIZX}

|ψ〉 ∈ C ⇐⇒ ∀ s ∈ S s|ψ〉 = |ψ〉
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O ∈ N(S) ⇐⇒ OS = SO



Stabilizer Codes

� A encoded state can be subject to errors.

� To correct them, we measure a set of generators of S. The 
results of the measurement compose the syndrome of the 
error. Errors can be corrected as long as the syndrome lets 
us distinguish among the possible errors.

� Since correctable errors always form a vector space, it is 
enough to consider Pauli operators, which form a basis.

� We say that a Pauli error e is undetectable if it belongs to 
N(S)-S. In such a case, the syndrome says nothing:

� A set of Pauli errors E is correctable iff:   

∀ s ∈ S s e|ψ〉 = e s′|ψ〉 = e|ψ〉

E†E ∩ N(S) ⊂ S



Stabilizer Codes

� Some stabilizer codes are specialy suitable for quantum 
computation. They allow to perform operations in a 
transversal and uniform way:
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Stabilizer Codes

� Several codes allow the transversal implementation of

which generate the Clifford group. This is useful for 
quantum information tasks such as teleportation or 
entanglement distillation.

� Quantum Reed-Muller codes1 are very special. They allow 
universal computation through transversal gates

and transversal measurements of X and Z.

� We will see how both sets of operations can be transversally 
implemented in 2D and 3D topological color codes.
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Stabilizers
Undetectable

errors

Topological Stabilizer Codes

� In order to introduce the idea of a topological stabilizer 
code (TSC), we must consider a topological space in which 
our physical qubits are to be placed, for example a surface.

� A TSC is a stabilizer code in which the generators of the 
stabilizer are local and undetectable errors (or encoded 
operators) are topologically nontrivial.



Topological Stabilizer Codes

� The first example of TSC were surface codes1, which are 
based on Z2 homology and cohomology. 

� S gets identified with 1-boundaries and 1-coboundaries, and 
N(S) with 1-cycles and 1-cocycles.
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Topological Stabilizer Codes

� The CNot gate can be implemented transversally on surface 
codes. First, its action under conjugation on operators is:

� Thus the transversal action of the CNot on a surface code, at 
the level of operators, is simply to copy chains forward and 
cochains backwards.

IX −→ IX

XI −→ XX

IZ −→ ZZ

ZI −→ ZI
Λ :

Target surface

Source surface

Λ̂



� Finally, to see the action of the tranversal CNOT on the 
code, we have to choose a Pauli basis for the encoded 
qubits. In the simplest example we have a single qubit in a 
square surface with suitable borders:

� Clearly the action of a transversal CNot is itself a CNot gate 
on the encoded qubits. However, this is the only gate we can 
get with surface codes. If we want to get further, we have to 
go beyond homology.

Topological Stabilizer Codes

Λ̂X̄

Z̄
Λ̂ X̄Î Λ̂† = X̄X̄



2-Colexes

� A 2-colex is a trivalent 2-D lattice with 3-colored faces. 

� Edges can be 3-colored accordingly. Blue edges connect 
blue faces, and so on.

� The name ‘colex’ is for ‘color complex’. D-colexes of 
arbitrary dimension can be defined. Their key feature is 
that the whole structure of the complex is contained in the 
1-skeleton and the coloring of the edges.



2-Colexes

� To construct a color code from a 2-colex, we place 1 qubit
at each vertex of the lattice. The generators of S are face 
operators:

� Transversal Clifford gates should belong to N(S). We have:

� Here v is the number of vertices in the face. If it is a 
multiple of 4 for every face, then K is in N(S). H always is.

� As for the CNot gate, it is clearly in N(S) (it is a CSS code).

1

2

3 4

5

6

BXf = X1X2X3X4X5X6

BZf = Z1Z2Z3Z4Z5Z6

ĤBXf Ĥ
† = BZf

ĤBZf Ĥ
† = BXf K̂BZf K̂

† = BZf

K̂BXf K̂
† = (−) v2BXf BZf



2-Colexes

� In order to understand 2-D color codes, we have to introduce 
string operators in the picture. As in surface codes, we play 
with Z2 homology. However, there is a new ingredient, color.

� A blue string is a collection of blue links:

� Strings can have endpoints, located at faces of the same 
color. However, in that case the corresponding string and 
face operators will not commute. Therefore, a string operator 
belongs to N(S) iff the string has no endpoints.

Endpoint String operators

SZ = Z1Z2Z3Z4Z5Z6 · · ·
SX = X1X2X3X4X5X6 · · ·

1 2

3
4

5 6



2-Colexes

� For each color we can form a shrunk graph. The red one is:

� Thus for each color homology works as in surface codes. The 
new feature is the possibility to combine homologous blue 
and red string operators of the same kind to get a green one.

Red faces A red face is also 
blue or green stringRed edges

Blue and green faces

vertices

edges

faces



� Since there are two independent colors, the number of 
encoded qubits should double that of a surface code. Lets 
check this for a surface without boundary using the Euler 
characteristic                                 for any shrunk lattice.

