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Abstract

This thesis presents several aspects of the theory of BPS-monopoles. In
particular, it deals with Nahm’s construction of static monopoles and with
the description of monopole dynamics through two different methods. The
first of these is Manton’s geodesic approximation, the second is an approach
in which the monopoles are treated as point particles. It is shown how these
methods are related and how they complement each other. To make this
thesis more self-contained, I have included an introduction to the soliton
techniques which are on the basis of the geodesic approximation and an
elementary treatment of the ADHM-construction of instantons, which is
on the basis of Nahm’s construction for monopoles.
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Preface

Motivation and History

This thesis is about magnetic monopoles, i.e. particles with magnetic charge. Despite
the fact that such particles have never been observed, their properties have been studied
theoretically over a period of more than a century and searches for monopoles have been
conducted in accelerators each time a new energy regime was opened up to experiment.
In this section, I will give a very brief overview of the history of the subject and try to
indicate the main reasons for the continuing interest in monopoles.

The history of the study of monopoles can be divided into two parts, separated by the
year 1931. Before 1931, there were no physical arguments for the existence of monopoles
in nature. Still, there was some mathematical interest in magnetic monopoles, because
the introduction of magnetic charges can make Maxwell’s equations more symmetrical.
It is easy to check that Maxwell’s equations for the vacuum are invariant when we apply
the following transformation to the fields.

E → −B, B → E

This symmetry is called electric/magnetic duality. It is broken when one introduces elec-
tric charges. However, it can be restored by the introduction of magnetic charges. When
an electric current density jµ and a magnetic current density jm

µ are present, Maxwells
equations take the form

∇ ·B = jm
0 (∇× E)i + ∂tBi = −jm

i

∇ · E = j0 (∇×B)i − ∂tEi = ji
(0.1)

and it is easy to check that this is invariant under the generalized electric/magnetic duality
transformation given by

E → −B B → E
jµ → −jm

µ jm
µ → jµ

(0.2)

In 1931, Dirac published an article in which he argued that the existence of a monopole
somewhere in the universe would explain the quantization of electric charge [2]. This
article excited a lot of interest in monopoles among physicists, since no other explana-
tion for the quantization of electric charge was (and is) available. However, because
monopoles were not found in experiments, and because there were mathematical difficul-
tites with Dirac’s monopoles, interest gradually died down again until, in 1974, ’t Hooft
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PREFACE 5

and Polyakov independently found that monopoles appear naturally as regular, stable
classical solutions in gauge theories whose gauge group has a compact covering [3, 4].
Although this class does not include the standard model, it is certainly conceivable that
grand unified theories will include these ’t Hooft-Polyakov monopoles.

Shortly after ’t Hooft and Polyakov’s discovery, it was conjectured that there might be
a generalized electric/magnetic duality in certain theories, which would make it possible
to study the properties of the gauge bosons of the theory at large coupling by looking at
the properties of monopoles at small coupling [5, 6]. One could then translate the result
back to the gauge particle picture by applying a duality transformation. This new way
of studying the properties of gauge particles would be especially useful in the study of
the strong force, because it would make it possible to study important non perturbative
processes like quark confinement and hadron formation by doing perturbation theory in
the dual picture.

An important step in this direction was made in 1994, when Seiberg and Witten
found an exact low energy effective action for N = 2 supersymmetric Yang-Mills theory,
a distant relative of QCD, assuming electric/magnetic duality [7]. Since then, the study
of monopoles has once more come to the center of attention and monopoles and their
dynamics are now a very active field of research.

Content of this thesis

In this thesis, we will not be very concerned about duality, but concentrate mostly on
the dynamics of magnetic monopoles and especially on how to model these. The most
important chapter of this thesis is therefore the last chapter, chapter 4, in which we treat
two different models which can be used to describe monopole dynamics.

The first of these is the so called geodesic approximation. In this approach, monopole
motion is described in terms of geodesic motion on a moduli space, a manifold of gauge
equivalence classes of static monopole solutions. The geodesic approximation describes
the low energy dynamics of monopoles of like magnetic charges very well, but it cannot
describe situations that involve monopoles of opposite magnetic charges. Also, it does
not incorporate radiation effects. The second model is an approximation which treats the
monopoles as point particles. This model can incorporate monopoles of opposite magnetic
charges and radiation effects, but it works only if the monopoles are far apart, which is a
limitation that does not apply to the geodesic approximation.

The earlier chapters of this thesis introduce the necessary mathematical tools and
treat some properties of static monopoles.

• Chapter 1 treats the basic techniques of soliton physics which we need later on. In
particular, it explains the idea behind the geodesic approximation in an elementary
setting.

• Chapter 2 is a brief description of the ADHM-construction of all self-dual instantons
in Yang-Mills theory. This forms the necessary background for the description
of Nahm’s construction for monopoles in chapter 3. This chapter also serves the
purpose of introducing Yang-Mills theory.

• Chapter 3 starts with an introduction of the Georgi-Glashow model, the model in
which we want to study monopoles. It is shown how ’t Hooft-Polyakov monopoles
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can appear in this model and how exact classical solutions which represent static
monopole configurations can be obtained in the so called BPS-limit of this model.
In particular, the Nahm construction which (in principle) yields all these solutions is
treated in some detail and it is shown that, for magnetic charge k, there is a 4k− 1
dimensional family of static monopole solutions, modulo gauge transformations.
This is an important result, because it allows us to conclude (in chapter 4) that the
dimensions of the moduli spaces used in the geodesic approximation have to be 4k.
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Chapter 1

Solitons

Throughout this thesis, solitons will play a very important role. This chapter will start
with a review of some of the basic concepts and techniques of soliton physics and culminate
in the description of a method to describe the low energy dynamics of certain solitons, the
so called geodesic approximation. Much of the material in the earlier part of this chapter
is taken from [8], which is a good introduction to the subject.

1.1 Solitons: What are they ?

The word soliton has been used several times now and you may be wondering what we
mean with it. This is actually not an easy question to answer. There are two reasons
for this. First, the word soliton is used both for a certain kind of mathematical object
and for a certain physical particles whose description involves these mathematical objects.
Second, even the definition of a soliton as a mathematical object varies according to the
context in which the word is used, so that the mathematical definitions in the literature
(see e.g. [8]) are usually too restrictive to be of general use.

The only really general mathematical statement one can make about a soliton, is that
it is a regular solution to the classical equations of motion for some field theory which
keeps the energy for this theory finite.

If we were doing classical physics, it would be easy to see how such a solution could
correspond to a physical particle. The finiteness of the energy implies that the energy
density of a soliton will go to zero at spatial infinity. We can thus hope that, for any
fixed time, we can find some area of space where (most of) the energy of the soliton is
localised. A logical interpretation would then be that this area is occupied by a particle.
Thus, a sufficiently ”nice” soliton could be interpreted as a finite-sized particle moving
through space.

Of course, we really want to do quantum physics and this makes the interpretation of
the mathematical soliton as a particle much more difficult. Still, even in quantum physics,
the term soliton refers to a finite-sized particle related to a classical finite energy solution.
Rather than go into details about the nature of this relationship now, let us just start to
do some calculations that involve solitons with this ”particle picture” in mind. A more
thorough understanding should then develop as we go along.

7



8 CHAPTER 1. SOLITONS

1.2 Solitons in 1+1 dimensions; the kink model

To get a feeling for soliton physics, let us consider a toy model with one space and one
time dimension, governed by the following Lagrangian:

L(t) =

∫
dx

{
1

2
(∂tφ)2 − 1

2
(∂xφ)2 − U(φ)

}
(1.1)

In this equation, we take U to be a potential with degenerate, discretely located minima.
The value of U at these minima is taken to be zero and we will call the location of the ith

minimum g(i). The equation of motion which follows from (1.1) is

∂2
t φ− ∂2

xφ = −∂U

∂φ
(1.2)

and the energy is given by

E =

∫
dx

{
1

2
(∂tφ)2 +

1

2
(∂xφ)2 + U

}
. (1.3)

That is, we want to find solutions to the equation of motion (1.2) which keep the energy
E finite. Now we see that the energy density is the sum of three positive terms and hence
each of these terms has to be integrable to make the energy converge. Imposing this
condition on the first two terms in (1.3) gives us the boundary condition that ∂tφ and ∂xφ
have to go to zero at spatial infinity. The third term in the energy density is the potential
U. Since we have taken this to be larger than or equal to zero, it is clear that, in order for
the energy to converge, the field configuration φ(x) has to be such that U(φ(x)) goes to
zero as x goes to plus or minus infinity. This gives us boundary conditions for the field φ
itself. To keep the energy finite, φ(x) has to approach one of the values g(i) as x goes to
infinity and another of the g(i) (possibly the same) as x goes to minus infinity.

Thinking from a ”particle perspective,” it makes sense to restrict ourselves to time
independent solitons at the moment, since these would correspond to particles at rest.
Also, once we have a time independent soliton, we can turn it into a freely moving soliton
by applying a Lorentz boost. Of course the opposite is also true, so when we find all static
solitons, we will effectively find all freely moving solitons in the process.

When we restrict to time independent configurations, the equation of motion is also
much simplified; it reduces to

∂2
xφ =

∂U

∂φ
(1.4)

If we temporarily reinterpret the space coordinate x by choosing to think of it as a time
coordinate, then we see that this equation is just the equation of motion for a particle
moving in one space dimension (with coordinate φ), moving in a potential −U. The
boundary condition that φ has to approach one of the g(i) as x goes to plus or minus
infinity can also be fit into this picture. It just says that the particle moves from a certain



1.2. SOLITONS IN 1+1 DIMENSIONS; THE KINK MODEL 9

asymptotic location g(i), which it used to occupy infinitely long ago (as x goes to minus
infinity) to an asymptotic location g(j) which it will occupy in the far, far future (as x
goes to infinity). When this condition is satisfied, then, in our t-independent setting, the
boundary condition on ∂xφ is also satisfied. The condition on ∂tφ is of course trivially
satisfied in the t-independent case.

