Quantum State Preparation in Microtraps

or

How to move an atom?

Thomas Busch

Ultracold Quantum Gases Group, UCC

Motivation

- single trapped neutral atoms are promising systems for observing effects in quantum information
- highly controllable microstraps for single neutral particles are developed in several labs wordwide
- storage, movement and preparation of atoms have to be addressed
- internal state manipulation well known, but *spatial* states to be addressed

Overview

- Atom Trapping
- Movement of atoms in microtraps
- Three Level Atom Optics (spatial STIRAP)
- Four Level Atom Optics
- Outlook: Four Level Atom Optics in 2D
- Conclusions

Experimental Sytems

G. Birkl, TU Darmstadt/ Hannover

P. Grangier, CNRS

microscopic dipole traps

diffractive modulators

How to move an atom?

Solution: Tunneling (decrease and increase distance between traps)

Problem: Rabi Oscillations

success depends on control of three parameters:

- interaction time
- t approach time
- a_{min} minimum distance between traps

precise experimental control necessary for high fidelities

Three-Level Atom Optics

Three-Level Atom Optics

Eckert et al. PRA 70 (2004)

Three-Level Atom Optics

$$H = \begin{pmatrix} 0 & -J_{ML} & 0 \\ -J_{LM} & 0 & -J_{MR} \\ 0 & -J_{MR} & 0 \end{pmatrix} \qquad -J_{LM} -J_{MR}$$

three level system possesses dark state

$$|\psi(\theta)\rangle = \cos \theta |L\rangle - \sin \theta |R\rangle \qquad \tan \theta = \frac{J_{LM}}{J_{MR}}$$

STIRAP-like techniques can be developed
Counterintuitive scheme

$$\tan \theta : 0 \to \infty$$

$$\theta : 0 \to \frac{\pi}{2}$$

$$\cos \theta : 1 \to 0$$

$$\sin \theta : 0 \to 1$$

Spatial STIRAP

States:

 $|1\rangle \widehat{=} |0\rangle_L$ $|2\rangle \widehat{=} |0\rangle_M$ $|3\rangle \widehat{=} |0\rangle_R$

Frequencies:

 $\Omega_p \widehat{=} - J_{LM}$ $\Omega_s \widehat{=} - J_{MR}$

Detunings: $\Delta_1 \widehat{=} E_M - E_L$

 $\Delta_2 \widehat{=} E_M - E_R$

also: analogues to CPT and EIT can be constructed

Spatial STIRAP

- Moving an atom through an array of three traps can be easiest done by *first* increasing the transition probability between the two empty traps and then between the middle and the occupied trap
 - counterintuitive coupling scheme
- makes use of a *dark state*, that only includes population in two states. No population in the transition state at any point.
 - → valuable in optics to avoid losses due to spontaneous emission
- translation has to be a zero mode
 - energy conservation
- moving is only one aspect, large potential for
 - quantum state preparation

Example: Quantum State Preparation

Aim: Create a spatial superposition state with full control over the symmetry

 \blacktriangleright allow for different trapping frequency ω_R

$$H = \hbar \begin{pmatrix} 0 & -\Omega_{LM}(t) & 0 & 0\\ -\Omega_{LM}(t) & 0 & -\Omega_{MR}(t) & 0\\ 0 & -\Omega_{MR}(t) & \omega - \omega_R & -\Omega_R\\ 0 & 0 & -\Omega_R & \omega - \omega_R \end{pmatrix}$$

(in terms of the asymptotic ground states of the harmonic traps)

Double Dark State

this Hamiltonian has an eigenstate that is a double dark state

$$\begin{split} \phi^{\pm} \rangle &= \cos \theta |0\rangle_L - \sin \theta \left[(|0\rangle_{R_L} \pm |0\rangle_{R_R}) / \sqrt{2} \right] \\ &= \cos \theta |0\rangle_L - \sin \theta |0\rangle_R^{\pm} \end{split}$$

$$\tan \theta = \sqrt{2} \frac{\Omega_{LM}}{\Omega_{MR}}$$

Condition: $\omega - \omega_R = \pm \Omega_R$

If the difference in trapping frequency between the traps is equal to the tunnel splitting in the double well trap, a dark state exists.

- symmetric or antisymmetric state can be chosen by adjusting $\,\omega_R$

Double Dark State

Double Dark State

Transfer

Adiabaticity Criteria

The whole process has to be *adiabatic*:

1) Avoid excitations into higher centre-of-mass states:

$$T + \Delta t > \frac{1}{\omega}$$

2) Avoid mixing between the symmetric and the antisymmetric state:

Stability

Symmetric State

trapping frequency in double well trap is ±10% out of resonance

transfer still > 99% and symmetry perfectly kept

Stability

Anti-symmetric State

trapping frequency in double well trap is ±10% out of resonance

transfer still > 99% and symmetry perfectly kept

Outlook

Collaborators

Shanghai

Prof. Shi Qi Jin Prof. Shang Qing Gong Dr. Yue Ping Niu

Cork

Kieran Deasy Dr. Sile Nic Chormaic TB

Conclusions

- Three-Level-Atom Optics allows for high fidelity manipulations of single atoms using a counter-intuitive approach and reproach sequence
- Shown a manipulation scheme to create a centre-of-mass superposition state for a single atom in a series of microtraps, with controlled symmetry
- Systems not only robust against experimental uncertainties, but also very robust against noise.
- Complete set of quantum gates can be constructed for centre-of-mass states.

