J/mplementations of Jopological Order with Atomic, Mbolecular and Optical Systems

Gavin K Brennen

Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences

Quantum Information

Q. Computational Complexity

Quantum Simulations
Data structures

Many body physics

Many degrees of freedom

Outline

- Trapped atoms in optical lattices: the short road to q. simulations
- Topological order in spin lattices
- Implementations
- Spin-I/2 models -----> Kitaev honeycomb model
- \quad Spin>l/2
- Summary \& Outlook
- Open questions

Optical lattices

Coherent for large intensity and detuning

$$
\begin{aligned}
& V(\mathbf{x})=-\left\langle\mathbf{E}(\mathbf{x}, t) \cdot \overleftrightarrow{\alpha} \cdot \mathbf{E}^{*}(\mathbf{x}, t)\right\rangle \\
& V_{0} \simeq \frac{\Omega^{2}}{\Delta} \quad \gamma \simeq \Gamma\left(\frac{\Omega}{\Delta}\right)^{2}
\end{aligned}
$$

Trapping with counter-propagating lasers

Can build ID, 2D, 3D lattices with adjustable topography by tuning intensity, polarization, \& detuning

- State preparation via q. phase transition

Superfluid BEC

Mott Insulator

Theory: Jaksch et al. PRL 81, 3108 (1998)

Exp: M. Greiner et al. Nature 415, 39 (2003)

- Bose-Hubbard dynamics

$$
H_{B H}=-\sum_{<j, k>} J\left(a_{j}^{\dagger} a_{k}+a_{k}^{\dagger} a_{j}\right)+\sum_{j} \frac{U}{2} n_{j}\left(n_{j}-1\right)+\epsilon(j) n_{j}
$$

- Quantum gates

- Information encoded in hyperfine levels.

Decoherence free subspace wrt magnetic field fluctuations

- Collisional interactions. Tunable using state dependent lattices

Theory: GKB et al., PRL, 82, 1060 (1999); Jaksch et al. 82, 1975 (1999)

Exp: O. Mandel, et al. Nature 425, 937 (2003)

Spin lattice models with TO

- A Hamiltonian on spins represented as edges on a surface cellulation

$$
H=-U\left(\sum_{v \in \mathcal{V}} g_{v}+\sum_{f \in \mathcal{F}} g_{f}\right) \quad g_{v}=\prod_{e \in\{[*, v],[v, *]\}} Z_{e} \quad g_{f}=\prod_{e \in \partial f} X_{e},
$$

- Sum of generators of the stabilizer group $\mathbf{G} \quad G=\left\langle\left\{g_{v}, g_{f}\right\}\right\rangle$
- Ground states of \mathbf{H} are eigenstates of \mathbf{G} with eigenvalue +1
- Ex: Qubits on a torus

$$
\begin{gathered}
H=-U\left(\sum_{+} Z_{e_{1}} Z_{e_{2}} Z_{e_{3}} Z_{e_{4}}+\sum_{\square} X_{e_{1}} X_{e_{2}} X_{e_{3}} X_{e_{4}}\right) \\
\operatorname{dim} \mathcal{H}_{\mathrm{gr}}=\operatorname{Trace}\left[\frac{1}{\# G} \sum_{g \in G} g\right]=\operatorname{Trace}\left[\frac{1}{2^{n-2}} \sum_{g \in G} g\right]=4
\end{gathered}
$$

Generically

$$
\operatorname{dim} \mathcal{H}_{\mathrm{gr}}=\# H_{1}\left(\Gamma, \mathbb{F}_{2}\right)=2^{2 g}
$$

*A.Yu. Kitaev, Annals of Physics, 303, 2 (2003); quant-ph/9707021 M Freedman and D. Meyer, Found. Comp. Math. 1, 325 (2001).