If the potential U has a unique minimum g(0), then it is easy to see that the only
solution to this system is given by φ(x) = g(0). For a potential with several (degenerate)
minima however, more interesting solutions are also possible. At very negative x, φ can
start off at the location of one minimum of U , only to approach at the location of another
minimum for very large x; our ‘particle’ can now move between two minima.

For our toy model we can in fact study this phenomenon by solving the equation of
motion analytically. Multiplying both sides of (1.4) by ∂xφ and integrating, we see that

∂xφ = ±
√

2U(φ) (1.5)

If φ is an invertible function of x, then this in turn implies

∂x

∂φ
= ± 1√

2U(φ)
(1.6)

Note that the condition that φ(x) is invertible will of course never be satisfied for the
trivial solutions to the equations of motion which are given by φ(x) = g(i) for some i.
Therefore we can not expect to find these by the method we are describing here. This
method is obviously only suited for the study of nontrivial soliton solutions. Integrating
(1.6), we obtain

x− x0 = ±
∫ φ(x)

φ(x0)

dψ

{
1√

2U(ψ)

}
(1.7)

where, in this equation, we may still choose x0 and φ(x0) to suit our needs. We can now
choose a potential, substitute it into the equation above and try to solve for φ.

As we are interested in potentials with multiple minima, we take

U(φ) =
1

4
λ

(
φ2 − m2

λ

)2

This has potential has minima at φ = ± m√
λ
. Substituting U in (1.7) and choosing φ(x0)

equal to zero gives

x− x0 = ± 1√
2m

log

∣∣∣∣∣m/
√

λ− φ

m/
√

λ− φ

∣∣∣∣∣
which can be inverted to give
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φ(x) = ± m√
λ

tanh

(
m√
2
(x− x0)

)
(1.8)

These solutions of (1.4) do indeed approach one of the minima of the potential when x
goes to infinity and the other one when x goes to minus infinity. In figure 1.1(a), we have
plot the graph of a solution with x0 = 0. The overall shape of this graph has provided the
solutions given by (1.8) with the name ”kinks”. Figure 1.1(b) shows a plot of the energy
density of the kink with x0 = 0. We can see clearly that the mass/energy of this kink is
concentrated around x = 0, as we would hope.
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Figure 1.1:
(a) graph of the kink solution
(b) graph of the kink’s energy density

The kink model is very simple, but it has some interesting features which have ana-
logues in the more complicated models we will study later. One of these is the way we
derived boundary conditions on solutions to the static equations of motion through the
requirement of minimal energy. In the following sections, we will often come back to the
kink model when we need an explicit example of a general feature of soliton physics.

Before we go on, note as an aside that if we generalise the models studied in this
section by adding some more scalar fields, but keep working in one space dimension, we
can still use the analogy of a particle moving in a potential −U (of course, the particle will
now be moving in a higher dimensional space). These generalised models are already far
more difficult and no general solution like (1.7) is known for these. A technique which can
often still provide some solutions is to use trial functions with a number of free parameters



1.3. TOPOLOGICAL SECTORS 11

to determine the trajectory of the ’particle’ and solve for the time dependence afterwards.
See [8] for details.

1.3 Topological Sectors

In the previous section, we noted that a finite energy solution to the equations of motion
has to approach one of the minima of the potential at the edge of space. More explicitly,
for every solitonic solution φ(x) to the equations of motion (1.2) we had to have

φ(x) → g(i) (x → +∞)

φ(x) → g(j) (x → −∞)

for some i, j. If we now have another solution ψ which does not have the same boundary
conditions at infinity, then it is clear that it will be impossible to deform this solution
continuously into φ without making the energy become infinite somewhere in the process.
Thus, if we allow only deformations which leave the energy finite, then solutions with
different boundary conditions are topologically different. We can now classify the solutions
into topological sectors by the possible pairs of boundary values and we call these values
the topological indices of a solution. Because time evolution of a solution is just another
form of continuous deformation (and because it obviously leaves the energy finite), a
solution always remains in the same topological sector, so we can say that topological
indices are preserved quantities.

In higher dimensional theories, one often still has topological sectors into which field
configurations fall according to their boundary conditions. However, there is usually no
clear equivalent of the topological indices, because the edge of space no longer consist of
a finite number of points. In stead, one often has conserved quantities called topological
charges, which label field configurations which are topologically distinct. These charges
usually have corresponding conserved currents. For our 1+1-dimensional system, we can
also define such a topological charge Q, with a corresponding conserved current k. We
can take

Q = φ(∞)− φ(−∞)

kµ = εµν∂νφ

Using the antisymmetry of the epsilon tensor, one easily verifies that we have

∂µk
µ = 0,

so k is indeed a conserved current. Also, we have

Q =

∫ ∞

−∞
k0 dx,

from which we see that Q is indeed the charge corresponding to this current.



12 CHAPTER 1. SOLITONS

Of course, for one dimensional models, the topological charge is not very useful, as
the topological indices already contain all the information that could be gained from it
(and more). Still, I thought it would be useful to introduce the charge Q here, because
it is the simplest example of a topological charge I know. We will see more interesting
topological charges later.

1.4 Quantisation of Static Solitons;

Particle Interpretation

In this section, we will go into the quantisation of static solitons and in particular into
that of the kink. We will also try to give the kink solution an interpretation in terms of
particles.

To quantise static solitons, we use a semi-classical approximation to the full quantum
field theory. I will first give a short review of this method for theories with a finite number
of coordinates and then generalise to field theory, where the number of coordinates is
infinite.

Let us start by looking at the theory with Lagrangian given by

L =
n∑

i=1

(∂tφ
i)2 − V (φ)

Static classical solutions for this theory are given by the coordinate vectors φ for which
the potential energy V has a stationary point. In order to get a stable solution, this
stationary point has to be a (local) minimum. Around such a minimum, attained, say,
for φ = φ̃ the potential may be expanded as follows:

V (φ) = V (φ̃) + (φi − φ̃i)∂i∂jV (φ̃)(φj − φ̃j) + O((φ− φ̃)3) (1.9)

If we now change coordinates to a system in which the matrix ∂i∂jV (φ̃) is diagonal and
the origin is in φ̃, then we can rewrite the former expansion as

V (φ) = V (φ̃) + ω2
i η

2
i + O(η3) (1.10)

where the ηi are the new coordinates and the ω2
i are the eigenvalues of ∂i∂jV (φ̃), which

we all know to be positive, because U has a minimum in φ = φ̃. We see that, to second
order in η, this is just the potential for a system of non coupled harmonic oscillators with
frequencies ωi. This can be solved exactly, giving the well known energy levels

E~n = V (φ̃) + ~

n∑
i=1

(
ni +

1

2

)
ωi

We may now hope that the third and higher order terms in the expansion are small as
compared to the second order term and if they are, we can treat them as perturbations.
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For field theory, the situation is exactly analogous, but for the fact that the number
of ”coordinates” goes to infinity. For the Lagrangian (1.1), the potential energy is given
by

V [φ] =

∫
dx

{
1

2
(∂xφ)2 + U(φ)

}

again, static classical solutions for this system are given by ”coordinate vectors” (i.e.
functions) φ(x) for which the potential energy is stationary. If φ̃(x) is such a function
then, using partial integration, we can expand the potential energy as

V [φ] = V [φ̃] +

∫
dx

{
(φ− φ̃)

[
−(∂x)

2 +

(
∂2U

∂φ2

)
φ̃

]
(φ− φ̃)

}
+ O((φ− φ̃)3) (1.11)

This expansion is the field theoretical analogue of the expansion (1.9). The second term
in (1.11) is just the second order change in V [φ] as the field is changed from φ̃ to φ. The
first order term in φ− φ̃ is zero, because the configuration φ we are expanding around is
a stationary point of the potential energy functional V.

To reach the analogue of (1.10), we now need to solve the following eigenvalue equation:

[
−(∂x)

2 +

(
∂2U

∂φ2

)
φ̃

]
η = ω2η (1.12)

This will result in eigenvalues ωi and orthonormal eigenfunctions or ”normal modes” ηi,
where i is some index variable. If we now write φ− φ̃ =

∑
i ci(t)ηi(x) then we can rewrite

the expansion (1.11) as

V [φ] = V [φ̃] +
1

2

∑
i

ω2
i c

2
i + O(c3)

using orthonormality of the ηi. This formula corresponds to (1.10). The Lagrangian (1.1),
too, can now be given in terms of the ci. We have

L = −V [φ̃] +
1

2

∑
i

{
(ċi(t))

2 − ω2
i c

2
i

}
+ O(c3) (1.13)

Again, we see that, to second order, this is just a sum of non coupled harmonic oscillators,
be it an infinite sum this time. Solving this system, we get exactly the same expression
as before for the energy levels:

E~n = V [φ̃] + ~
∑

i

(
ni +

1

2

)
ωi

Note that, because of the infinite summation over i, we have infinite ground state
energy. This is a normal situation in field theory and no cause for worry as we can just
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”shift the energy scale by an infinite constant” to make the energy of physical states
become finite again.

