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b1 = k1 ! k3 ,  b2 = k2 ! k4, and b3 = k3 ! k2.  In direct space, the spatial dependence of

the electric field is
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where k|| / kL cos0L , and k" / kL sin0L .  Note that in the limit 0L 1 2 / 2 , this geometry

reduces to the "Hänsch-style" 2D lattice, and Eq. (10) is recovered from Eq (11);  as

0L 1 0  we regain the 1D lin!lin geometry.  Thus, we see that in the x-y plane the lattice is

square with lattice constant a" = 22 / k" .  Along the z–axis, the lattice resembles the 1D

lin! lin lattice, with a larger lattice constant a|| = 2 / k||.  In the nomenclature of

crystallography, this lattice is centered tetragonal.

Fig. 5.  (a) Grynberg type 3D lin!lin lattice. One pair of laser beams travel

in the ŷ ! ẑ  plane (k1 and k2), separated by an angle 2"1, and polarized

along x̂ . They interfere with another pair that travel in the x̂ ! ẑ  plane (k3

and k4), separated by an angle 2"2, and polarized along ŷ .  (b) The

resulting centered tetragonal lattice of interleaved #+ and #– sites.

IV. Laser Cooling In Optical Lattices: Theory

The theory of laser cooling in optical lattices has seen enormous progress over the last

few years, involving a synergism of new and old techniques.  The close analogy between

the periodic potential seen by an electron moving in a solid crystal and the optical lattice

potential seen by a laser cooled atom allows us to apply condensed matter formalism to the

atomic physics problem.  In attempting to solve these models, numerical techniques have
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Superfluid BEC Mott Insulator

• State preparation via q. phase transition

• Bose-Hubbard dynamics
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• Quantum gates

- Information encoded in hyperfine levels.

- Collisional interactions.  Tunable using state dependent lattices
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• A Hamiltonian on spins represented as edges on a surface cellulation

– Sum of generators of the stabilizer group G
– Ground states of H are eigenstates of G with eigenvalue +1

• Ex:  Qubits on a torus

G = 〈{gv, gf}〉

H = −U(
∑

v∈V
gv +

∑

f∈F
gf )

[gv, gv′ ] = [gf , gf ′ ] = [gv, gf ] = 0
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∏
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*A.Yu. Kitaev, Annals of Physics,
 303, 2 (2003); quant-ph/9707021
M Freedman and D. Meyer, Found. 
Comp. Math. 1, 325 (2001).
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• Represent state space of each spin on a lattice by a qudit (d levels)

• Single spin operator basis

• Hamiltonian (d-prime)

Abelian Anyons on Qudit Cell Complexes

Stephen S. Bullock
IDA Center for Computing Sciences

17100 Science Drive
Bowie, MD 20715-4300 USA

(Dated: December 9th, 2005)

We present topologically ordered Hamiltonians on spin lattices which extend constructions of
Kitaev and also Freedman and Meyer. In particular, the spin sites are qudits with number of levels
(d) prime, and the homology associated to the groundstate degeneracy takes coefficients in Fd.
Unlike bit coefficients, we may thus measure orientations of cycle (colloquially loop) excitations,
and the groundstates may also be associated to qudit stabilizer codes as introduced by Gottesman.

PACS numbers:

I. INTRODUCTION

II. QUDIT STABILIZER CODES

A. Stabilizers and groundstates

We next discuss qudit stabilizer codes [5, 8]. Let d
be a prime number, and consider the qudit state space
H(1, d) = C |0〉 ⊕ · · · ⊕ C |d − 1〉, with a pure state of
n qubits being a ket within H(n, d) = H(1, d)⊗n. A
possible generalization of the Pauli operators on H(1, d)
would be to consider the group generated by the following
unitary matrices:

X |j〉 = |j + 1 mod d〉
Z |j〉 = ξj |j〉 , for ξ = exp(2πi/d)

(1)

These are not Hermitian unless d = 2. The qudit Pauli-
tensor group, say P(n, d) ⊂ U [H(n, d)], is the group of
unitary matrices generated by n-fold tensors of elements
of {Id, X, Z}.

We might be more explicit in the description of P(n, d).
First, for n = 1, label the multiplication in Fd to be a
dot-product. Then XaZb = ξa•bZbXa. More generally,
for dit-strings a, b ∈ (Fd)n, we use X⊗a and Z⊗b to ab-
breviate Xa1 ⊗ Xa2 ⊗ · · · ⊗ Xan and similarly Z⊗b for
Zb1 ⊗Zb2 ⊗ · · ·⊗Zbn . For the n-entry dot-product with
values in Fd, we have X⊗aZ⊗b = ξa•bZ⊗aX⊗b. Thus
explicitly

P(n, d) = {ξcX⊗aZ⊗b ; a, b ∈ (Fd)
n, c ∈ Fd

}

(2)

The qudit stabilizer groups are subgroups G ⊆ P(n, d).
The code subspace of such a stabilizer group is the joint
+1 eigenspace of all g ∈ G.

Of course, such joint eigenspaces might well be trivial.
Yet a standard argument shows that they are nontrivial
in certain cases. We provide a variant [7]. Namely, we
argue that π =

∑

g∈G g is a projection onto the code-
subspace. To see this, split H(n, d) into irreducible uni-
tary subrepresentations of G, and label V as one such.
Let |ψ〉 ∈ V be nonzero. Then π |ψ〉 is a G-invariant
vector, i.e. gπ |ψ〉 = π |ψ〉 for any g ∈ G. Since Cπ |ψ〉

and its orthogonal complement split V , irreducibility im-
plies either V trivial (one-dimensional) or π |ψ〉 = 0.
Hence π is the projection onto the trivial subrepresen-
tations of H(n, d) viewed as a representation of G, i.e.
π projects onto the intersection of the +1 eigenspaces as
claimed. Consequently, the code subspace is nonzero iff
Trace(π) (= 0 iff (G ∩ {ξjId}) = {Idn}.

In the Hermitian case (d = 2,) it is standard that all
eigenvalues of group elements are ±1, so that a suitable
Hamiltonian for which the code space is the ground-
state is −π. For general d, the eigenvalues are scat-
tered around the unit circle, so that −1 is still the least
possible real part. Thus, one may place the qudit code
subspace into the groundstate of a Hamiltonian by ad-
justing each summand of π with a Hermitian conjugate:
H =

∑

g∈G −(g+g†), so that the eigenvalues of the sum-
mands are then −2Re[spec(g)].