Generalized surface codes

- Represent state space of each spin on a lattice by a qudit (d levels)
- Single spin operator basis

$$
\begin{aligned}
& X|j\rangle=|j+1 \bmod d\rangle \\
& Z|j\rangle=\xi^{j}|j\rangle, \quad \text { for } \xi=\exp (2 \pi i / d)
\end{aligned}
$$

- Hamiltonian (d-prime)

$$
\begin{aligned}
& H=U \sum_{v} H_{v}+h \sum_{f} H_{f} \\
& g_{v}=\prod_{e=[*, v]} Z_{e} \prod_{e=[v, *]} Z_{e}^{-1} \\
& H_{v}=-\left(g_{v}+g_{v}^{\dagger}\right) \\
& g_{f}=X_{e_{1}}^{o_{1}} X_{e_{2} \alpha_{2}}^{o_{e_{3}}^{o_{3}} \ldots X_{e_{p}}^{o_{p}}} \\
& H_{f}=-\left(g_{f}+g_{f}^{\dagger}\right) \\
& \operatorname{dim} \mathcal{H}_{\mathrm{gr}}=\# H_{1}\left(\Gamma, \mathbb{F}_{d}\right) \quad \mathcal{H}_{\mathrm{gr}} \cong\left(\mathbb{C}^{d}\right)^{2 g}
\end{aligned}
$$

For efficient homological qudit codes see H. Bombin and MA Martin-Delgado, quant-ph/0605094

Example:

$g_{v_{0}}=Z_{\left[v_{6}, v_{0}\right]} Z_{\left[v_{5}, v_{0}\right]} Z_{\left[v_{0}, v_{1}\right]}^{-1}$

$$
g_{f_{0}}=\dot{X}_{\left[v_{0}, v_{1}\right]} X_{\left[v_{1}, v_{9}\right]}^{-} X_{\left[v_{8}, v_{9}\right]}^{-1} X_{\left[v_{7}, v_{8}\right]}^{-1} X_{\left[v_{6}, v_{7}\right]}^{-1} X_{\left[v_{6}, v_{0}\right]}
$$

*SS Bullock and GKB, J. Phys. A submitted, quant-ph/0609070

From k-local to 2-local

$$
H=J_{\perp} \sum_{x-\text { links }} \sigma_{j}^{x} \sigma_{k}^{x}+J_{\perp} \sum_{y-\text { links }} \sigma_{j}^{y} \sigma_{k}^{y}+J_{z} \sum_{z-\text { links }} \sigma_{j}^{z} \sigma_{k}^{z} .
$$

- Exactly solvable
*A.Yu. Kitaev, Annals of Physics, 321,2 (2006)

- In the limit, $\left|J_{z}\right| \gg\left|J_{\perp}\right|$, pairs of spins along z-links are mapped to a qubit
- New spin operators on each z-link:

$$
\mathbf{1}_{2(1)} \otimes \sigma_{2}^{z} \rightarrow Z \quad \sigma_{1}^{y} \otimes \sigma_{2}^{x} \rightarrow Y \quad \sigma_{1}^{x} \otimes \sigma_{2}^{x} \rightarrow X
$$

$$
H_{\text {eff }}=-J_{\text {eff }} \sum_{\diamond} Y_{\text {left }} Z_{\text {up }} Y_{\text {right }} Z_{\text {down }}
$$

Unitary transformation:

$$
\prod_{\ni \text { white }} e^{i X_{j} \pi / 4}
$$

$H_{\mathrm{eff}}-J_{\mathrm{eff}}\left(\sum_{+} Z_{e_{1}} Z_{e_{2}} Z_{e_{3}} Z_{e_{4}}+\sum_{\square} X_{e_{1}} X_{e_{2}} X_{e_{3}} X_{e_{4}}\right)$

- Protected q. memory $\quad J_{\text {eff }}=\frac{J_{\perp}^{4}\left|J_{z}\right|}{16 J_{z}^{4}}$

String net condensed states

Spin-1

$$
\boldsymbol{H}=\underbrace{-\boldsymbol{U} \sum_{\Delta}\left(\sum_{j=1}^{3} S_{j}^{z}\right)^{2}}_{H_{U}}+\underbrace{J \sum_{j}\left(S_{j}^{z}\right)^{2}}_{H_{J}}-t \sum_{<i, j>}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)
$$

$$
g=\frac{3 t^{3}}{U^{2}}
$$

X.G. Wen, Phys. Rev. B, 68, 115413 (2003)

Properties

- Emergent (local) U(1) Gauge invariance, i.e. wavefunction invariant under the transformation

$$
U\left(\phi_{j}\right)=e^{\left(i \sum_{\Delta} \phi_{\Delta} \sum_{k=1}^{3} S_{k}^{z}\right)}
$$