As an explicit example, we will now apply the method we just sketched to the kink
model. For this model, the potential energy is

V [φ] =

∫
dx

{
1

2
(∂xφ)2 +

λ

4

(
φ2 − m2

λ

)2
}

Before studying the actual kink solution, it will be useful to study the semi-classical
quantisation of one of the two trivial field configurations which correspond to the absolute
minima of the potential. Let us take φ1(x, t) = m/

√
λ (quantisation of −φ1 is of course

exactly analogous). Writing ψ = φ− φ1, the expansion of the potential becomes:

V [φ] =

∫
dx

{
1

2
ψ

(−(∂x)
2 + 2m2

)
ψ + m

√
λψ3 +

1

4
λψ4

}

We see that, for small λ, the cubic and quartic terms will be small compared to the
quadratic terms and thus we can hope to treat them by perturbation. Here we will only
solve the quadratic problem which remains if the cubic and quartic terms are ignored.
This means that the next thing to do is solving the eigenvalue equation (1.12). For the
present case, this reduces to

(−(∂x)
2 + 2m2

)
η = ω2η

This results in a continuous spectrum of eigenvalues ω2
k with corresponding eigenfunctions

ηk given by

ω2
k = k2 + 2m2 (1.14)

ηk = eikx

In this approximation the energy is equal to

En =

∫ ∞

0

dk

{(
n(k) +

1

2

)
~
√

k2 + 2m2

}

We see that this corresponds to the energy of an ensemble of free particles with mass√
2m~, n(k) of which have momentum between k and k + dk. These particles are the

elementary quanta of this theory and we will call them mesons. The state that has
n(k) = 0 for all k can be interpreted as a state with no particles present whatsoever and
is therefore identified with the vacuum.

Our next step is to apply the semi-classical approximation to the kink solution and we
will see that this yields a second kind of particle, which is not present in the perturbations
of the vacuum and which interacts with the mesons.

For our kink, we take the solution with positive sign and x0 = 0 in (1.8) and denote
it φk, that is, we define
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φk(x) :=
m√
λ

tanh

(
m√
2
(x)

)
(1.15)

Expanding V around φk and writing ψ = φ− φk, we get

V (φ) = V (φk) +

∫
dx

1

2
ψ

(−(∂x)
2 −m2 + 3λφ2

k

)
ψ + λ(φkψ

3 +
1

4
ψ4)

Again, we retain only the quadratic terms and solve the corresponding problem. This
means solving the eigenvalue equation

[
−(∂x)

2 −m2 + 3m2 tanh2(
mx√

2
)

]
η(x) = ω2η(x)

or, in terms of z = mx/
√

2 :

[
−1

2
(∂z)

2 + 3 tanh2(z)− 1

]
η̃(z) =

ω2

m2
η̃(z) (1.16)

with η̃(z) = η(x). The solution to this equation can be found in Morse and Feschbach
[9]. In order of ascending magnitude, there are two discrete eigenvalues, followed by a
continuum. We shall name the discrete eigenvalues ω2

d,0 and ω2
d,1 to distinguish them from

the continuum eigenvalues, which will be called ω2
q , with q ∈ [0,∞). The same notation

is used for the eigenfunctions. We have

ω2
d,0 = 0, with η̃d,0(z) = 1/ cosh2(z)

ω2
d,1 = 3

2
m2, with η̃d,1(z) = sinh(z)/ cosh2(z)

ω2
q = m2(2 + 1

2
q2), with η̃q(z) = eiqz(3 tanh2(z)− 1− q2 − 3iq tanh(z))

The first thing we notice in this spectrum is the presence of a mode with zero frequency.
This is not surprising, it is just a consequence of the fact that the potential energy V (φ)
is invariant under spatial translations, while the kink solution φk is not. We see that
the zero mode ηd,0 is proportional to the derivative of φk and thus proportional to the
variation of φk when it is shifted along the x-axis by an infinitesimal amount, confirming
that this is the zero mode corresponding to translation invariance.

Though not surprising, the presence of a zero mode does present us with a problem;
it is unlikely that, with the ”spring constant” ωd,0 equal to zero, the wave function of the
kink system will remain localised around the kink solution. Instead, it will probably tend
to spread in the direction of ηd,0, making our approximation invalid. The zero mode will
also cause computational difficulties; higher order terms in the perturbation series will
have the zero frequency in their denominators. It is obvious that we should really develop
a formalism for dealing with zero modes before we go on. We will do this in the next
section. However, for now, let us assume that the wave function is localised around the
kink at t = 0 and that the spreading in the ηd,0-direction takes place very slowly. At least
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on a short time scale we should then be able to ignore the effect of the zero mode on the
energy of the system and carry on our analysis as if nothing had happened.

The equation for the energy that follows from (1.4) is

En =
2
√

2m3

3λ
+

(
nd,1 +

1

2

)
~

√
3

2
m +

∑
q

{(
n(q) +

1

2

)
~m

√
1

2
+ 2q2

}
(1.17)

Where the first term is the classical kink energy and the second and third terms are the
quantum corrections. I have kept the summation sign, because writing an integration
would introduce an artificial difference in the way the discrete and continuum modes
are treated. If one wants to make this (divergent) formula at least formally correct, a
good option is to restrict the theory to a finite volume and introduce periodic boundary
conditions, thus discretising the q-spectrum.

I will now give a particle interpretation of these results as promised. First of all, note
that the lowest energy state in the kink spectrum can not be identified as a vacuum. There
are at least two good reasons for this. First, the kink state is not translation invariant.
Second, we already identified the lowest energy states located around the two absolute
minima of the potential as vacua; those two states obviously have lower energy than all
other states, including the lowest energy state in the kink spectrum. If the kink state
of lowest energy is not a vacuum, there must be one or more particles present. If there
were more than one particle, we would expect several quantum numbers characterising
the particles’ momenta to appear in the energy. Also, if the particles were far enough
apart for their interactions to be negligible, we would expect to find a several zero modes,
one for a shift in the position of each particle. As we don’t see any of this naturally arise,
we assume we are dealing with one particle at rest. Of course, in principle there could also
be several particles at rest near each other. This would then most likely be some kind of
bound state, which is the same as one particle for our purposes. Calculation of the mass
of the kink state [10] shows that it is equal to 2

√
2m3/3λ to order ~λ0, which, for small

λ, is much larger than the mass of a meson. This shows that we really have a new kind
of particle here. We also see that the presence of this species of particle could never have
been derived in perturbation theory; the mass tends to to infinity as the perturbation
constant tends to zero.

Now we have established the kink as a kind of extended particle, we can interpret
the excitations of the ωd,1-mode as excited states of this particle. All we have to do now
is give an interpretation to the continuum modes. This can be done by looking at the
asymptotic behaviour of the functions η̃q. We see that

η̃q(z) → ei(qz± 1
2
δ(q)) (z → ±∞)

with

δ(q) = −2arg(3q/(2− q2))

Remembering that z = mx/
√

2 and η̃q(z) = ηq(x), we see that, for large |x|, ηq(x) is just
the wave function for a freely moving meson with momentum ~mq/

√
2. Somewhere on
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its ”path” from x = −∞ to x = +∞, this meson has its phase shifted by an amount δ(q).
This phase shift has to be due to some kind of interaction. In our calculation of the energy
levels for the vacuum sector, the mesons did not interact with each other. Therefore, it
is most likely that the phase shift is due to an interaction with the kink particle located
around the origin. Thus, we can interpret the continuum modes as states of mesons that
scatter off the kink.

1.5 Treatment of Zero Modes

In this section, I will deal with the treatment of zero modes in the canonical quantisation
formalism. Most of this section is based on the treatment by Christ and Lee [11]. Some
remarks on the validity of their method and on finding zero modes are added.

1.5.1 Finding Zero Modes

In section 1.4, we introduced zero modes. For clarity, I will start this paragraph with a
definition of a zero mode.

Definition 1 Suppose we have a solution φ̃ to the equations of motion for some theory.
A zero mode of φ̃ is then a time independent deformation η of this solution such that for
the potential energy V of the theory, one has V [φ̃ + λη] = V [φ̃] + O(λ3) as λ approaches
zero.

Notice that, because the zero mode is time independent, it will not only keep the
potential energy fixed to second order, but also the total energy and the action.

Now when we have a classical solution φ̃, we may find its zero modes straight from
the above definition. To do that, we have to deform ˜phi to φ̃+ δφ, write down the second
order variation of the potential energy and somehow find out which deformations of φ̃
make this second order variation equal to zero. For the Lagrangian (1.1), we have done
exactly this in section (1.4) and this led to the result that the zero modes were just the
solutions to the equation

[
−(∂x)

2 +

(
∂2U

∂φ2

)
φ̃

]
η = 0

This equation is just equation (1.12) with the eigenvalue ω2 set to zero. Now we
note the following: The above equation is just the linearisation of the equation of motion
(1.2) for this model. That is, the above equation is exactly the equation that the time
independent deformation η has to satisfy to make sure that the deformed solution φ̃ + η
is still a solution to the equation of motion (1.2) to first order in η. I will now argue that
this is not a coincidence, but that zero modes should in fact always be solutions to the
linearised equations of motion. The argument runs as follows. Given a basis {φi} for the
configuration space of our theory, we may write η = ηiφi and consequently

S[φ̃ + η] = S[φ̃] + ∂iS[φ̃]ηi + ∂i∂jS[φ̃]ηiηj + O(η3) (1.18)
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If we define the vector DS[φ] by DS[φ]i = ∂iS[φ] and the matrix D2S[φ] by D2S[φ]ij =
∂i∂jS[φ], then we may rewrite the above expansion as

S[φ̃ + η] = S[φ̃]+ < η,DS[φ̃] > + < η, D2S[φ̃]η > +O(η3) (1.19)

Similarly, we may then write

DS[φ̃ + η] = DS[φ̃] + D2S[φ̃]η + O(η2) (1.20)

This equation is going to be important to us, because the derivative DS is related to
the equations of motion for the theory. To be more precise: if DS[φ] is zero, then φ is a
solution to the equations of motion.