� Face operators are subject to the conditions

so that the total number of generators is                       .

� The number of physical qubits is                . Therefore the 
number of encoded qubits q is twice the first Betti number of 
the manifold: 

2-Colexes

χ = V + F − E

∏

f∈ r

Bσf =
∏

f∈ r

Bσf =
∏

f∈ r

Bσf

g = 2(F + V − 2)
n = 2E

q = n − g = 4 − 2χ = 2h1



� In order to form a Pauli basis for the operators acting on 
encoded qubits, we can use as in surface codes those string 
operators (SO) that are not homologous to zero.

� To this end, we need the commutation rules for SO.

� Clearly SO of the same type (X or Z) always commute.

� A string is made up of edges with two vertices each. 
Therefore, two SO of the same color have an even number of 
qubits in common an they commute.

� SO of different colors can anticommute, but only if they 
cross an odd number of times:

2-Colexes

{SXb , SZg } = 0
Sb

Sg



� Now we can construct the desired operator basis for the 
encoded qubits. In a 2-torus a possible choice is:

� However, if we apply the transversal H gate to such a code 
the resulting encoded gate is not H. The underlying reason is 
that for a string S we never have

2-Colexes

XiZj = (−1)δi,jZjXi

S
gX
1
↔X1 SrZ

2
↔ Z1

...
...

SrX
2
↔ X2 S

gZ
1
↔ Z2

S
gX
2
↔X3 SrZ

1
↔ Z3

{SX , SZ} = 0



� But we can consider surfaces with boundary. To this end, 
we take a sphere, which encodes no qubit, and remove 
faces. 

� When a face is removed, the resulting boundary must have 
its color, and only strings of that color can end at the 
boundary.

2-Colexes

X̄1

X̄2
Z̄1

Z̄2

2 qubits 2 qubits
X̄1
Z̄1

Z̄2X̄2

As desired!

T

{TX , TZ} = 0



2-Colexes

� We can even encode a single qubit an remove the need for 
holes. If we remove a site and neighboring links and faces 
from a 2-colex in a sphere, we get a triangular code:

� We can construct triangular 
codes of arbitrary sizes. The 
vertices per face can be 4 and 
8 so that K is in N(S). 

Z̄X̄

Simplest 
example



2-Colexes

� The transversal H clearly amounts to an encoded H:

� This is also true for K. The anticommutation properties of T
imply that its support consists of an odd number of qubits:

� Therefore, the Clifford group can be implemented 
transversally in triangular codes. 

TTX −→ TZ

TZ −→ TX
H :

X −→ Z

Z −→ X
Ĥ :

K :
Z −→ Z

X −→ iXZ
K̂ : T

X −→ ±iTXTZ
TZ −→ TZ



3-Colexes

� 3-colexes are tetravalent lattices with a particular local 
appearance such that their 3-cells can be 4-colored. They can 
be built in any compact 3-manifold without boundary.

� Edges can be colored accordingly, as in the 2-D case.

The neigborhood
of a vertex.

The simplest 3-colex in 
the projective space.



3-Colexes

� This time the generators of S are face and (3-) cell operators.

� Therefore there are two different homology groups in the 
picture, those for 1-chains and for 2-chains. But in fact, due 
to Poincaré’s duality they are the same.

A b-cell A by-face separates b-
and y-cells.

Cell operators Face operators

1 2

4

3

1
2

34 6

7
8

BXc =
8⊗

i=1

Xi BZf =
8⊗

i=1

Zi



3-Colexes

� Strings are constructed as in 2-D, but now come in four 
colors. Branching is again possible.

� The new feature are membranes. They come in 6 color 
combinations and also have branching properties. 

� There exist appropiate shunk complexes both for strings and 
for membranes.

String operators Membrane operators

b-string ry-membrane

MX =
⊗

Xi
membrane

SZ =
⊗

Zi
string



3-Colexes

� Now there are 3 indendent colors for strings (and similarly 3 
color combinations for membranes). Therefore, we expect 
that the number of encoded qubits will be                     .

� String and membrane operators always commute, unless 
they share a color and the string crosses an odd number of 
times the membrane.

3h1 = 3h2

Mby

Sb

{SZb ,MX
by} = 0 A pauli basis for the operators on 

the 3 qubits encoded in S2xS1.



3-Colexes

� 3-Colexes cannot have a practical interest unless we allow 
boundaries. But this is just a matter of erasing cells. As in 
two dimensions, boundaries have the color of the erased cell.

� The analogue of triangular codes are tetrahedral codes, 
obtained by erasing a vertex from a 3-sphere.

� The desired transversal K½ gate can be implemented as long 
as faces have 4x vertices and cells 8x vertices.

X̄Z̄ Simplest example



Conclusions

� D-colexes are D-valent complexes with certain coloring 
properties.

� Topological color codes are obtained from colexes. They 
have a richer structure than surface codes. 

� 2-colexes allow the transversal implementation of Clifford 
operations.

� 3-colexes allow the transversal implementation of the same 
gates as Reed-Muller codes.