- Artificial light polarization defined in terms of ordering of strings: +-+-+-... and -+-+-+
- Robust to perturbations. Energy 2U to break a cycle
- By adding a string tension term $J \sum\left(S_{j}^{z}\right)^{2}$ the system acquires two distinct phases in the ground state; a confined phase characterized by small closed loops, and a deconfined phase with large fluctuating loops

Implementions with atoms

- Hubbard model with atoms
- State dependent collisions. Restrict to subspace with one particle per well

L.M. Duan, E. Demler, M.D. Lukin, Phys. Rev. Lett. 91, 09402 (2003)

Implemations with polar molecules

- System: ${ }^{2} \Sigma_{1 / 2}$ hetero-nuclear molecules in electronic-vibrational ground-states
- Alkaline-earth monohalides (CaF,CaCl,MgCI...)
- single electron in outer shell
- Electric dipole moment in superposition
- of rotational states

$T \sim 500 n K$ Energy scales:

$\gamma / \hbar \sim 100 \mathrm{MHz}$	Spin-rotational coupling
$B / \hbar \sim 10 \mathrm{GHz}$	Rotational constant
$\omega_{\text {osc }} \sim 100 \mathrm{kHz}$	Lattice trap spacing
$\Gamma / \hbar \sim 10^{-3} \mathrm{~Hz}$	Black-body scattering rate
$\Gamma_{\text {scat }} / \hbar \sim 10^{-1} \mathrm{~Hz}$	Spontaneous emission

Rotational spectra of a single molecule

- rigid rotor
$H=B N^{2}$
$\left|N, M_{N}\right\rangle$
$E_{N}=B N(N+1)$

rotational ground state ...
- add spin-rotation coupling

$$
\begin{aligned}
& \mathrm{H}=\mathrm{B} \mathbf{N}^{2}+\gamma \mathbf{N} \cdot \mathrm{S} \\
& \left|\mathrm{~N}, \mathrm{~J}, \mathrm{M}_{\mathrm{J}}\right\rangle \quad(\mathrm{J}=|\mathrm{N} \pm 1 / 2|) \\
& \mathrm{E}_{\mathrm{N}, \mathrm{~J}=\mathrm{N} \pm 1 / 2}=\mathrm{BN}(\mathrm{~N}+1)+\left\{\begin{array}{l}
+\gamma \mathrm{N} / 2 \\
-\gamma(\mathrm{N}+1) / 2
\end{array}\right.
\end{aligned}
$$

$$
\mathrm{N}=0-\mathbf{\phi}^{-\mathrm{S}_{1 / 2} " \boldsymbol{\phi}-\mathrm{O}=1 / 2}
$$

... as spin-1/2-system

Two polar molecules: dipole-dipole interactions

- interactions of two polar molecules

$$
V_{\mathrm{dd}}=\frac{\vec{d}_{1} \cdot \vec{d}_{2}-3\left(\vec{d}_{1} \cdot \vec{e}_{b}\right)\left(\vec{e}_{b} \cdot \vec{d}_{2}\right)}{r^{3}}
$$

features of dipole-dipole interaction:

- long range $\sim 1 / r^{3}$
- angular dependence (anisotropic)

VS

attraction

- include spin-rotation coupling in adiabatic potentials for molecular dimers

- At typical optical lattice spacing: $\lambda / 2 \sim r_{y}=\left(2 \mathrm{~d}^{2} / \gamma\right)^{1 / 3}$
- rotation of dimers strongly coupled to spins
- Hunds case (c) excited states, $\quad\left\{|\mathrm{Y}|_{\mathrm{g}, \mathrm{u}} \pm(\mathrm{r})\right\} \quad\left(\mathrm{Y}=\Sigma_{\mathrm{i}=1,2} \mathrm{M}_{\mathrm{N}, \mathrm{i}}+\mathrm{M}_{\mathrm{S}, \mathrm{i}}\right)$
- solvable in closed form due to symmetries

Tunable spin patterns

- Adiabatic mixing with dipole-dipole coupled states by microwave fields

$$
H_{\mathrm{eff}}(r)=\sum_{i, f} \sum_{\lambda(r)} \frac{\left\langle g_{f}\right| H_{\mathrm{mf}}|\lambda(r)\rangle\langle\lambda(r)| H_{\mathrm{mf}}\left|g_{i}\right\rangle}{\hbar \omega_{F}-E(\lambda(r))}\left|g_{f}\right\rangle\left\langle g_{i}\right| \quad H_{\mathrm{spin}}=\left\langle H_{\mathrm{eff}}(r)\right\rangle_{\mathrm{rel}}
$$