B. Quantum circuits for qudit stabilizer
measurements

We next describe how to perform the stabilizer checks
(as above) using quantum circuits. Given the specific
stabilizer of the next section, we focus on Z⊗k and X⊗k

for k ≥ 1.
Let Fd = d−1/2

∑d−1
j,k=0 ξjk |j〉 〈k| be the qudit Fourier

transform. Considering eigenkets, F†
dXFd = Z. Now the

number operator n =
∑d−1

j=0 j |j〉 〈j| suffices to infer the
eigenvalue of Z and project into the appropriate eigen-
state. As a circuit, we might denote a number operator
measurement with the Z symbol, one of several common
conventions in the qubit case:

We allow a quantum rather than classical wire as out-
put, meaning we intend the number operator to be ap-
plied nondestructively. Thus the box also denotes a von
Neumann measurement according to {|j〉 〈j|}, as appro-
priate. Determination of the X eigenstate and/or projec-

Chain Computational basis state

↔ |ω〉ω =
∑

e∈E
nee

*SS Bullock and GKB, J. Phys. A 
submitted, quant-ph/0609070
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Figure 1. Cellulation of an orientable surface. Each system particle (qudit) is
represented by an edge. Particle interactions occur between all edges that meet
at a common vertex and all edges comprising a plaquette boundary. (a) In this
example, physical qudits reside on the vertices of a Kagome’ lattice on a torus such
that the resultant cellulation is a honeycomb lattice on a torus. Edge and face
orientations are indicated. For the vertices v0, v1 and faces f0, f1 the mutually
commuting operators in the Hamiltonian are gv0 = Z[v6,v0]Z[v5,v0]Z

−1
[v0,v1]

, gv1 =

Z[v0,v1]Z
−1
[v1,v9]

Z−1
[v1,v2]

, gf0 = X[v0,v1]X[v1,v9]X
−1
[v8,v9]

X−1
[v7,v8]

X−1
[v6,v7]

X[v6,v0],

gf1 = X−1
[v0,v1]

X−1
[v1,v2]

X[v3,v2]X[v4,v3]X[v5,v4]X
−1
[v5,v0]

. (b) Same cellulation with

vertex (red) ancilla and face (green) ancilla. These can be used to perform local
stabilizer checks.

Throughout this section, let π = #G−1 ∑

g∈G g. Suppose either Case i or Case ii.
Then for each [ω], the restriction of π to H[ω] is a rank one projector whose (nonzero)
image is an element of ker (H∂ + HKE) = ker H .

To verify this, suppose |ω〉 is the computational basis state of some cycle ω ∈ C1

(i.e. ∂ω = 0.) Then we may also speak of [ω] ∈ H1(Γ, Fd), |ω〉 is in the groundstate
of H∂ . Label

|[ω]〉 def
= πf |ω〉 = (#G)−1

∑

g∈G

g |ω〉 . (8)

It suffices for the Assertion to show the following.

• If ω1 and ω2 each lie in [ω], then |[ω1]〉 and |[ω2]〉 differ by a global phase.

• If |ω〉 #= 0, then |[ω]〉 #= 0.

This suffices to see the restriction of π is a rank one projector, since the first item
demands the rank ≤ 1 and the second demands the rank ≥ 1.

We begin with the first item, writing ω1 − ω2 = η ∈ im ∂2. Since the underlying
manifold of Γ is orientable, suppose for convenience that all faces f have positive
orientation. Then for η =

∑

f∈S(η) f we put gη =
∏

f∈S(η) gf , implying |ω1〉 = gη |ω2〉.
Note that gηπf = πfgη = πf . Thus |[ω1]〉 = πfgη |ω2〉 = πf |ω2〉 = |[ω2]〉.

We next demonstrate that πf |H[ω]
has rank ≥ 1. As discussed in §2,

it suffices to show that the trace of this projection, when restricted to the
subspace H[ω] which it preserves, is nonzero, and that immediately follows
if ξ$Idn ∈ Gf demands ξ = 1. For all other elements of P(n, d) are traceless.
Case i and Case ii differ somewhat. To explain why, note that in the last
paragraph we exploited gη |ω〉 = |ω + ∂η〉 for any sum of faces (2 chain) η.
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dimHgr = #H1(Γ, Fd)

CONTENTS 7

produce an H1(Γ, Fd) of the same dimension. Homology elements are represented by
cycles, i.e. elements of the kernel of the boundary operator. However, several elements
might represent the same class, differing by a boundary, i.e. an element of ∂(C2).

Recall that any Hamiltonian on n-qudits may be written as a sum of tensor
products of Hamiltonians (Hermitian matrices) on each factor. The degree of a
summand in the tensor basis is the greatest number of non-identity factors in any
term. A k-local Hamiltonian is a Hamiltonian whose degree is bounded by k in some
decomposition. The topologically ordered Hamiltonians defined below are k-local for
k the maximum of the valence of any vertex and the number of edges on any face.

Let n = #E , and consider placing a qudit on each e ∈ E . Again, each edge is
the image of [0, 1] and is oriented (by Γ) from one vertex to the other. For the qudits
associated with each edge, the |1〉 excitation of the edge will be implicitly associated
to this orientation, while the |d − 1〉 state corresponds to the other.

On the associated physical system H(n, d), let Xe and Ze denote the operator
applied to the qudit of that edge with identity operators buffered into the remainder
of the tensor. For each v ∈ V , we define a Pauli-tensor and vertex Hamiltonian by

gv =
∏

e=[∗,v] Ze
∏

e=[v,∗] Z
−1
e

Hv = −(gv + g†v)
(4)

For some U > 0, we then define the potential energy term of a topologically ordered
Hamiltonian by H∂ = U

∑

v∈V Hv.
The notation H∂ has been chosen for the following reason. Suppose that ω =

∑

e∈E nee is a chain, with each ne ∈ Fd. There is an associated qudit computational
basis state, say |ω〉, which is local and places the qudit of each e in state |ne〉. We
claim that |ω〉 is a groundstate of H∂ iff ∂ω = 0, i.e. ω is a cycle. To see this, one
verifies that gv |ω〉 = ξc |ω〉 where ∂ω = cv +

∑

w $=v cww. Hence |ω〉 is in the stabilizer
〈{gv}〉 ⊆ P(n, d) iff |ω〉 is an eigenstate of each Hv of minimial (real) eigenvalue iff |ω〉
is in the degenerate groundstate eigenspace of H∂ .

Strictly speaking, one should not refer to the groundstate of H∂ as being
topologically ordered. Admittedly, groundstates are of the form |ψg〉 =

∑

αω |ω〉
for ω a cycle, colloquially a loop of excited edges. For d > 2, the edges must be
properly oriented, and hitting every edge of a Y junction is allowed if multiplicities
are accounted for. Yet the cycle subspace is not a topological invariant. Indeed, should
Γ be a cell complex, subdividing Γ by breaking each 2-simplex (triangle) into several
subtriangles will generally increase the size of ker(∂1), although such a subdivision
does not change the topology of the underlying manifold. Thus, we next add a kinetic
energy term to the potential, splitting the degeneracy of H∂ and reducing to a final
groundstate capturing homology.

