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Cold Atoms

* |n the last two decades remarkable progress has
been made in the field of atom trapping and
cooling

* 1995 — First B.E.C. created in lab by E. Cornell
and C. Wiemann

 Combined laser cooling and evaporative cooling
to reach the nano-kelvin range

* Optical-Lattice potentials and micro-trap arrays

 |deal arena for implementation of quantum
iInformation processing protocols (clean, highly
controllable)



Cold Atoms

Optical Lattice

VWW WW

ﬁﬁﬁ -
TRRLL

Microtraps in University of Hannover/ Darmstadt (G. Birkl)



Cold Atoms

* Experimentalists can vary the interaction between trapped
atoms using 'Feshbach Resonances'’

* One can also modify the shape of trapping potentials

- By stiffening the transverse trapping frequencies can
prepare quasi 1-d gases

—_ | <—
.J<_

 Atoms motion gets 'stuck’ in one dimension

* When atoms are strongly repulsive and interact with a
'hard-core' potential we are in the Tonks-Girardeau regime



'Hard-Core' Bosons

What is a gas of hard core bosons?
* Particles behave like impenetrable hard-spheres
 |nteract via repulsive hard-core potential

» L. Tonks gave first statistical treatment in 1936

— Restricted to the classical high temperature limit
- No light shed on the extreme quantum limit T—0

* Here the De-Broglie wavelength >> interparticle

distance
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Many-Body Hamiltonian
* At T~0 interaction can be approximated by point-
like potential

* Hamiltonian for a gas of hard core atoms in an
arbitary 1-d trapping potential V(x)
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» Tonks-Girardeau regime: g1 — o

* In this limit of strong repulsion the particles are
sitting like 'beads on a string'’



The Fermi-Bose mapping

» First theoretical treatment of a
one dimensional quantum gas
was given by M. Girardeau

 Fermi-Bose Mapping theorem
first appeared in his 1960 paper
J.Math. Phys. 1,516

e Discovered clever way to treat the interaction
part of the Hamiltonian

- Replace it by a constraint on the allowed wave-
functions:

vV =0:if |v; —z;| <a




Implications!

* The constraint creates a traffic jam of bosons

* Look carefully at the constraint:

- It is equivalent to the Pauli principle for a gas of
spinless fermions!

 The Fermi-Bose mapping states that in the 1D
TG regime we may calculate the many body
wavefunction from

IPB(iEl:,.. .JLEN) — ‘KI’F(JTl,.. ,LITN)‘

Bosons should acquire fermionic signatures e.g.
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Implications!

 The FB mapping theorem maps a strongly
iInteracting many-boson problem to a non
interacting many-fermion problem

* This is nice!l Why?

-The many-body wavefunction can be
calculated via the single particle eigenstates !

Slater determinant

| xi1(x1)  xa(x2) X1(xn)
U(x1, %o, ... Xn) — v% 12(.}{1) lz(;{z) X2 (X )
xv(xi) xw(x2) - xw(xw)




Trapped TG gas

* 40 years after discovering the Fermi Bose mapping

» Girardeau investigated the many-body properties
of the TG gas in the harmonic potential

 Able to calculate the momentum distribution,
interference patterns, etc
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Momentum State: Girardeau (2001) Immanuel Bloch(2004)



TG gas in the o-split trap

Consider the Hamiltonian

Hy = zﬁ; dd; - cmw?z? + Kké(x) v

Have a trap split by central barrier,
Splitting strength parameterised by K

Can we solve Schrodinger's equation?



Single Particle Eigenstates

Ground state wavefunction
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As you increase ¥ the cusp in the centre gets deeper
and the ground state gets lifted in energy space



Single Particle Eigenstates

e Solutions are Whittaker functions

Ul(€n,x) = cos(§ + 55=)Y1 — sin (% -+ ?";“) Yo
D(i—3en) 1,7 1,1, 1 1.2
Vi = — rgare T M5+ g6 50327
3_ 1
Yo = —UES) o—datung (3 4 Ly, 3, La?)

« Symmetric states ¢n(z) = CU(e,, |2|)

* Anti-symmetric states are the usual harmonic
oscillator states

- In the limit K=co we get a doubly degenerate
spectrum



Energy Eigenvalues

Evaluate the continuity condition at x=0
%qbn((ﬁ) — %qbn(o_) — ’%qbn(o)

We obtain an implicit relationship for
the energy eigenvalues
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Many-Body Properties

* \We are now In a position to explore many body
properties of the TG gas in the split trap

- Single particle densitys

plx) =N [ Wp(z,2y...,xy5)|dey ... dey =30 o [Un(a)]?
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Many-Body Properties

e Pair Distribution Functions

- These are joint measurement probability densities

D(*Tl:a:Q) — N(N o 1)f_—|_ozo ‘WB(‘TIJLBQ e ::I:N)‘d'rl ..dry

= p(a1))p(@s) = | Az, 20)?




Many-Body Properties

 Reduced single particle density matrices

pr(z,x") = Nf:c, Vp(z,z9,...,2n5) * Up(2', z9,...,xN)dxs . ..
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Momentum Distributions

We can obtain momentum distributions from
the reduced single particle density matrices

n(k) [T da [T dapy(x, 2l )e” ik(z—z)

n(k) =37 Ajlu; (k)]

-0.3 -0.2 -0.1 0
k



2 Particle Case

» 2 particles in split trap is special
» Can solve it for all interaction strengths!!!

» Eigenstates are confluent hypergeometric
functions

—p- |NVeStigate entanglement between
particles as a function of interaction
and splitting strength !

—p- (500d measure of
entanglement for 2 particles?



2 Particle Entanglement

 The Von Neumann entropy is a good
entanglement measure for two particles™

» Caution must be taken! Why?

* There will be entropy attributed to the
indistinguishability criterion

 Can calculate Von Neumann from RSPDM

p=—2_;Ajlogy A

*L.You Phys Rev. A 64,042310 (2001)



von Neumann Entropy
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Entanglement

— kappa = 0 (lin)
— kappa =1 (lin)
kappa = 2 (lin)
— kappa = 5 (lin)
kappa = 20 (lin)
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Entanglement in TG Regime ?
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Further Work

» Explore entanglement criteria for larger particle
numbers

 |deas for controlled creation and engineering of
multi-particle entanglement using projective
measurments

 Tonks gas can be used as a quantum processor
along the lines of the linear ion trap

» Scalable system



Conlusions

* WWhat experimentalists can do with cold atoms
» Ultra-cold one dimensional gases

 Fermi-Bose mapping theorem and the Tonks-
Girardeau Gas

* The split-trap model

e Quantum many-body results

 Entanglement between two trapped bosons

* Further ideas for quantum information processing
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