Now suppose that φ̃ is a solution to the equations of motion and η is a zero mode of η̃.
In that case, we know that the second and third terms in the expansion (1.19) are zero.
We would like to show that φ̃ + η still solves the equations of motion to first order in η,
as this implies our claim that eta is a solution to the linearised equations of motion. This
means we have to show that the second term in the expansion (1.20) for DS is zero. To
do this, we first change to a basis {φ̂i} in which the symmetric matrix D2S(φ̃) is diagonal.
In terms of the new basis, we may write the third term in the expansion (1.19) as follows

< η,D2S[φ̃]η >= λiη̂
2
i = 0

where the λi are the eigenvalues of D2S[φ̃] and the η̂i are the components of η in the new
basis. Now if φ̃ is a (semi)stable classical solution, then all the eigenvalues λi of D2S will
be smaller than or equal to zero and hence it follows for all i that η̂i can be non zero
only if λi is zero. From this, one can then easily see that D2S[φ̃]η = 0 and hence, we can
conclude from (1.20) that φ̃ + η will solve the equations of motion to first order in η.

The result we just derived has given us a powerful tool to find zero modes; we can just
solve the linearised equations of motion and check if the solutions we find are zero modes.
Note that this does not have to be the case. The reason for this lies in the precise nature
of the correspondence between the equations of motion and the equation DS = 0. When
we know that < ξ,DS[φ̃] >= 0 for all test functions ξ, then we can derive from this (by
partial integration) that φ̃ satisfies the equations of motion. Conversely, if we know that
φ̃ satisfies the equations of motion, we may derive from this that < ξ,DS[φ̃] >= 0 for
all test functions ξ. But now it becomes important how “test functions” are defined. If
a solution η to the linearised equations of motion does not come into this category, then
< η,DS[φ̃ + η] > may be unequal to zero and may even diverge. Now from (1.19) and
(1.20), we see that we can write

S[φ̃ + η] = S[φ̃]+ < η,DS[φ̃ + η] > +O(η3)

and hence, the deformation η will certainly not leave S fixed if < η,DS[φ̃] > is not zero.
In fact,η will make the action diverge if < η,DS[φ̃ + η] > diverges.

A typical example of how things can go wrong is the theory given by
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L(φ) =

∫
dx

{
(∂tφ)2 − (∂xφ(x))2 +

1

2
φ(x)2

}

The potential in this Lagrangian is clearly minimised by the unique field configuration
with φ(x, t) = 0 for every x and t. The equation of motion for this Lagrangian is

∂2
t φ− ∂2

xφ− φ = 0

Note that this is a linear equation and thus equal to its own linearised version. This
means that zero modes will have to satisfy the time independent version of this equation.
Solving this, we find two linearly independent solutions:

φ1(x) = cosh(x)

φ2(x) = sinh(x)

However, these solutions are not zero modes in the sense of the definition above,
because one can easily verify that they make the action diverge. In the following, we will
often call zero modes in the sense of the definition above normalisable zero modes, whereas
we will call solutions to the linearised equations of motion non-normalisable zero modes.
The term “normalisable zero modes” stems from the fact that these zero modes have to
leave some norm finite that follows from the requirement that they leave the action, or
equivalently, the energy finite.

The above gives a general recipe for finding zero modes. However, physically interest-
ing potential energy functionals often have an interesting feature, which makes it much
easier to find their zero modes. These potentials are often invariant under certain groups
of transformations of the fields. We say that the zero modes that arise from these are a
consequence of spontaneous symmetry breaking. Zero modes that arise from such sym-
metry breaking can be found explicitly by differentiating with respect to the symmetry’s
parameters. Often, the symmetry involved is not just a symmetry of the potential energy,
but also a symmetry of the total energy. If this is the case, the quantisation of time
independent solutions simplifies considerably, as we will see. The kink model is a typical
example of a theory with the above feature; the model has translation symmetry, which
has one dimensional orbits, the kink breaks this symmetry and one zero mode arises as
a result. Also, the translation symmetry is a symmetry of the kink’s potential energy as
well as a symmetry of its total energy.

1.5.2 Collective Coordinates

In this section, I will describe a formalism for the semi-classical quantisation of solitons
that does take zero mode fluctuations into account (unlike the naive formalism we used
in section 1.4). This formalism is due to Christ and Lee [11]. It can be used for the
quantisation of both time dependent and time independent classical soliton solutions, but
we shall be most interested in the static case. In the static case, the Christ-Lee formalism
does not necessarily deal with all zero modes that are imaginable according to definition
1, but it does handle the ones due to variations along level surfaces of the potential energy,
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as we will see. Zero modes that are not of this type are not dealt with separately, but this
need not cause very much concern, because, if the original classical solution was stable, we
may hope that quantum fluctuations in the directions of these modes will be be restricted
by quartic or higher order terms in the potential.

For our account of the Christ-Lee formalism, we will work with a generalisation of our
toy Lagrangian (1.1) to arbitrary space dimensions. We use a slightly different notation,
with an explicit coupling constant g, following [11]:

L =

∫
d~x

{
1

2
∂µφ∂µφ− g−2U(gφ)

}
(1.21)

If we expand the potential U around one of its minima, the quadratic terms will have
order g0, the cubic terms order g1 and so on. In particular, we see that the potential is
purely quadratic in the limit of g going to zero.

Let us suppose that we have found all solutions to the Euler-Lagrange equations for
(1.21) which have a certain energy E . Moreover, let us suppose that we have parameters
z0
1 , . . . , z0

K which parametrise this family of solutions. We can then write a particular
solution in this family as φ(~x, t, z0

1 , . . . , z0
K). We can remove the explicit time dependence

of such a solution by replacing the time independent parameters zk
0 by time dependent

parameters zk, that is, we can write

φ(~x, t, z0
1 , . . . , z0

K) = φ(~x, 0, z1(t, z
0
1 , . . . z

0
K), . . . , zK(t, z0

1 , . . . z
0
K))

It is not difficult to understand why we can do this. The parameters z0
k effectively describe

all possible initial conditions for the fields of a solution with energy E , while t describes
the time evolution of the solution. However, every point on the orbit of a solution with
energy E through field space is also a good initial point for such an orbit (Note that we
use the fact that time evolution keeps the energy fixed here). In short, we can say that
time evolution is really a motion on the space parametrised by the z0

k.
In fact, we can do even better than we did above; we may choose the zk to be of the

form

zk(t) = z0
k + ukt (1.22)

where the uk are constants. The easiest way to see that this is possible, is to take one of
the parameters zk to be the parameter that describes the flow of the equations of motions
along the manifold parametrised by the z0. This will then have the form above while the
others will be time independent.

If the family σ consists of (multi)soliton solutions to the equations of motion, then
there could be a more physical interpretation for the speeds uk as well. In cases where
the individual solitons are far removed from each other, the uk (or at least some of them)
could be identified with the velocity components of the solitons. The z0

k could then be
identified with the solitons’ initial positions.

Note that, in the important special case where the φ(~z) are all static solutions that
correspond to minima of the potential energy, the uk will all be zero and the zk

0 will just
be a set of coordinates for the manifold of minima of the potential energy.
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All the solutions φ(~x, ~z) are of order g−1. We can see this as follows. If we define

σ(~x, ~z) := gφ(~x, ~z)

Then the functions σ will satisfy the equation

∂2
xσ =

∂U(σ)

∂σ

This equation is independent of g and therefore, so is σ. Hence φ is of order g−1. To get
more explicit perturbation series, we will often write g−1σ in stead of φ.

To get an approximation to the quantum theory, the idea is to expand the field φ
around the classical solution as follows:

φ(~x, t) = g−1σ(~x, z1, . . . , zK) +
∞∑

n=K+1

qn(t)ψn(~x, z1, . . . , zK) (1.23)

where for any ~z, the ψn(~z) are a complete orthonormal set of functions subject to the
constraints

∫
d~x

{
ψn

∂σ

∂zk

}
= 0 (1.24)

In the static case, the functions ∂σ
∂zk

(~z) are just the zero modes of φ(~z) that lie along the

equipotential surface parametrised by the z0
k. Thus, the constraints above just make sure

that all the ψn are orthogonal to all zero modes that lie along equipotential surfaces.
On the one hand, this means we will no longer have any problems with the quantisation
of coordinates associated to quantum fluctuations in the directions of zero modes. On
the other hand, we will somehow have to incorporate a description of these fluctuations
in our formalism if we want it to make any physical sense. We do this by elevating
the parameters zk into dynamical coordinates. These are called collective coordinates,
presumably because a change in one of the zk affects all the modes associated with the
qn collectively.

Having made the expansion (1.23), the rest of the quantisation process is fairly straight-
forward: First, one writes the Hamiltonian in terms of the new coordinates qn and zk and
their conjugate momenta. Then, after dealing with some ordering difficulties, one sub-
stitutes the appropriate operators for these. Finally, one tries to find the solution to the
resulting quantum mechanical problem in terms of a power series in the coupling constant
g. A brief sketch and results of this procedure will be given in section 1.5.3.

In the rest of this section, I will give a geometrical interpretation to the expansion
(1.23) and comment briefly on its range of validity. To come to our geometrical inter-
pretation of (1.23), let us first have a look at the more conventional expansion given
by

φ(~x, t) = g−1σ(~x, z1, . . . , zK) +
∞∑

n=1

qn(t)ψn(~x), (1.25)
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where we do not impose restrictions on the complete orthonormal set of functions ψn. In
this expansion, the ψn correspond to a fixed choice of basis in the infinite dimensional
vector space M of allowed field configurations φ(~x). The qn are used as coordinates that
describe the motion of a field configuration φ(~x, t) through M. The expansion (1.25) is the
expansion of the fields we would use in a situation without zero modes. However, we are
now in a situation with zero modes. Therefore, we had to somehow change the expansion
(1.25) in such a way that we could deal with zero modes separately. Let us now describe
how one comes from the expansion (1.25) to the expansion (1.23).