Feature 1:
By tuning close to a given resonance one can select a specific spin pattern:

Polarization	Resonance	Spin pattern
\hat{x}	2_{g}	$\sigma^{z} \sigma^{z}$
\hat{z}	0_{u}^{+}	$\vec{\sigma} \cdot \vec{\sigma}$
\hat{z}	0_{g}^{-}	$\sigma^{x} \sigma^{x}+\sigma^{y} \sigma^{y}-\sigma^{z} \sigma^{z}$
\hat{y}	0_{g}^{-}	$\sigma^{x} \sigma^{x}-\sigma^{y} \sigma^{y}+\sigma^{z} \sigma^{z}$
\hat{y}	0_{g}^{+}	$-\sigma^{x} \sigma^{x}+\sigma^{y} \sigma^{y}+\sigma^{z} \sigma^{z}$
$(\hat{y}-\hat{x}) / \sqrt{2}$	0_{g}^{+}	$-\sigma^{x} \sigma^{y}-\sigma^{y} \sigma^{x}+\sigma^{z} \sigma^{z}$
polarization rel. to body axis, here set	$\vec{e} b$	

Tunable spin patterns

- Adiabatic mixing with dipole-dipole coupled states by microwave fields

$$
H_{\mathrm{eff}}(r)=\sum_{i, f} \sum_{\lambda(r)} \frac{\left\langle g_{f}\right| H_{\mathrm{mf}}|\lambda(r)\rangle\langle\lambda(r)| H_{\mathrm{mf}}\left|g_{i}\right\rangle}{\hbar \omega_{F}-E(\lambda(r))}\left|g_{f}\right\rangle\left\langle g_{i}\right| \quad H_{\text {spin }}=\left\langle H_{\mathrm{eff}}(r)\right\rangle_{\text {rel }}
$$

Feature 2:

Can choose the range of the interaction for a given spin texture

Multiple fields

Feature 3: for a multifrequency field spin textures are additive \Rightarrow toolbox.

- 1D XYZ model

$$
H=\sum_{<i, j>} J_{x} \sigma_{i}^{x} \sigma_{j}^{x}+J_{y} \sigma_{i}^{y} \sigma_{j}^{y}+J_{z} \sigma_{i}^{z} \sigma_{j}^{z}
$$

- 2D Ising model

$$
H=\sum_{<i, j>} J \sigma_{i}^{z} \sigma_{j}^{z}
$$

- 3D Heisenberg model

$$
H=\sum_{<i, j>} J \overrightarrow{\sigma_{i}} \cdot \overrightarrow{\sigma_{j}}
$$

- Typical coupling strengths:

$$
J \sim 10-100 \mathrm{kHz}
$$

Polarization	Resonance
\hat{z}	0_{u}^{+}
\hat{y}	0_{g}^{-}
\hat{y}	0_{g}^{+}
\hat{x}	2_{g}
\hat{x}	0_{u}^{+}
\hat{z}	0_{g}^{-}
\hat{z}	0_{u}^{+}
\hat{x}	1_{u}

sign adjustable by tuning above or below given resonance

Model I: Error protected ground states

* B. Dou çot, M.V. Feigel'man, L.B. Ioffe, A.S. Ioselevich, Phys. Rev. B 71, 024505 (2005).
- Model on 2D square lattice*

$J_{z} \sum_{i j} \sigma_{i, j}^{Z} \sigma_{i, j}^{Z}+1$

Results: Design and verification on 3×3 lattice

- Noise resilience as measured by rms magnetization in ground manifold
- as function of the detuning
- give worst case scenario for logical bit flip errors / phase flip errors
- protected region near 2 g
- Verification by absorption spectroscopy

- Field polarization out of plane
- Probe gap at J/2
- Field polarization in plane
- Gap disappears and excitations are spin-waves S^{\times}

 shown when all 3 being z polarized, resp. near $0_{\mathrm{g}}, 1_{\mathrm{g}}, 2_{\mathrm{g}}$ $2 z / \lambda$