For each face f , the face Hamiltonian Hf is defined as follows. Orient f according
to the orientation of the manifold underlying Γ. Label edges by ∂f =

∑p
k=1 okek for

ok ∈ {1, d− 1}. Then we define

gf = Xo1
e1

Xo2
e2

Xo3
e3

. . . X
op
ep

Hf = −(gf + g†f )
(5)

With these choices, [Hf , Hv] = 0 for all faces f and vertices v. For the two edges
incident on a given vertex will be in the boundary of some face, and after correcting for
orientation conventions this commutativity check reduces to [X⊗X, Z⊗Z−1] = 0. (See
Figure 1.) Hence, for some constant h > 0, we might define HKE = h

∑

f∈F Hf . Due
to commutativity, the kinetic energy Hamiltonian respects the groundstate degeneracy

CONTENTS 7

produce an H1(Γ, Fd) of the same dimension. Homology elements are represented by
cycles, i.e. elements of the kernel of the boundary operator. However, several elements
might represent the same class, differing by a boundary, i.e. an element of ∂(C2).

Recall that any Hamiltonian on n-qudits may be written as a sum of tensor
products of Hamiltonians (Hermitian matrices) on each factor. The degree of a
summand in the tensor basis is the greatest number of non-identity factors in any
term. A k-local Hamiltonian is a Hamiltonian whose degree is bounded by k in some
decomposition. The topologically ordered Hamiltonians defined below are k-local for
k the maximum of the valence of any vertex and the number of edges on any face.

Let n = #E , and consider placing a qudit on each e ∈ E . Again, each edge is
the image of [0, 1] and is oriented (by Γ) from one vertex to the other. For the qudits
associated with each edge, the |1〉 excitation of the edge will be implicitly associated
to this orientation, while the |d − 1〉 state corresponds to the other.

On the associated physical system H(n, d), let Xe and Ze denote the operator
applied to the qudit of that edge with identity operators buffered into the remainder
of the tensor. For each v ∈ V , we define a Pauli-tensor and vertex Hamiltonian by

gv =
∏

e=[∗,v] Ze
∏

e=[v,∗] Z
−1
e

Hv = −(gv + g†v)
(4)

For some U > 0, we then define the potential energy term of a topologically ordered
Hamiltonian by H∂ = U

∑

v∈V Hv.
The notation H∂ has been chosen for the following reason. Suppose that ω =

∑

e∈E nee is a chain, with each ne ∈ Fd. There is an associated qudit computational
basis state, say |ω〉, which is local and places the qudit of each e in state |ne〉. We
claim that |ω〉 is a groundstate of H∂ iff ∂ω = 0, i.e. ω is a cycle. To see this, one
verifies that gv |ω〉 = ξc |ω〉 where ∂ω = cv +

∑

w $=v cww. Hence |ω〉 is in the stabilizer
〈{gv}〉 ⊆ P(n, d) iff |ω〉 is an eigenstate of each Hv of minimial (real) eigenvalue iff |ω〉
is in the degenerate groundstate eigenspace of H∂ .

Strictly speaking, one should not refer to the groundstate of H∂ as being
topologically ordered. Admittedly, groundstates are of the form |ψg〉 =

∑

αω |ω〉
for ω a cycle, colloquially a loop of excited edges. For d > 2, the edges must be
properly oriented, and hitting every edge of a Y junction is allowed if multiplicities
are accounted for. Yet the cycle subspace is not a topological invariant. Indeed, should
Γ be a cell complex, subdividing Γ by breaking each 2-simplex (triangle) into several
subtriangles will generally increase the size of ker(∂1), although such a subdivision
does not change the topology of the underlying manifold. Thus, we next add a kinetic
energy term to the potential, splitting the degeneracy of H∂ and reducing to a final
groundstate capturing homology.

For each face f , the face Hamiltonian Hf is defined as follows. Orient f according
to the orientation of the manifold underlying Γ. Label edges by ∂f =

∑p
k=1 okek for

ok ∈ {1, d− 1}. Then we define

gf = Xo1
e1

Xo2
e2

Xo3
e3

. . . X
op
ep

Hf = −(gf + g†f )
(5)

With these choices, [Hf , Hv] = 0 for all faces f and vertices v. For the two edges
incident on a given vertex will be in the boundary of some face, and after correcting for
orientation conventions this commutativity check reduces to [X⊗X, Z⊗Z−1] = 0. (See
Figure 1.) Hence, for some constant h > 0, we might define HKE = h

∑
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H = U
∑

v

Hv + h
∑

f

Hf

Hgr
∼= (Cd)2g

For efficient homological qudit codes see
H. Bombin and MA Martin-Delgado,
quant-ph/0605094

Generalized surface codes



• Spin-1/2 particles on a honeycomb lattice*

– Exactly solvable

• In the limit,                ,  pairs of spins along z-links are mapped to a qubit
– New spin operators on each z-link:

– Protected q. memory

H = −Jeff(
∑

+

Ze1Ze2Ze3Ze4 +
∑

!
Xe1Xe2Xe3Xe4)

H = J⊥
∑

x−links

σx
j σx

k + J⊥
∑

y−links

σy
j σy

k + Jz

∑

z−links

σz
j σz

k.

|Jz|! |J⊥|

Jeff =
J4
⊥|Jz|
16J4

z

σy
1 ⊗ σx

2 → Y σx
1 ⊗ σx

2 → X12(1) ⊗ σz
2 → Z

*A.Yu. Kitaev, Annals of Physics, 321,2 (2006)

eff

∏

j!white

eiXjπ/4
Unitary transformation:
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From k-local to 2-local
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String net condensed states

Spin-1
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• Emergent (local) U(1) Gauge invariance, i.e. wavefunction 
invariant under the transformation

• Artificial light polarization defined in terms of ordering of strings:  
+-+-+-... and -+-+-+

• Robust to perturbations.  Energy 2U to break a cycle

• By adding a string tension term                 the system acquires two 
distinct phases in the ground state:  a confined phase 
characterized by small closed loops, and a deconfined phase with 
large fluctuating loops

U(φj) = e

(
i
∑

! φ!
∑3

k=1 Sz
k

)

J
∑

j

(Sz
j )2

Properties



• Hubbard model with atoms
– State dependent collisions.  Restrict to subspace with one particle per well

lasers

U↑↓, U↑,↑, U↓,↓

L.M. Duan, E. Demler, M.D. Lukin, Phys. 
Rev. Lett. 91, 09402 (2003) 