Of the zero modes, the ones that have to be dealt with most urgently lie along the
sub-manifold S of M which consists of field configurations that lie on classical paths with
energy E . This manifold is parametrised by the z0

k. We would like to choose a new basis
for M in such a way that the first K elements of this basis lie along S and the rest
lie orthogonal to it. At least in the static case we would then be able to identify the
zero modes with the first K vectors in this basis and this would enable us to treat them
separately. However, it is easy to see that it is in general impossible to choose a basis
so that this condition is satisfied at all points of S at the same time. What we can do
is the following: for each point (z0

1 , . . . , z0
K) of S, we can find a basis ψn(~x, z0

1 , . . . , z0
K)

which fulfills our condition at this particular point. What we have done in the expansion
(1.23), is to take a point ~z(t) on S and the coefficients qn (n > K) of the ψn(~z) that
are orthogonal to S at this point as the coordinates that describe the motion of φ(x, t)
through M .

It is now logical to ask whether it is possible to describe an arbitrary field configuration
φ(~x, t) in terms of these new coordinates. This will only be the case if, at all times t, we
can choose a point ~z(t) on S so that φ(~x) lies in the orthogonal complement to the tangent
plane to S at ~z. It is not immediately obvious that one can always choose such a point.
Also, even if one can find a point ~z(t) for every t, then there could still be other difficulties
which make it impossible to use the expansion (1.23) in practice. I will illustrate these
problems with some simple graphical examples.

For simplicity, let us work with a two-dimensional space of field configurations M and
let us assume for the moment that the sub-manifold S is just a circle. In this situation
there will be only one relevant vector in each of the bases ψn(~z) and I will denote this
ψ(z). This situation is depicted in figure 1.2. In this figure we see the orbit of a field
configuration φ(x, t) through M , as well as the orbit of the corresponding point ~z(t)
through S. The contribution of ψ(z(t)) to φ(t) is indicated by a vector from z(t) to φ(t)
at several points on the orbit.

In this example, the expansion (1.23) works very well. The only problem that occurs
is the fact that the coordinates for φ(x, t) are not uniquely determined: in stead of the
points z(t) chosen in the picture, we could also have chosen the diametrically opposed
points. However, in practical (semi-classical) calculations, this is unlikely to cause any
problem, because we would usually make a local approximation around points of S that
would make it impossible to ”see” from one side of the circle what happens on the other
side

Let us now look at figure 1.3(a). Here, S is a ”dented” closed curve in stead of a circle.
We see that in this case, we can still find a point on S for each point of the orbit of φ.
However, we also notice that the collective coordinates corresponding to these points may
have to make a jump on S as φ varies. This would introduce an artificial discontinuity
into our model. In our two-dimensional example, it is easy to see that this situation will
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φ

S

z(t)

(t)

Figure 1.2: path of a field configuration φ and its orthogonal projection on the circle S

occur less and less as we require the orbit of φ to be closer to S. In particular, in the limit
of weak coupling (g → 0), we expect it to disappear, unless S has a pathological shape
similar to that drawn in figure 1.3(b).

(t)
?

S

z(t)

φ

(a) (b)

Figure 1.3:
(a) path of a field configuration φ and its orthogonal projection on a dented curve S

(b) picture of a pathological curve

Now have a look at figure 1.4. Here we have taken the manifold S to be a line segment.
In this example, we cannot always find collective coordinates for φ(x, t).

(t)

??
S

φ

Figure 1.4: path of a field configuration φ and its orthogonal projection on the line segment S

Fortunately, there is some reason to believe that this problem will not occur in phys-
ically interesting situations, especially in finite-dimensional configuration spaces. I will
now give a simple intuitive argument why.

First, we notice that the set S of equal energy solutions to the equations of motion
will be a closed set if the energy and the action are continuous. This follows because S
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is the intersection of the complete original of a point with respect to the action and the
complete original with respect to a point of the energy. Let us now assume that the set S
is also a manifold in the strict mathematical sense of the word. This will almost always
be the case in physical applications. Given a point p in configuration space, we can now
define a function f on S as follows: for every s in S we take f(s) equal to the distance
between s and p in configuration space. If S is now bounded in configuration space, then
f will have to take a minimum value in a point z of S. The line through p and z will
now have to intersect S at right angles, because if it did not, it would be possible to find
a point on S near z with a smaller distance to p than z. Here it is crucial that S is a
manifold, because this guarantees that one can go in a direction towards p without leaving
S. If S is not a manifold, this does not have to be the case (cf. the line segment example
with the endpoints of the line segment included in S). The argument can be extended
to the case of closed, but unbounded manifolds S by restricting the distance function to
a closed sphere around p that contains points of S. Of course this argument only works
for finite-dimensional configuration spaces, but it does seem to give hope for the general
situation.

Concluding, the main points we can make about the validity of the collective method
are the following:

• In general, it may not be possible to find collective coordinates for all allowed field
configurations, but the situation for physically interesting situations seems to be
more hopeful.

• Discontinuous changes in the collective coordinates may sometimes be necessary to
describe continuous fluctuations of the fields in time. Except in pathological cases,
this problem will disappear at weak coupling. The speed at which this happens will
of course depend on the geometry of the manifold of equal energy solutions to the
equations of motion.

• There may be several sets of collective coordinates that describe the same field
configuration. In the semi-classical approximation, this problem will probably dis-
appear; only one of the possibilities will be seen.

1.5.3 Some Results of the Collective Coordinate Method

In this section, we will quantise the Lagrangian (1.21) in terms of the coordinates zk and
qn introduced in the previous section. First we write the Lagrangian in terms of these:

L =

∫
d~x


1

2

[
K∑

k=1

żk

(
g−1 ∂σ

∂zk

+
∞∑

n=K+1

qn
∂ψn

∂zk

)
+

∞∑
n=K+1

q̇nψn

]2



−
∫

d~x


1

2

[
g−1(∇σ) +

∞∑
n=K+1

qn(∇ψn)

]2

+ g−2U

(
σ + g

∞∑
n=K+1

qnψn

)
 (1.26)

where the derivatives of σ and the ψn have been taken with the zk and ~x regarded as
independent variables. In the following we will sum over all repeated indices, where we
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take the convention that indices k, k′ range from 1 to K and indices n, n′ range from K +1
to infinity. Let us now introduce a mass matrix M(zk, qn) with elements given by:

Mk,k′ =

∫
d~x

{(
g−1 ∂σ

∂zk

+ qn
∂ψn

∂zk

)(
g−1 ∂σ

∂zk′
+ qn′

∂ψn′

∂zk′

)}
(1.27)

Mkn = Mnk =

∫
d~x

{
qn′

∂ψn′

∂zk

ψn

}
Mnn′ = δnn′

. Further, let us define

Ū(φ) := U(φ) +
1

2
(∇φ)2.

It is not difficult to see that, with these definitions, the Lagrangian can be rewritten as

L =
1

2
(żkMkk′ żk′ + 2żkMknq̇n + q̇nMnn′ q̇n′)− g−2

∫
d~x

{
Ū(σ + gqnψn)

}
(hence the name ”mass matrix”). The momenta conjugate to zk and qn are now

pk = Mkk′ żk′ + Mknq̇n (1.28)

πn = Mnkżk + Mnn′ q̇
′
n

or, in matrix form

(
~p
~π

)
= M

(
~̇z

~̇q

)
.

We can now write down the Hamiltonian:

H =
1

2
pk(M

−1)kk′pk′ + pk(M
−1)knπn + πn(M−1)nn′πn′ + g−2

∫
d~x

{
Ū(σ + gqnψn)

}
(1.29)

We would now like to convert this classical Hamiltonian into a differential operator by
making the standard substitution pk → −i∂zk

, πn → −i∂ψn . However, the differential
operator we obtain this way depends on the order of the factors in the first two terms of
(1.29), as these contain both coordinates and their conjugate momenta. Therefore, to have
a consistent quantisation scheme, we have to determine an ordering for the Hamiltonian
before making the given substitution.

Now if we had expanded the field φ in terms of a complete set of orthonormal functions
Ψs(~x) with coefficients Qs(t) in stead of using the collective coordinate expansion (1.23),
then the Hamiltonian would have taken the form
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H = −1

2

∑
s

∂2

∂Q2
s

+ V (~Q) (1.30)

for some potential energy function V . Here we have no ordering difficulties, as coordinates
and momenta do not occur in the same term. We can now determine the correct ordering
for (1.29) by requiring that, as a differential operator, this expression is equal to (1.30),
expressed in terms of the variables qn and zn.

First, we give a formula which enables us to express (1.30) in terms of an arbitrary set
of variables. Suppose we have to sets of variables x1 . . . xl and y1 . . . yl with the xi given
as functions of the yi. Then we have

l∑
i=1

∂2

∂x2
i

=
l∑

i,j=1

1

J

∂

∂yi

(m−1)ijJ
∂

∂yj

(1.31)

where the elements of the matrix m are given by

mij =
l∑

r=1

∂xr

∂yi

∂xr

∂yj

and where J is the square root of the determinant of m. I will not prove this formula here,
but just use it as a given. In our case, the matrix m is just the mass matrix M , as can
be easily checked. Here we encounter a problem, namely the fact that M is an infinite
dimensional matrix. Even if we assume that the above formulae are valid for infinite
dimensional matrices, we still need the determinant of M to apply them. Fortunately,
it turns out that we can reduce the determinant of M to that of a finite dimensional
(K ×K)-matrix. To this end we write M as the product of a matrix Q and its transpose
Qt, with Q of the form

Q =

(
A B
0 1

)

where A is a (K ×K)-matrix and B is a (K ×∞)-matrix. If we take Bkn = Mkn then it
follows that we will indeed have M = QQt if A satisfies

(A2)kk′ = Mkk′ −MknMnk′.