Spin pattern	Residual long range
- $\sigma^{z} \sigma^{z}$	coupling strengths $\left\|J_{l r}\right\|$
$\begin{aligned} & -\sigma^{x} \sigma^{x} \\ & -\sigma^{y} \sigma^{y} \end{aligned}$	$\boldsymbol{-} \boldsymbol{-},<10^{-2}\left\|J_{z}\right\|$
- Other	$\cdots \cdots \ldots<10^{-3}\left\|J_{z}\right\|$
$\left\|J_{\perp}\right\|=0.4\left\|J_{z}\right\|$	

Operator fidelity (on a 4 spin configuration)

$$
\sup \left[\| H_{\mathrm{spin}}-H_{\mathrm{spin}}^{(\mathrm{II})}|\psi\rangle \|_{2} ;\langle\psi \mid \psi\rangle=1\right]=10^{-4}\left|J_{z}\right|
$$

Observing anyonic statistics

Excitations created by spin flips (along a z-link)

- Effective interaction $\quad H_{\text {eff }}=-J_{\text {eff }} \sum_{\diamond} Y_{\text {left }} Z_{\text {up }} Y_{\text {right }} Z_{\text {down }}$
- Anyons created by single qubit operators:

- Fusion rules (as obtained from the action of the Pauli operators):$\times \square=1$
$\square \times \diamond=\square \diamond$
$\diamond x \diamond=1$$\square \times \square \diamond=1$$\times$$\diamond \times \square \diamond=\square$
- Relative statistics under braiding:

Particles	Statistical phase
$\square \square$	0
$\diamond \diamond$	0
$\square \diamond$	π
$\square \diamond \square \diamond$	0

Braiding

- Prepare two quasiparticle pairs

$$
|\Psi(1)\rangle=S_{A}^{Y} S_{B}^{Z}\left|\lambda_{g}\right\rangle
$$

- Beam splitter at I
- Adiabatically drag left

$$
H^{\prime}(t)=H+\sum_{e \in \operatorname{Path}} \delta J_{e}(t)\left(\sigma_{1}^{z} \sigma_{2}^{z}\right)_{e}+\kappa(t) Z_{e}(t)
$$

- Adiabatically drag $>$ CCW around \square
- Adiabatically drag r right
- Inverse Beam splitter at I
- Measure location of \square

Dynamical+Berry phases

$$
\left.\left\langle S_{I}^{Z}\right\rangle=\sin (\beta)+\pi\right) \quad \text { Statistical phase }
$$

For trivial braid use same steps but in different order

- Adiabatically drag \diamond CCW around
- Adiabatically drag left
- Adiabatically drag right
- Measure location of \square

$$
\left\langle S_{I}^{Z}\right\rangle=\sin (\beta)
$$

S.S. Bullock, GKB quant-ph/0609070 see also
J. Pachos, quant-ph/0511273;
C. Zhang, V.W. Scarola, S. Tewari, and
S. Das Sarma, quant-ph/0609101

Integer spin lattice models

$$
H_{\mathrm{m}}=B \mathbf{N}^{2}+\gamma \mathbf{N} \cdot \mathbf{S}+b \mathbf{I} \cdot \mathbf{S}+c I^{z} S^{z}+e q \frac{3 I^{z 2}-I(I+1)}{4 I(2 I-1)}
$$

$$
\square \longrightarrow \longrightarrow \quad \sim=2
$$

$$
F=1
$$

$$
N=0
$$

Encode here
GKB, A. Micheli, and P. Zoller, quant-ph/0612180

Dipole-dipole with hyperfine

Asymptotic couplings solvable
Can't build generic two body Hamiltonians but can build a large class

Ex: ID Generalized Haldane Model

$$
H_{\theta}=U \sum_{j}\left(\cos \theta \vec{S}_{j} \cdot \vec{S}_{j+1}+\sin \theta\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)^{2}\right)
$$

Numerical optimization over 4 fields

Realizations $\triangle, \square, \bigcirc$ have error < 0.05

Lattice spacing:
$\Delta z=200 \mathrm{~nm}$

Residual next-nearest neighbor interaction

$$
H_{\theta}=U \sum_{j}\left(\cos \theta \vec{S}_{j} \cdot \vec{S}_{j+1}+\sin \theta\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)^{2}\right)
$$