Figure 1: Implementation of Kitaev’s model in a 2D optical lattice. The light shift potential minima trap atoms

in a honeycomb lattice: (a) Density plot of the lattice potential V0(x,y), (b) Surface plot of V0(x,y). The lattice
can be created from three pairs of standing waves of light that have sufficiently different frequency so that they do

not interfere. The difference wavevectors of the three standing waves are !k j = 2(k cos(" j)x̂+ k sin(" j)ŷ) where
"1 = #/2,"2 = #/6,"3 = −#/6. In practice, instead of using counter-propagating traveling waves to create each
standing wave, one could use traveling waves with wavevector k that propagate at an angle $ relative to each other

to achieve broader lattice spacing |!k j| = 2k/sin($/2).
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Figure 2: Scheme for implementing direction dependent spin couplings at each vertex of the honeycomb lattice. (a)

The spin coupling is induced by standing waves of # polarized light in Raman resonance with the atomic transition

frequency %↑↓. (b) The pairs of standing waves are applied along the directions indicated (with appropriate
frequencies so that they do not interfere) and with relative phase & between each pair.
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Implementions with atoms

states {
∣
∣n j↑,n j↓;n j+1↑,n j+1↓

〉

}. We can find the matrix element of HI in this basis using second order perturbation
theory:

〈!|HI |"〉 = − #
|$〉&=|"〉,|!〉

〈!|HI |$〉 〈$|HI |"〉
2

( 1

E$−E"
+

1

E$−E!

)

, (2)

To first order in J%/U the excited states {|$〉} coupled to are those states with one mode having double occupancy
and a nearest neighbor empty. The matrix elements are

〈10;10|HI |10;10〉 = −
4J2↑
U↑

〈10;01|HI |10;01〉 = 〈01;10|HI |01;10〉 = −
J2↑+J2↓
U↑↓

〈01;10|HI |10;01〉 = 〈10;01|HI |01;10〉 =
2J↑J↓
U↑↓

〈01;01|HI |01;01〉 = −
4J2↓
U↓

(3)

Let’s define the local Schwinger operators acting on the bosonic mode j

%xj = a
†
j↑a j↓ +a

†
j↓a j↑

%
y
j = −i(a†

j↑a j↓ −a
†
j↓a j↑)

%zj = a
†
j↑a j↑ −a

†
j↓a j↓

Nj = n↓ +n↑ = a
†
j↑a j↑ +a

†
j↓a j↓

(4)

and the projector onto single particle occupation at site j, PNj=1. The Bose Hubbard interaction is then

& j PNj=1HBH& j PNj=1 = # j(%
x
j%
x
j+1+%

y
j%
y
j+1)

J↑J↓
U↑↓

+%zj%
z
j+1(−

J2↑
U↑

−
J2↓
U↓

+
J2↑+J2↓
2U↑↓

)

+(%zj +%zj+1)(
4J2↓
U↓

−
4J2↑
U↑

)+1 j(−
J2↑
U↑

−
J2↓
U↓

−
J2↑+J2↓
2U↑↓

)
(5)

The term proportional to the identity imparts an irrelevant global phase and the local term can be negated by the

additional of an external magnetic field potential VB = µBz# j a
†
j↑a j↑ − a

†
j↓a j↓, provided µBz =

4J2↑
U↑

−
4J2↓
U↓
. So we

have finally,

& j PNj=1(HBH +VB)& j PNj=1 = # j J⊥(%xj%
x
j+1+%

y
j%
y
j+1)+ Jz%

z
j%
z
j+1

= HXXZ,
(6)

where J⊥ = − J↑J↓
U↑↓

and Jz =
J2↑+J2↓
2U↑↓

−
J2↑
U↑

−
J2↓
U↓
. The effective Hamiltonian Eq. 6 is the quantum XXZ (Jx = Jy)

model in one dimension. By applying spin dependent trapping lasers in other directions one can realize the XXZ

model in higher dimensions. The 1D quantum XX model (Jz = 0) with cyclic or open boundary conditions is
exactly solvable meaning there are analytic expression for the eigenstates and eigenvalues. This model has been

been studied extensively in the condensed matter community especially with regard to the long range correlations

that develop in the ground state. The model exhibits first order quantum phase transitions but not second order

transitions. The first order transitions arise because of a discontinuity in the first derivative of the energy as a

function of an added magnetic field in the z direction. An important feature of this Hamiltonian is that it commutes

with the total spin operator along the z direction: Sz = # j%
z
j. As such the eigenstates are labeled by Sz, and the

energy crossing occurs at degeneracy points of eigenstates with different Sz quantum numbers. Note that the total

spin S corresponding to !S = # j!% j is not a good quantum number. For that quantity to be conserved we would
require either: (a) J⊥ = Jz, or (b) that the interaction take place between all pairs of spins. There are interesting

entanglement properties of the non degenerate ground state |'g〉 of HXXZ . In particular the ground state is globally
entangled meaning every spin is entangled with every other spin and the total state has maximal n-concurrence.

Notice that the Bose Hubbard interaction fixes the interaction strengths between neighboring x and y compo-

nents of spin to be equal. This is not an accident because if they were not equal (corresponding to the XYZ model)

then Sz would not be conserved. In the XXZ model the states with maximum or minimum spin z projection are

eigenstates which makes sense because the underlying Bose-Hubbard Hamiltonian does not induce spin flipping

2
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model in higher dimensions. The 1D quantum XX model (Jz = 0) with cyclic or open boundary conditions is
exactly solvable meaning there are analytic expression for the eigenstates and eigenvalues. This model has been

been studied extensively in the condensed matter community especially with regard to the long range correlations

that develop in the ground state. The model exhibits first order quantum phase transitions but not second order

transitions. The first order transitions arise because of a discontinuity in the first derivative of the energy as a
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model in one dimension. By applying spin dependent trapping lasers in other directions one can realize the XXZ

model in higher dimensions. The 1D quantum XX model (Jz = 0) with cyclic or open boundary conditions is
exactly solvable meaning there are analytic expression for the eigenstates and eigenvalues. This model has been

been studied extensively in the condensed matter community especially with regard to the long range correlations

that develop in the ground state. The model exhibits first order quantum phase transitions but not second order

transitions. The first order transitions arise because of a discontinuity in the first derivative of the energy as a

function of an added magnetic field in the z direction. An important feature of this Hamiltonian is that it commutes

with the total spin operator along the z direction: Sz = # j%
z
j. As such the eigenstates are labeled by Sz, and the

energy crossing occurs at degeneracy points of eigenstates with different Sz quantum numbers. Note that the total

spin S corresponding to !S = # j!% j is not a good quantum number. For that quantity to be conserved we would
require either: (a) J⊥ = Jz, or (b) that the interaction take place between all pairs of spins. There are interesting

entanglement properties of the non degenerate ground state |'g〉 of HXXZ . In particular the ground state is globally
entangled meaning every spin is entangled with every other spin and the total state has maximal n-concurrence.