Since the right hand side of this equation is a symmetric matrix, we will be able to find
an A which satisfies this requirement. Looking back, we see that

J =
√

det(M) = det(Q) = det(A) =
√

det(A2) =
√

det(Mkk′ −MknMnk′) (1.32)

Now we can write down the correctly ordered form of the Hamiltonian:
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H =
1

2
J−1

[
pk(M

−1)kk′Jpk′ + pk(M
−1)knJπn + πn(M−1)nkJpk + πn(M−1)nn′Jπn′

]
+

g−2

∫
d~x

{
Ū(σ + gqnψn)

}
(1.33)

If we consider the pk and πn as operators, then this Hamiltonian describes the quantum
mechanics of our theory.

Now that we have the Hamiltonian, we would like to find some way of solving its
eigenvalue equation

HΨ = EΨ. (1.34)

to some order in g, starting with order g−2, which should be the leading contribution, as
the classical solution was of this order. The first thing we need to do is to find out which
terms in the equation (1.34) are actually of order g−2. To do this, we need to have some
information on the g-dependence of pnΨ and πnΨ. We will have to make a guess, based
on the behaviour of the classical momenta pk and πn. Before quantisation, these were
given by the expression (1.28). On expanding the matrix elements in these expressions
we can read off their g-dependence and we find that the pk were of order g−2, while the
πn were of order g0. At least in the semi-classical approximation that we use, we want the
expectation values of the operators pk and πn to exhibit the same behaviour. Therefore,
we shall conjecture

pkΨ = O(g−2) (1.35)

and

πnΨ = O(g0). (1.36)

Armed with these conjectures we can extract the terms of order g−2 from the eigenvalue
equation (1.34) as follows: First we note that the (M−1)kk′ and the (M−1)nk are of order
g2, while the (M−1)nn′ are of order g0. If we now take into account that the derivatives

∂
∂qn

and ∂
∂zk

do not lower the order of terms when they act on J or on elements of M−1,

then we see that the terms in (1.34) involving (M−1)nn′ , (M−1)kn and (M−1)nk are of
higher order then the remaining two terms and can therefore be ignored to lowest order.
Next, it is easy to see that, to order g2, we must have

(M−1)kk′ = (M−1
0 )kk′

where M0 is the K ×K matrix with elements

(M0)kk′ =

∫
d~x

{
∂σ

∂zk

∂σ

∂zk′

}
(1.37)
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Further, we note that we do not have to expand the complicated factors J and J−1

in the term containing (M−1)kk′ . This is because all the terms in which J has to be
differentiated are of higher order in g then the ones in which we have to differentiates Ψ.
This leaves us with terms in which the factors J and J−1 cancel each other. In the same
way, we get rid of all terms in which (M−1)kk′ has to be differentiated.

Using all this, we find that the terms of order g−2 in (1.34) involve only the zk and
can be written

g−2

[
1

2
(M−1

0 )kk′
∂

∂zk

∂

∂zk′
+

∫
d~x

{
Ū(σ(~x, ~z))

}]
Ψ = EΨ (1.38)

Now note that the second term in this equation is just a constant, independent of ~z,
because it is exactly the potential energy of the classical solution corresponding to σ(~x, ~z).
This means that, to this order in g, we can work with an effective Hamiltonian given by

H−2 =
1

2
(M−1

0 )kk′pkpk′ . (1.39)

This is just the Hamiltonian for geodesic motion on the manifold S parametrised by the z0
k,

when this is endowed with the metric (M−1
0 )kk′ . Notice (M−1

0 )kk′ is just the Riemannian
metric on S, which comes from the L2 metric on the space of field configurations. It
turns out that in many interesting models a description of the low energy dynamics of
solitons in terms of geodesic motion on a manifold like S is possible. We will return to
this idea in section 1.6. Before proceeding, let us make two interesting remarks about the
Hamiltonian (1.39).

First of all, we see from the definition (1.37) that the zero modes have to be normal-
isable to make the metric nonsingular. This is just an expression of the fact (noted in
section 1.5.1) that zero modes have to be normalisable to make the energy converge.

Secondly, we see that each of the momenta pk commutes with the Hamiltonian (1.39)
to leading order (commuting one of the pk with M−1

0 will in general produce changes in
higher orders). This means that to leading order, we should be able to choose Ψ to be
an eigenfunction of H−2 and all the pk at the same time. It would seem likely that our
approximation scheme will work best if we choose the expectation values of the pk equal
to the classical values of the pk.

In ([11]), Christ and Lee make the above argument more explicit. They incorporate
the conjectures (1.35) and (1.36) in an ansatz for the energy eigenfunctions Ψα:

Ψα(~z, ~q) = eiξ(~z)/g2

χα(~z, ~q) (1.40)

where ξ(~z) is independent of g and χα is independent of g at least to leading order.
Then, they find the equation (1.38) in terms of ξ.

1

2

∂ξ

∂zk

(M−1
0 )kk′

∂ξ

∂zk′
+

∫
V̄ (σ(~x, ~z))d~x− g2E = 0 (1.41)

They prove that it is possible to choose a unique function ξ so that it satisfies (1.41) and
the condition
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∂ξ

∂zk

= (M0)kk′uk′ (1.42)

and that with ξ chosen in this way, the terms of order g−1 in the eigenvalue equation
(1.34) vanish. The constants uk in (1.42) are the same as those appearing in (1.22) and
thus we have the identity żk = uk before quantisation. With (1.28) we then see that our
approximation is indeed improved if we choose Ψ so that it gives the momenta pk their
classical values (to leading order), just as we expected before.

From (1.42), we can also note another interesting fact: Substituting into equation
(1.38), we see that the energy E in this equation is given by

E = g−2

[
uk(M0)kk′uk′ +

∫
d~x

{
V̄ (σ(~x, ~z))

}]

which is just the energy of the classical solution.
Let us now go on with the choice of S that eliminates the terms of order g−1 and go on

with a brief description of the terms of order g0. These are obtained by expanding M−1

and Ū to second order in the quantum fluctuations qnψn. We will limit ourselves to the
case where the classical solutions to the equations of motions we started from are static.
This means that all the uk are zero. The general case is treated in [11]

To obtain the terms of order g0, we look back to the Hamiltonian (1.33). Using our
previous observations on M−1, it is not difficult to see that the order g0 contributions
from the terms that contain one of the pk will always have to contain a factor ∂ξ

∂zk
for

some k. Using equation (1.42) we see that all these terms will vanish, as in our case, we
have ~u = 0. This means we are left with the contributions that come from the last two
terms in the Hamiltonian. From this point it follows easily that, in the static case, the
terms of order g0 in the eigenvalue equation (1.34) are given by:

[
1

2
πnπn +

1

2
qnFnn′qn′ − Eα

]
χα = 0 (1.43)

where Fnn′ is the n, n′ matrix element of the operator F given by

F [ψ] =

[
−∇2 +

∂2U(σ(~z))

∂σ2

]
ψ. (1.44)

In the static case, the zero modes ∂σ
∂zk

are exactly all the eigenstates of this operator with
eigenvalue zero. Therefore, we can choose the ψn so, that they are eigenfunctions of the
operator F, as well as orthogonal to the zero modes. ∂σ

∂zk
. With this choice of ψn, we can

rewrite (1.43) as

[
1

2
πnπn +

1

2
qnωn(~z)qn − Eα

]
χα = 0 (1.45)

where ωn(~z) is the eigenvalue corresponding to ψn(~z)
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Note that, even though we started from a static classical solution, this does not mean
that the operator ~z which appears in this equation is independent of time. In fact, there
is a good argument why this is usually not the case; suppose for a moment that z is time
independent. In that case we are just dealing with a system of infinitely many harmonic
oscillators and the usual energy spectrum will follow:

Eα =
∑

n

(Nn +
1

2
)ωn(~z). (1.46)

where the Nn are occupation numbers. Now if the ωn depend on ~z, then the system will
in general be able to lower its potential energy by moving from states with high ~ω(~z) into
states with lower ~ω(~z). Naturally, this process will make ~z time dependent.

In fact, it is possible to get a feeling for this phenomenon at the classical level. Let us
take as an example a two dimensional system with a Hamiltonian given by

H(x, px, y, py) =
1

2
(p2

x + p2
y) + V (x, y) (1.47)

Let us take the potential energy V (x, y) equal to ex2
y2 for the moment. This potential

energy is shown in figure 1.5.3
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Figure 1.5: Plot of the the potential energy V (x, y) in the Hamiltonian (1.47) as a function of x and y

It has a manifold of degenerate minima: the x-axis. Any point (x, 0) will give a static
classical solution and we see that the coordinate x can be taken as a collective coordinate,
thus corresponding to ~z above. The Hamiltonian (1.47) can be taken to describe the
motion of a point particle through a canyon landscape. The x-axis is the bottom of the
canyon and to the sides of this axis, the walls of the canyon rise ever steeper as one moves
away from the space origin. To get a feeling for the effects that quantum fluctuations
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will cause in this system, it makes sense to study what happens in the classical system as
we slightly perturb the static solutions. Two numerical approximations for the temporal
behaviour of the coordinates x and y due to different perturbations are plotted in figure
(1.6).
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Figure 1.6: Numerical solutions to the equations of motion for (1.47) with initial conditions close to
the static solution x = y = 0. The thick line gives x(t), the thin line gives ten times y(t).