Realizations $\triangle, \square, \bigcirc$ have error < 0.05

Verification

- Spin structure factor $S_{O}(q)=\frac{1}{N} \sum_{j, j^{\prime}=1}^{N} e^{i q\left(j-j^{\prime}\right)}\left\langle O_{j} O_{j^{\prime}}^{\dagger}\right\rangle$
- obtainable from time of flight measurements (coincidence measurements)

Teleportation with VBS*

- Valence bond state is ground state of

$$
H=U\left(\sum_{j} \vec{S}_{j} \cdot \vec{S}_{j+1}+\frac{1}{3}\left(\vec{S}_{j} \cdot \vec{S}_{j+1}\right)^{2}+\frac{2}{3} \mathbf{1}_{9}\right)=U \sum_{j} P^{S_{\mathrm{tot}}=2}(j, j+1)
$$

- represent state as subspace of chain of virtual spin-1/2 particles

- teleportation from one end to the other by single particle measurements only in basis $\quad\{|0\rangle,(|-1\rangle \pm|1\rangle) / \sqrt{2}\}$
- Also serves as verification of ground state
*l. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki, CMP 115, 477 (1988)
F. Verstraete, M.A. MartinDelgado, J.I. Cirac, PRL 92, 087201 (2004).

Summary \& Outlook

- We can design a large class spin-spin interactions with polar molecules
- Tunable range and anisotropy
- Large coherence to decoherence ratio Q~800-10000 for reasonable trapping parameters
- Examples of Lattice Spin Model with TO
- The Kitaev Model
- Gapped system with abelian excitations
- Strategy for measuring quasiparticle statistics
- Higher spin models
- Isotropic model: rich phase diagram, quantum communication channel
- Coupling strength, hence gap for topological protection, limited by lattice spacing. But optical lattices limited to lattice spacings at optical transition wavelengths. Strategies for improvement
- Many useful TO models built up from three-body projectors (e.g. that enforce fusion rules). In principle electromagnetic interactions can be used to build these directly

Stronger correlations: self-assembled crystals

- Engineer repulsive interactions*

other particles see honeycomb lattice

dipoles generate 2D triangular lattice

Three-body interactions

$$
\begin{array}{r}
H_{\mathrm{dd}}=f\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) S_{1}^{+} S_{2}^{-}+f\left(\mathbf{r}_{1}, \mathbf{r}_{3}\right) S_{1}^{+} S_{3}^{-}+f\left(\mathbf{r}_{2}, \mathbf{r}_{3}\right) S_{2}^{+} S_{3}^{-}+h . c . \\
f\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)=\frac{\mathbf{d}_{i} \cdot \mathbf{d}_{j}-3 \mathbf{d}_{i} \cdot \hat{\mathbf{r}}_{i, j} \mathbf{d}_{j} \cdot \hat{\mathbf{r}}_{i, j}}{r_{i, j}^{3}}
\end{array}
$$

- Eigenstates labeled by total number of excited rotational quanta
- Under low saturation couple to states with one shared rotational quanta. These states carry 3-body entanglement (e.g. W states)
- Typically, the non scalar (i.e. spin dependent) piece of the interaction is dominately pairwise but may be engineered to be dominately three body

Spin-1 coupled to F=0 excited states

$$
H_{\mathrm{eff}}=g\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)|000\rangle\langle 000|+2-\text { body }
$$

Open questions

- Most spin-lattice models with TO have many body interactions (k-local for $k>3$). Can we build effective Hamiltonians using mediator particles?

System spins represented by edges. Edges oriented to account for neighboring interactions. Vertex(face) ancilla can mediate vertex(face) operators

Qudit ancilla

$$
\begin{aligned}
& H_{a}=-E_{a}|0\rangle_{a}\langle 0| \\
& V_{a}=J_{v} \sum_{r=1}^{k}\left(Z_{e_{r}}^{o_{r}} \otimes|r-1\rangle\langle r|+h . c .\right) \\
& H_{v e \mathrm{eff}}=U \prod_{e=[*, v]} Z_{e} \prod_{e=[v, *]} Z_{e}^{-1}+O(\epsilon) \\
& U=(-1)^{k} E_{a}\left(J_{v} / E_{a}\right)^{k} \quad\|\epsilon\| \ll 1
\end{aligned}
$$

- Can we find efficient construction of observables for TO in spin lattices?
- Ground state degeneracy
- Topological entanglement
- Mutual statistics for non-abelian anyons