Notice that the Bose Hubbard interaction fixes the interaction strengths between neighboring x and y compo-

nents of spin to be equal. This is not an accident because if they were not equal (corresponding to the XYZ model)

then Sz would not be conserved. In the XXZ model the states with maximum or minimum spin z projection are

eigenstates which makes sense because the underlying Bose-Hubbard Hamiltonian does not induce spin flipping

2

Figure 1: Implementation of Kitaev’s model in a 2D optical lattice. The light shift potential minima trap atoms

in a honeycomb lattice: (a) Density plot of the lattice potential V0(x,y), (b) Surface plot of V0(x,y). The lattice
can be created from three pairs of standing waves of light that have sufficiently different frequency so that they do

not interfere. The difference wavevectors of the three standing waves are !k j = 2(k cos(" j)x̂+ k sin(" j)ŷ) where
"1 = #/2,"2 = #/6,"3 = −#/6. In practice, instead of using counter-propagating traveling waves to create each
standing wave, one could use traveling waves with wavevector k that propagate at an angle $ relative to each other

to achieve broader lattice spacing |!k j| = 2k/sin($/2).
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Figure 2: Scheme for implementing direction dependent spin couplings at each vertex of the honeycomb lattice. (a)

The spin coupling is induced by standing waves of # polarized light in Raman resonance with the atomic transition

frequency %↑↓. (b) The pairs of standing waves are applied along the directions indicated (with appropriate
frequencies so that they do not interfere) and with relative phase & between each pair.
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laser

λ/2

Energy scales:

B/! ∼ 10 GHz

γ/! ∼ 100 MHz

Black-body 
scattering rateΓ/! ∼ 10−3 Hz

Lattice trap 
spacing

Rotational 
constant

Spin-rotational 
coupling

ωosc ∼ 100 kHz
−1MHz

Spontaneous 
emissionΓscat/! ∼ 10−1Hz

 System: 2Σ1/2 hetero-nuclear molecules 
in electronic-vibrational ground-states 

• Alkaline-earth monohalides (CaF,CaCl,MgCl...)
• single electron in outer shell

 Electric dipole moment in superposition
 of rotational states

F–
e–S

F–Ca2+

dipole moment
talks to optical radiation

talks to microwave radiation
... as rotations on ~20 GHz

T ∼ 500nK

Implemations with polar molecules

A. Micheli, GKB, and P. Zoller, Nature Phys., May, 2006







          

• Adiabatic mixing with dipole-dipole coupled states by microwave fields

Feature 1:
By tuning close to a given resonance 
one can select a specific spin pattern:

ψrel(r)

polarization rel. to body axis, here set 

Tunable spin patterns



          

• Adiabatic mixing with dipole-dipole coupled states by microwave fields

Feature 2: 
 Can choose the range of the 

interaction for a given spin texture

ψrel(r)

2g 0g+1u
+

2
λ

Tunable spin patterns



          

• 1D XYZ model

• 2D Ising model

• 3D Heisenberg model

• Typical coupling strengths:

Feature 3: for a multifrequency field spin textures are additive  toolbox.

H=Σh iji Jxσi
xσj

x + Jxσi
xσj

x Jxσi
xσj

z 

sign adjustable by tuning above
or below given resonance

x̂

ẑ

x̂

ẑ

x̂

ẑ

ŷ

ŷ

0+
u

0−g
0+

g

0+
u

0−g

2g

0+
u

1u

Polarization Resonance

J ∼ 10− 100kHz

Multiple fields
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Jz|)
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Results: Design and verification on 3x3 lattice

 Noise resilience as measured by 
rms magnetization in ground manifold

• as function of the detuning
• give worst case scenario for

logical bit flip errors / phase flip errors
• protected region near 2g

 Verification by absorption spectroscopy

• Field polarization out of plane
• Probe gap at J/2

• Field polarization in plane
• Gap disappears and 

excitations are spin-waves Sx

2g

ζ=π/2

ζ=0



! Implementation in Q*bert lattice:

• Two staggered triangular lattices

• Nearest neighbors give honeycombs

• their edges form orthogonal triads

! Realization with 3 fields: (several possible choices) 
shown when all 3 being z polarized, resp. near !"#$%"#$&"-

Construction in an optical lattice

√
2λ

3
√

3



• Excitations created by spin flips (along a z-link)

– Effective interaction

– Anyons created by single qubit operators:                    

– Fusion rules (as obtained from the action of the Pauli operators):

– Relative statistics under braiding:    

!×! = 1 ! × ! = 1 ! ! ×!! = 1

!
!

!!

Particles

!
!

!!

!× " = !" ! ×!! = !!×!" = "

!!

Statistical phase
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Observing anyonic statistics



|Ψ(1)〉 = SY
A SZ

B |λg〉

Adiabatically drag      left

2Jeff

ZZZ

Adiabatically drag      CCW around 

τ

H ′(t) = H +
∑

e∈Path

δJe(t)(σz
1σz

2)e + κ(t)Ze(t)

Adiabatically drag      right

Measure location of 

〈SZ
I 〉 = sin(β + π)

Statistical phase
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Dynamical+Berry
phases

Beam splitter at I

Inverse Beam splitter at I

Prepare two quasiparticle pairs

Braiding



〈SZ
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Adiabatically drag      CCW around 

Adiabatically drag      right

For trivial braid use same steps but in different order

Measure location of 

see also
J. Pachos, quant-ph/0511273;
C. Zhang, V.W. Scarola, S. Tewari, and 
S. Das Sarma, quant-ph/0609101

S.S. Bullock, GKB quant-ph/0609070



Hm = BN2 + γN · S + bI · S + cIzSz + eQq
3Iz2 − I(I + 1)

4I(2I − 1)

Fermi contact Dipolar Electric Quadrupole

I = 3/2

Encode here
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Integer spin lattice models
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Can’t build generic two body Hamiltonians but can build a large class

Asymptotic couplings solvable
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Figure 2 Movre–Pichler potentials for a pair of molecules as a function of their
separation r. The potentials E(gi (r )) for the four ground states (dashed lines) and
the potentials E(l(r )) for the first 24 excited states (solid lines). The symmetries
|Y|±σ of the corresponding excited manifolds are indicated, as are the asymptotic
manifolds (Ni , Ji;Nj , Jj ). The relative coordinate probability densities on a square
lattice are depicted in green on the ground-state potentials. The red arrow indicates
the coupling of the microwave field.

The hamiltonian describing the external, or motional, degrees of
freedom is Hex = ∑2

i=1 P2
i /(2m) + Vi(xi − x̄i), where Pi is the

momentum of molecule i with mass m, and the potential generated
by the optical lattice Vi(x−x̄i) describes an external confinement of
molecule i about a local minimum x̄i with 1D r.m.s. width z0. We
assume isotropic traps that are approximately harmonic near the
trap minimum with a vibrational spacing h̄ωosc. Furthermore, we
assume that the molecules can be prepared in the motional ground
state of each local potential using dissipative electromagnetic
pumping12, perhaps beginning with a two-species Mott insulator13.
It is convenient to define the quantization axis ẑ along the
axis connecting the two molecules, x̄2 − x̄1 = #zẑ with #z
corresponding to a multiple of the lattice spacing.