From the graphs in this figure, we can clearly see that the ”collective coordinate” x
does not stay constant in time. In stead, it behaves roughly as if there was a potential
on the x-axis which increases for increasing |x|. In terms of our canyon analogy, this
means, that if we look only at the particle’s movement along the bottom of the canyon,
then it seems as if this bottom is not flat, but in stead rises as the walls of the canyon
become steeper. Study of different potentials shows a similar behaviour. From the figure,
we can also see how this behaviour of the motion along the canyon is linked to that of
the motion orthogonal to it. As the walls of the canyon get steeper, more and more of
the kinetic energy of the particle is transferred from the motion along the canyon into
the motion perpendicular to it, until the motion of the particle along the canyon finally
changes direction and then the reverse process takes place.

Now let us return to the system described by (1.45). If the frequencies ωn are indepen-
dent of ~z, then the equation is independent of time. This still does not necessarily mean
that the operator ~z will be independent of time (though we can expect that at least it’s
expectation value will be), but it does mean that (1.46) will give the right (time indepen-
dent) energy spectrum. It also ensures that if we take the χα to be the usual eigenstates
for a system of independent harmonic oscillators, they will provide eigenfunctions of the
original Hamiltonian accurate through order g0 on insertion into the ansatz (1.40).

Now when will the frequencies ωn be independent of ~z ? A typical situation in which
this occurs is the situation in which all the zero modes arise as a result of spontaneous
breaking of a K parameter symmetry. In this case, one can identify the zk with the
parameters of this symmetry. The momenta pk ≡ ∂zk then become generators of the
symmetry and hence they have to commute with the Hamiltonian. It follows that the
matrix elements Fnn′ (and correspondingly the frequencies ωn) have to be independent of
~z, as promised. It also follows that the momenta pk are conserved. Restricting to states
with a definite value for each of these momenta, we have a non-degenerate ground state
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for the quantum theory to order g0.

1.5.4 Implications for the Kink System

I will now briefly describe the implications of the previous section’s results for the kink
system. In this case we have only one collective coordinate; the one related to spatial
translation. We will denote this Z. The momentum pZ conjugate to Z is obviously just
the total momentum operator of the system and therefore we will write pZ = P . In terms
of Z and P , the lowest order effective Hamiltonian (1.39) reduces to

H−2 =
P 2

2
∫

dx(∂Zφk)2(x, Z)
(1.48)

=
P 2

2
∫

dx(∂Zφk)2(x− Z)

=
P 2

2
∫

dx(∂xφk)2(x)
=

P 2

2Mk

(1.49)

where the Mk in the last line denotes the classical mass of the kink. That this is equal to∫
dx(∂xφk)

2(x) can be easily seen using equations (1.5) and (1.3). Thus we find that, to
lowest order in the coupling constant g, the quantum mechanics of the kink system can
be described by the Hamiltonian for a non-relativistic free particle with mass equal to the
classical mass of the kink. In fact, it is not difficult to see that the analogue to this result
holds for any soliton described by the Lagrangian (1.1) which has just one zero mode.

As in the previous section, we can improve this result by one order of g if we require
that the momentum corresponding to the collective coordinate be equal to its classical
value. In the case of the kink, this means that we set the total momentum P equal to
zero, thus ”pinning the kink to the origin”. Having done this, we could continue with the
calculation of the order g0 terms, as given in equation (1.43). Finally, we would have to
solve the eigenvalue equation (1.45). Generally, this would be very difficult, because the
frequencies ωn in this equation would depend on the collective coordinates. However, for
the kink system, this is is not the case. This follows either by the general argument given
at the end of the previous section, or more directly by looking at the definition of the
operator F given in (1.44). If one notes that the potential energy V in this definition is
translation independent, then one sees that F itself must be independent of the collective
coordinate Z. The ωn will then also be independent of Z, as they are the eigenvalues of
F . It follows that the energy spectrum of a static kink is given by the harmonic oscillator
spectrum that we found in section (1.4) by just ignoring the zero mode. We conclude that
the results obtained in this section are good for a kink at rest.

Now what if we want to describe a moving kink ? In that case it makes more sense
to start from a time dependent classical solution; a Lorentz boosted version of the kink.
Again, we can choose P to be equal to its classical value and doing this makes sure that
the g−2 term in the energy is just equal to the classical energy of the moving kink. The
quantum corrections are of order g0 and it is shown in [11] that these are equal to the
corrections for the static case.
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1.6 Soliton Dynamics: The Geodesic Approximation

In principle, the formalism developed in the previous sections enables us to find a quantum
description of soliton phenomena, starting from an appropriate classical solution. If we
want to describe soliton dynamics, it would thus make sense to start with a classical
solution that has two or more solitons and a non trivial time dependence. At this point we
encounter a problem: it is usually very difficult to find time dependent classical solutions
with multiple solitons.

In many cases, this difficulty makes application of the collective coordinate method as
we have described it impossible. However, if we can find all static classical solutions with
the required number of solitons, then we can make an approximation that circumvents
this problem, at least in the limit where all the solitons’ properties (including location)
change very slowly. This approximation is the so called geodesic approximation. It was
first proposed by Manton [12] in the context of classical BPS-monopoles (we will come
back to these in chapter 4). I will now first describe how the approximation works and
afterwards, I will give arguments as to why it should work.

First, one finds all the minimal-energy static classical solutions in the soliton sector one
wishes to study. Though this is easier than finding time-dependent solutions, it is usually
still quite difficult, especially as the number of solitons involved increases. In fact, it is
not at all clear that static classical solutions will exist for arbitrary numbers of solitons.
However, if there are no long-range inter-soliton forces, then we can hope to construct
(approximate) static solutions by placing solitons in space at very large distances from
each other. The energy of such solutions should then be equal to the sum of the masses
of the individual solitons.

Second, one chooses a suitable set of collective coordinates for the space S of static
solutions and calculates the lowest order effective Hamiltonian for the static system as
given in (1.39). In particular, one has to find the metric M−1

0 in this equation. Remember
that this was just the Riemannian metric induced by the L2 metric on the space of
field configurations M . The resulting Hamiltonian is then used to describe the quantum
mechanics of slowly moving solitons. Thus, one describes a configuration of slowly moving
solitons as a point particle in geodesic motion on the moduli space of static solutions,
endowed with the metric M−1

0 .

Now why should this approximation work ? To answer this question, we have to look
back to our derivation of the lowest order effective Hamiltonian H−2. Note that the only
input we used to derive this result was the assumption that we could expand an arbitrary
field configuration φ in the form

φ(~x, t) = g−1σ(~x, z1, . . . , zK) +
∞∑

n=K+1

qn(t)ψn(~x, z1, . . . , zK), (1.50)

where g−1σ is the embedding into configuration space of some manifold S parametrised
by the zk and the ψn are subject to the constraints (1.24). The geometrical interpretation
of (1.50) which I gave in section 1.5.2, would seem to imply that this expansion is valid
if two conditions are satisfied. First: the manifold S must be sufficiently ”nice”. Second,
and more importantly, the field configurations φ which we want to describe, must stay
near S at all times.
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Up to now, if we wanted to make an expansion around a classical solution with energy
E , we took S to be the manifold given by all field configurations that lay on a classical
path with this energy. The second condition above was then automatically satisfied if the
quantum corrections to the energy were small. Suppose now that we had started with
a classical solution with energy E ′ just a little bit higher than E . This solution would
not be confined to S. In stead, it would be forced to remain on the manifold S ′ that
consists of all field configurations that lie on classical paths with energy E ′. However,
if the difference between the energies E and E ′ was small enough, then every point on
S ′ would be very near a point of S. When this is the case, we can hope to describe an
arbitrary time dependent field configuration that stays near S ′ in terms of the collective
coordinates for S! We can then go on to derive the order g−2 effective Hamiltonian (1.39)
and this gives us the geodesic approximation. Note that in this approximation, we will
no longer be able to eliminate the terms of order g−1, as we did in section 1.5.3. The
effective Hamiltonian should therefore be valid only up to corrections of order g−1, not
up to corrections of order g0 as before.

Of course the above argument is not a proof of the validity of the geodesic approxima-
tion. For example, I have not said anything about the definition of distance in configura-
tion space, when it is clear that this would be absolutely crucial in a real proof. However,
I hope that the argument does at least give some intuition.

Another thing that should be noted, is that the above argument differs from the
argument given by Manton in his paper [12]. In this paper, Manton argued that the
classical scattering of the solitons involved could be described as geodesic motion on the
moduli space S. That is, if one works in the low speed limit and uses the following initial
conditions: The initial field configuration should be on S and the initial speed (in field
space) should be along S.