The near-field dipole–dipole interaction between two
molecules separated by r = x1 −x2 is

Hdd = d2

r3

(
q=1∑

q=−1

(−1)q D†
1q D2−q −3D†

10D20 +h.c.

)

. (1)

The dipole operator coupling the ground and first rotational states
of molecule i is D†

i = ∑1
q=−1 |N = 1, q〉i i〈N = 0,0|ê∗

q, with the
spherical basis vectors {ê0 = ẑ, ê±1 = ∓(x̂ ± iŷ)/

√
2}, and d is the

dimensionful dipole moment.
Although the present situation of dipole–dipole coupling of

rotationally excited polar molecules is reminiscent of the dipole–
dipole interaction between electronically excited atom pairs14, there
are important differences. First, unlike the atomic case where
electronically excited states are typically anti-trapped by an optical
lattice, here both ground and excited rotational states are trapped
by an essentially identical potential up to tensor shifts15,16, which
can be compensated by applying a static electric field. Hence,
motional decoherence due to spin-dependent dipole–dipole forces
is strongly suppressed by the large vibrational energy h̄ωosc. Second,
spontaneous emission rates are drastically reduced. The decay rate
at room temperature from excited rotational states is ∼10−3 Hz
(ref. 17) versus a comparable rate of MHz for excited electronic
states. There are other, stronger, sources of decoherence, the most
important being photon scattering from the optical trapping laser.

For reasonable traps the scattering rate can be of the order of
0.2 Hz (ref. 16).

The ground subspace of each molecule is isomorphic
to a spin-1/2 particle. Our goal is to obtain an effective
spin–spin interaction between two neighbouring molecules.
Static spin–spin interactions due to spin–rotation and dipole–
dipole couplings do exist but are very small in our model:
HvdW(r) = −(3d4/2Br6)

[
1+ (γ/4B)2

(
1+4S1 ·S2/3−2Sz

1Sz
2

)]
.

The first term is the familiar van der Waals 1/r6 interaction,
whereas the spin-dependent piece is strongly suppressed as
γ/4B ≈ 10−3 ) 1. Therefore, we propose dynamical mixing with
dipole–dipole coupled excited states using a microwave field.

The molecules are assumed trapped with a separation
#z ∼ rγ ≡ (2d2/γ)1/3, where the dipole–dipole interaction is
d2/r3

γ = γ/2. In this regime, the rotation of the molecules is
strongly coupled to the spin. The ground states are essentially
spin-independent, and the excited states are described by
Hund’s case-(c) states in analogy to the dipole–dipole coupled
excited electronic states of two atoms with fine structure.
Remarkably, as described in the Methods section, the eigenvalues
and eigenstates of Hin can be computed analytically yielding the
well-known Movre–Pichler potentials18 plotted in Fig. 2.

Possible candidate polar molecules are, for example, CaF,
CaCl and MgCl. The rotational constant, spin–rotation coupling
constant and dipole moment are: CaF (B/h = 10.304 GHz, γ/h =
39.66 MHz, d

√
3 = 3.07 D), Ca35Cl (B/h = 4.565 GHz, γ/h =

42.21 MHz, d
√

3 = 4.27 D) and 26Mg35Cl (B/h = 7.005 GHz,
γ/h = 63.52 MHz, d

√
3 = 3.38 D). With a typical optical lattice

spacing of #z ∼ 300 nm, it would be difficult to trap near rγ .
However, we note that it is possible to resolve many excited states
even at larger intermolecular spacings. In the Methods section,
we describe how the two spin models considered here can be
implemented at the cost of smaller effective interaction strengths.

ENGINEERING SPIN–SPIN INTERACTIONS

To induce strong dipole–dipole coupling, we introduce a
microwave field E(x,t)eF with a frequency ωF tuned near resonance
with the N = 0 → N = 1 transition. Because the rotational
states are spaced nonlinearly, this transition is resolvable without
coupling to higher rotational states by multiphoton processes. In
the rotating-wave approximation, the molecule–field interaction
is Hmf = −∑2

i=1(h̄ΩD†
i · eFei(kF·xi−ωF t)/2 + h.c.), where the Rabi

frequency is |Ω | = d|E0|/h̄. For molecules spaced by optical
wavelengths, all the dipoles are excited in phase.

The effective hamiltonian acting on the ground states is
obtained in second-order perturbation theory as

Heff(r) =
∑

i,f

∑

l(r)

〈gf |Hmf|l(r)〉〈l(r)|Hmf|gi〉
h̄ωF −E(l(r))

|gf 〉〈gi|, (2)

where {|gi〉,|gf 〉} are ground states with N1 = N2 = 0 and {|l(r)〉}
are excited eigenstates of Hin with N1 + N2 = 1 and with excitation
energies {E(l(r))}. The reduced interaction in the subspace of
the spin degrees of freedom is then obtained by tracing over the
motional degrees of freedom. For molecules trapped in the ground
motional states of isotropic harmonic wells with r.m.s. width
z0, the wavefunction is separable in centre-of-mass and relative
coordinates with the relative-coordinate wavefunction

ψrel(r,θ) = 1

π3/4(2z0)3/2
e−(r2+#z2−2r#zcosθ)/8z2

0 ,

where cosθ = r · ẑ/r. The effective spin–spin hamiltonian is then
Hspin = 〈Heff(r)〉rel.
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Dipole-dipole with hyperfine
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• Spin structure factor

– obtainable from time of flight measurements (coincidence measurements)
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Designing spin−1 lattice models using polar molecules 12

range interactions can be ignored in 1D. However, by applying multiple microwave fields,

it is possible to substantially negate the effect of longer range interactions. This occurs

for two reasons: first, the interaction in the ground states falls off not like d 2/r3 but like
s(r)2(h̄!−d2/r3)), so that for longer range pairs, the interaction quickly saturates to a fixed
value; second, using additional fields turned above or below resonance, the unwanted longer

range interaction can be negated by the additivity of H eff(r). This mechanism also allows

for the reduction in unwanted single body interactions. We demonstrate this explicitly using

numerical optimization to obtain a set of Hamiltonians close to H" (see figure 4). The error of

the implementations is measured by the operator distance of the implemented nearest neighbor

Hamiltonian Hnn to the closest isotropic Hamiltonian H". The field parameters for three

specific implementations are given in table 2. The quality of the implementations do not

change substantially using other molecular species, such as the F = 1 hyperfine levels of CaF

with nuclear spin I = 1/2.
Notice that the high quality implementations tend to be clustered in the first and third

quadrants of the plane in figure 4. The reason for this bias is not completely understood,

however, it could be partially attributed to the way we have chosen to parameterize H "

i.e. using a decomposition over the non orthogonal operator basis S 1 · S2 and (S1 · S2)2.
By comparison, we could construct an orthonomal operator basis O 1,2 such that H =
U ′(cos"′O1+ sin"′O2) where O1 = S1 ·S2/2

√
3, O2 = (S1 ·S2+2(S1 ·S2)2−819/3)/2

√
5,

U ′ cos"′ = Tr[O†1H] and U ′ sin"′ = Tr[O†2H]. The probability distribution as a function of
"′ for a random Hamiltonian with fixed strength U ′ is p("′)d"′ = d"′/2#. A circle in the
orthonormal basis is mapped to an ellipse in the non orthonormal basis which has an aspect

ratio [(10−2
√
10)/(10+2

√
10)]1/2 ≈ 0.474 and is rotated counter-clockwise in the plane by

an angle tan−1((1+
√
10)/3)≈ 0.301#. Hence, absent additional structure, we would expect

to build Hamiltonians of fixed strength concentrated along an ellipse. We hold to the original

parameterization of 12 to stay consistent with the literature.

Important properties of spin lattice models can be obtained from static structure factors

which are two body correlation functions. The structure factors relative to the local operators

Oj for a chain of N particles are defined:

SO(q) =
1

N

N

$
j, j′=1

eiq( j− j′)〈OjO
†
j′ 〉, (15)

where q assumes the role of a quasimomentum for a one dimensional lattice of spins. For

the isotropic HamiltonianH", relevant correlators involve the spin operatorO= S z and center

operators O = e2i#S
Z/3 [25]. We have computed the correlations functions for the ground

states of two specific implementations marked in figure 4. The ground states themselves

were computed using imaginary time evolution of the implemented Hamiltonians over a

matrix product representation of an infinite chain of spin−1 particles [ 30]. Results for the
correlation function SSz(q) for an infinite chain of polar molecules (N → %) are plotted in
figure 5. It is notable that even though the error of the implementations are non negligible, the

spin correlation function is qualitatively quite close to that obtained with the closest isotropic

model.

4. Spectroscopic measures of many body quantum phases

An essential component of always on quantum simulations will be measurement of properties

of the many body state that is produced. One such observable is the energy gap between

ground and excited states. If the system is assumed prepared in the ground state of a

Verification
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• Valence bond state is ground state of

– represent state as subspace of chain of virtual spin-1/2 particles  

– teleportation from one end to the other by single particle measurements only 
in basis

• Also serves as verification of ground state 

F. Verstraete, M.A. Martin-
Delgado, J.I. Cirac, PRL 92, 
087201 (2004).
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1
3
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2
3
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= U

∑

j
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√
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*I. Affleck, T. Kennedy, 
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 We can design a large class spin-spin interactions with polar molecules

• Tunable range and anisotropy
• Large coherence to decoherence ratio   Q~800-10000 for reasonable trapping parameters

 Examples of Lattice Spin Model with TO

• The Kitaev Model
• Gapped system with abelian excitations
• Strategy for measuring quasiparticle statistics

 Higher spin models
• Isotropic model:  rich phase diagram, quantum communication channel

 Coupling strength, hence gap for topological protection, limited by lattice spacing.  
But optical lattices limited to lattice spacings at optical transition wavelengths.  
Strategies for improvement

 Many useful TO models built up from three-body projectors (e.g. that enforce fusion 
rules).  In principle electromagnetic interactions can be used to build these directly

Summary & Outlook



          dipoles generate 2D triangular lattice

other particles see honeycomb lattice

!ωz ! Eint ∼
d2

a3

H.P. Büchler, et al., cond-mat/0607294

• Engineer repulsive interactions* 

a ∼ 100nm

Stronger correlations:  self-assembled crystals



          

Three-body interactions

Hdd = f(r1, r2)S+
1 S−2 + f(r1, r3)S+

1 S−3 + f(r2, r3)S+
2 S−3 + h.c.

 Eigenstates labeled by total number of excited rotational quanta
 Under low saturation couple to states with one shared rotational 

quanta.  These states carry 3-body entanglement (e.g. W states)  
 Typically, the non scalar (i.e. spin dependent) piece of the 

interaction is dominately pairwise but may be engineered to be 
dominately three body

f(ri, rj) =
di · dj − 3di · r̂i,jdj · r̂i,j

r3
i,j

Heff = g(r1, r2, r3)|000〉〈000| + 2 − body

Spin-1 coupled to F=0 excited states



 Most spin-lattice models with TO have many body interactions (k-local for k>3).   
Can we build effective Hamiltonians using mediator particles?

Open questions

Qudit surface codes and gauge theory with finite cyclic groups 14

more physically motivated binary interactions. Consider the vertex constraint term
Hv = −(gv + g†v) where the valence at that vertex is k. This k-local interaction
can be obtained as a perturbative limit of 2-local interactions between each d-level
qudit incident at v and a k-level ancillary qudit a located at the vertex. Begin with
a local Hamiltonian for the ancilla Ha = −Ea |0〉a 〈0|, and a perturbing interaction

Va = Jv
∑k

r=1(Z
or
er

⊗ |r − 1〉 〈r| + h.c.), where Ea % |Jv| and the edge orientations
give oj = 1 if ej = [∗, v] and oj = d − 1 if ej = [v, ∗]. By construction, the
lowest nontrivial, i.e. non identity, contribution to coupling in the ground subspace
Hgr = |0〉a 〈0| (H0 + V ) |0〉a 〈0| is the effective Hamiltonian Hveff = U(Hv + O(ε))
where U = (−1)kEa(Jv/Ea)k with an error term of norm ||ε|| ' 1. By judicious
choice of sign(Jv) it is possible to fix U > 0. A similar argument applies to building
the face constraint Hf using a j-level ancilla b located at face f to mediate interactions
between all j edges on the boundary of f . Here we choose Hb = −Eb |0〉b 〈0| and

Vb = Jf
∑j

r=1(X
or
er

⊗ |r − 1〉 〈r| + h.c.) such that Hfeff = h(Hf + O(ε)), where
h = (−1)jEb(Jf/Eb)j . These mediator qudits could be placed on all the vertexes
and faces of Γ to build an effective Hamiltonian in the subspace spanned by states
with all ancillae in the |0〉 state.

An argument in Ref. [16] suggests that an effective Hamiltonian between spins on
a two complex can be built using such mediating interactions that closely approximates
a target Hamiltonian projected to its ground subspace Hgr = PgrHPgr. In the present
context this would imply that for sufficiently large energies Ea, Eb both the degeneracy
of the ground subspace of H = H∂ + HKE as well as the energy gap to the excited
states could be accurately approximated by a model built from a sum of effective
vertex and face operators. An analysis regarding the validity of such constructions for
topologically ordered states is wanting, but is outside the scope of this work.

5. Other Homological Groundstates

We have originally presented the case of groundstates for H1(Γ, Fd) for d prime, in
order to present the new orientation conventions in the simplest possible context. This
section describes a construction for homological order on dits whose number of levels
is not prime but rather a prime power. Homological order for arbitrary composite d
follows immediately through a tensor product of the prime-power Hamiltonians.

5.1. Homology Fd! stabilizer codes

The hypothesis in the main text has been that qudits have d levels, for d a prime so
that each |j〉 is associated to an element of Fd. Recent work [10] extends stabilizer
techniques to the finite fields of order d", i.e. Fd! , which exist for any " ≥ 1.

The generic Fd! constitute all fields F with #F < ∞, so this is (perhaps)
the most general field for which a stabilizer code makes sense. The most typical
construction of Fd! is to consider the polynomial ring Fd[x] and divide out relations
in the ideal generated by some irreducible polynomial f(x) = x" +a"−1x"−1 + . . .+a0,
aj ∈ Fd. It is typical to label α ∈ Fd! as the adjoined root corresponding to
the class of x. The Galois group of the extension Fd! over Fd, say K, then acts
as permutations of the roots of f(x). Note that Fd! is a vector space over the
scalars Fd. Moreover, multiplication by any fixed a ∈ Fd! may be viewed as a Fd-
linear map, with an associated matrix with entries in Fd. Computing the trace of
this matrix creates a map TraceFd!/Fd

: Fd! → Fd. Another characterization is that
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construction of Fd! is to consider the polynomial ring Fd[x] and divide out relations
in the ideal generated by some irreducible polynomial f(x) = x" +a"−1x"−1 + . . .+a0,
aj ∈ Fd. It is typical to label α ∈ Fd! as the adjoined root corresponding to
the class of x. The Galois group of the extension Fd! over Fd, say K, then acts
as permutations of the roots of f(x). Note that Fd! is a vector space over the
scalars Fd. Moreover, multiplication by any fixed a ∈ Fd! may be viewed as a Fd-
linear map, with an associated matrix with entries in Fd. Computing the trace of
this matrix creates a map TraceFd!/Fd

: Fd! → Fd. Another characterization is that
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more physically motivated binary interactions. Consider the vertex constraint term
Hv = −(gv + g†v) where the valence at that vertex is k. This k-local interaction
can be obtained as a perturbative limit of 2-local interactions between each d-level
qudit incident at v and a k-level ancillary qudit a located at the vertex. Begin with
a local Hamiltonian for the ancilla Ha = −Ea |0〉a 〈0|, and a perturbing interaction

Va = Jv
∑k

r=1(Z
or
er

⊗ |r − 1〉 〈r| + h.c.), where Ea % |Jv| and the edge orientations
give oj = 1 if ej = [∗, v] and oj = d − 1 if ej = [v, ∗]. By construction, the
lowest nontrivial, i.e. non identity, contribution to coupling in the ground subspace
Hgr = |0〉a 〈0| (H0 + V ) |0〉a 〈0| is the effective Hamiltonian Hveff = U(Hv + O(ε))
where U = (−1)kEa(Jv/Ea)k with an error term of norm ||ε|| ' 1. By judicious
choice of sign(Jv) it is possible to fix U > 0. A similar argument applies to building
the face constraint Hf using a j-level ancilla b located at face f to mediate interactions
between all j edges on the boundary of f . Here we choose Hb = −Eb |0〉b 〈0| and

Vb = Jf
∑j

r=1(X
or
er

⊗ |r − 1〉 〈r| + h.c.) such that Hfeff = h(Hf + O(ε)), where
h = (−1)jEb(Jf/Eb)j . These mediator qudits could be placed on all the vertexes
and faces of Γ to build an effective Hamiltonian in the subspace spanned by states
with all ancillae in the |0〉 state.

An argument in Ref. [16] suggests that an effective Hamiltonian between spins on
a two complex can be built using such mediating interactions that closely approximates
a target Hamiltonian projected to its ground subspace Hgr = PgrHPgr. In the present
context this would imply that for sufficiently large energies Ea, Eb both the degeneracy
of the ground subspace of H = H∂ + HKE as well as the energy gap to the excited
states could be accurately approximated by a model built from a sum of effective
vertex and face operators. An analysis regarding the validity of such constructions for
topologically ordered states is wanting, but is outside the scope of this work.

5. Other Homological Groundstates

We have originally presented the case of groundstates for H1(Γ, Fd) for d prime, in
order to present the new orientation conventions in the simplest possible context. This
section describes a construction for homological order on dits whose number of levels
is not prime but rather a prime power. Homological order for arbitrary composite d
follows immediately through a tensor product of the prime-power Hamiltonians.

5.1. Homology Fd! stabilizer codes

The hypothesis in the main text has been that qudits have d levels, for d a prime so
that each |j〉 is associated to an element of Fd. Recent work [10] extends stabilizer
techniques to the finite fields of order d", i.e. Fd! , which exist for any " ≥ 1.

The generic Fd! constitute all fields F with #F < ∞, so this is (perhaps)
the most general field for which a stabilizer code makes sense. The most typical
construction of Fd! is to consider the polynomial ring Fd[x] and divide out relations
in the ideal generated by some irreducible polynomial f(x) = x" +a"−1x"−1 + . . .+a0,
aj ∈ Fd. It is typical to label α ∈ Fd! as the adjoined root corresponding to
the class of x. The Galois group of the extension Fd! over Fd, say K, then acts
as permutations of the roots of f(x). Note that Fd! is a vector space over the
scalars Fd. Moreover, multiplication by any fixed a ∈ Fd! may be viewed as a Fd-
linear map, with an associated matrix with entries in Fd. Computing the trace of
this matrix creates a map TraceFd!/Fd

: Fd! → Fd. Another characterization is that

System spins represented by edges.  Edges oriented to account for neighboring 
interactions.  Vertex(face) ancilla can mediate vertex(face) operators

⇒

Heff = − J2

Ea
A1 ⊗B2

|0〉a

Ha = −Ea|0〉〈0|

Ha,1 = JA1 ⊗Xa

Ha,2 = JB2 ⊗Xa

1 2 1 2

Qudit ancilla

Hveff = U
∏

e=[∗,v]

Ze

∏

e=[v,∗]

Z−1
e + O(ε)

Ea ! |J |



 Can we find efficient construction of observables for TO in spin lattices?

• Ground state degeneracy

• Topological entanglement

• Mutual statistics for non-abelian anyons

• ...
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