I will now give a nice argument which makes this approximation plausible. Let us
again look at the mechanical system given by the Lagrangian

L = (∂tφ, ∂tφ)− V (φ). (1.51)

This describes the motion of a non-relativistic particle through a ”landscape” in which
”height” is given by V . The notation with the inner product is chosen in order to cover
both the finite dimensional and the infinite dimensional case (which includes field theory).
The equations of motion for this system are given by

∂2
t φn = − ∂V

∂φn

(1.52)

Now suppose the potential V has a manifold S of degenerate (local) minima. This cor-
responds to a flat ”valley” in our landscape. Each point of this valley corresponds to a
static solution to the equations of motion. As usual, we will set the value of the potential
energy on S to zero. As in section (1.5.2), we expect that, in a neighbourhood of S, we
can find collective coordinates (z, ψ). Here, z would give local coordinates for S and ψ
would describe the directions normal to S. This inspires us to write down the following
ansatz for a solution φ(t) of (1.52):

φ(t) = Φ(z(t)) + ε2ψ(t). (1.53)
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Here, Φ is an embedding of S into configuration space and epsilon is a small parameter.
If we can describe solutions in this way, then we expect that ψ(t) will describe rapid
oscillations perpendicular to S, while z(t) will describe a slow drift along S. Suppose we
have a solution to the equations of motion which is of the above form. We can then write
the energy of this solution as

E(Φ(z), ψ) = (∂tφ, ∂tφ) + ε4 ∂2V (z)

∂φn∂φm

ψnψm (1.54)

If we define the symmetric matrix L by Lmn = ∂2V (z)
∂φn∂φm

, then we can rewrite this to give

E = (∂tφ(z), ∂tφ(z)) + Lmn(z)ψmψn (1.55)

Let us us denote the eigenvalues of L(z) by En(z). For all z, we know that all the
En(z) are greater than or equal to zero. This is because we assumed that the manifold S
is completely composed of minima of the potential. Now suppose there is a constant C,
greater than zero, so, that for all z, we have:

inf
n

En(z) > C. (1.56)

in that case, we can make the following estimate for the energy:

E > (∂tφ(z), ∂tφ(z)) + Cε4(ψ, ψ). (1.57)

If the energy of our solution is of order ε4, then the above estimate tells us that ∂tφ is of
order ε2 and that ψ is of order 1. Moreover, we know that this is true for the entire time
interval for which the solution is defined, because the energy is a conserved quantity. Now
suppose we can prove local existence of solutions of the form (1.53) for initial locations
near S and low initial speeds. It then follows from the estimate above that we will have
solutions of that form that are defined all times. Next to the estimates for ψ and ∂tφ, we
also want to have estimates for the time derivatives of the zk and ψn. I will only give an
intuitive argument for these here. Since we expect the zk to describe a slow drift along
S, we do not expect the order of ∂tz to exceed that of ∂tφ. Let us therefore suppose that
∂tz is of order ε2. With this, it follows from our estimate for ∂tφ that ∂tψ is of order 1.
Another estimate we will make is that ∂2

t z is of order ε2. This basically means that we
do not allow ∂tz to have fluctuations of its own order (ε2) on a time scale of order 1. To
me, this seems to be a reasonable assumption. We certainly do not exclude the possibility
that ∂tz changes significantly over a longer time (say a time of order ε).

Let us now substitute the ansatz (1.53) into the equations of motion. This yields the
equations

∂2
t ψn =

1

ε2
∂2

t Φn(z(t))− Lnm(z)ψm + O(ε2). (1.58)

Using our estimates for ∂tz, ∂
2
t z and ψ, we can conclude from these equations that ∂2

t ψ is
of order 1. Next to the equations of motion above, we have the requirement that the ψn
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should be normal to S. Since Φ is an embedding of S into configuration space, we can
write this requirement in terms of the partial derivatives ∂zk

Φ. We must have (cf. (1.24))

(ψ, ∂zk
Φ) = 0. (1.59)

Differentiating this twice with respect to time, we get

(∂2
t ψ, ∂zk

Φ) + 2(∂tψ, ∂t∂zk
Φ) + (ψ, ∂2

t ∂zk
Φ) = 0 (1.60)

and when we substitute for ∂2
t ψ from (1.58), this leads to the following equation:

1

ε2
(∂2

t Φ, ∂zk
Φ) = (L(z)ψ, ∂zk

Φ)− 2(∂tψ, ∂t∂zk
Φ)− (ψ, ∂2

t ∂zk
Φ) + O(ε2). (1.61)

The inner product on the left hand side of this equation is just the acceleration of the
point Φ(z(t)) in the directions along the manifold S. This means that, if the right hand
side is zero, Ψ(z(t)) is in geodesic motion.

The first term on the right hand side is identically zero: The matrix L is symmetric and
∂zk

Φ is an eigenvector of L with eigenvalue zero. Using our estimates for ψ, ∂tψ, ∂2
t ψ, ∂tz

and ∂2
t z, we can estimate the other terms to be of order ε2. Thus we find

(∂2
t Φ, ∂zk

Φ) = O(ε4). (1.62)

This allows us to conclude that, on a time scale of order 1
ε
, the velocity of Φ along S

can only be modified by amounts of order ε3. Since we estimated the speed of Φ along
S to be of order ε2 to start with, this means that, as we take ε to zero, the motion of Φ
approaches geodesic motion on S.



Chapter 2

Yang-Mills Instantons

This chapter is about instanton solutions of the Euclidean Yang-Mills equations, or in
short: Yang-Mills instantons. The Yang-Mills equations are the field equations of Yang-
Mills theory, a field theory which I will introduce shortly. Instantons are solutions to
these equations which have finite action. The requirement of finite action implies that
the Lagrangian density of an instanton has to be localised in both space and time (hence
the name ”instanton”). Instantons have many uses in physics (see for example [13]), but
we are mainly interested in them because of their connection with the monopoles we will
be dealing with in chapter 3 and onward. These in turn are solitons of the so called
Yang-Mills-Higgs equations.

The aim of this chapter then, is twofold. Firstly, we want to introduce some concepts
from Yang-Mills theory which will be important in the rest of this thesis and secondly,
we want to describe a method to find instanton solutions which we will later turn out to
be of use in the search for monopoles.

2.1 Yang-Mills Theory

Yang-Mills theory is an example of a gauge theory. Mathematically, this is a principal
bundle, that is, a fibre bundle which has a Lie group G as its fibre. In physical terms,
Yang-Mills theory can be seen as an extension of electromagnetism. The most important
ingredients for a gauge theory are a connection A on the principal bundle and a curvature
F associated with this connection. In analogy with electromagnetism, A is called the
vector potential (or gauge potential) and F is called the (gauge) field. The base space for
the bundle is identified with physical space time and we shall take it to be R4. A and F
can thus be seen as fields in space time.

For physical purposes, it is not very practical to describe gauge theories in terms
bundles with Lie groups for fibres. In practice, one usually works with vector bundles in
which the fibre is a vector space Cn on which the group G acts through a representation.
One can then describe A, F and any other objects one wants to have in the theory in
terms of coordinates on the vector spaces Cn. Of course, before one can use coordinates,
one has to choose a basis for each fibre in the bundle. Such a choice of bases is called
a gauge. Gauges are not invariant under the action of the group G. One can go from
one gauge to another by means of coordinate transformations with matrices in the chosen
representation of G. This is called performing a gauge transformation. It should be
clear that gauge transformations will only change the coordinate description of physical

37
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quantities and not the actual quantities themselves. Therefore, connections and fields
which can be gauge transformed onto each other will be identified for physical purposes.

Let us make all this a bit more tangible. First, we define a gauge potential. This is
a set of functions Aµ (µ = 1 . . . 4) on R4, which take values in a representation of the
algebra of the group G. Here, we see G as a group of matrices and thus the Aµ will just
be matrix valued functions. Under a gauge transformation, Aµ must transform as follows:

Aµ → g−1Aµg +
1

e
g−1∂µg,

where g(x) is a differentiable G-valued function on R4 and e is the fundamental electric
charge Once we have a potential, we can define a gauge covariant derivative as follows:

∇µ = ∂µ + eAµ

The derivative ∇ will act on sections of the vector bundle. These can be seen as functions
on R4 with values in Cn, where n is the dimension of the representation chosen for G.
The transformation rule for A is chosen so that the derivative ∇ is in fact covariant, that
is, so that ∇µgψ = g∇µψ, with ψ an arbitrary (differentiable) vector function on R4.

The gauge field Fµν associated with the potential Aµ is defined by

Fµν =
1

e
[∇µ,∇ν ] = (∂µAν)− (∂νAµ) + e[Aµ, Aν ].

its behaviour under gauge transformations is given by

Fµν → g−1Fµνg

which follows from the transformation rule for A. Note that F commutes with gauge
transformations, in correspondence with the requirement that physical observables must
be independent of the chosen gauge.

We will also need a covariant derivative Dµ on matrix valued functions which behave
like Fµν under gauge transformations. This is defined as follows:

DµΦ = [∇µ, Φ] = ∂µΦ + e[Aµ, Φ]

Covariance of this derivative is easily checked: one has Dµ(gΦg−1) = gDµΦg−1 so that
DµΦ transforms the way Φ does, as desired.

Now that we have introduced all this machinery that is common to all gauge theories,
We can define an action for YM-theory: 1

S = −1

2

∫
d4x Tr {FµνF

µν} (2.1)

1Note that, for convenience, we will set e = 1 in the rest of this chapter.
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By the cyclic property of the trace this action is invariant under gauge transformations,
so the physics of the theory is independent of the choice of gauge. The field equations are
now

DµFνσ + DνFσµ + DσFµν = 0 (2.2)

DµFµν = 0 (2.3)

The first of these equations is just the Bianchi identity of differential geometry and it
follows easily from the definition of Fµν . and D in terms of ∇ that this equation is
satisfied independent of the form of the action. The second equation is specific to this
theory and is therefore called the Yang-Mills equation. In the next section, we will study
the relation between the Yang Mills equation and self-(anti-)duality of the field F .

2.2 Self-Duality

If we define ∗F , the dual of F , as follows:

∗Fµν = εµνρσFρσ (2.4)

then (2.3) can be rewritten as:

Dµ
∗Fνσ + Dν

∗Fσµ + Dσ
∗Fµν = 0

thus assuming the same form as equation (2.2), only for ∗F in stead of F . Now if we can
find a potential A so that F is self-dual or anti self-dual (that is, ∗F = F or ∗F = −F
resp.), then both field equations will be satisfied; the first because it is a consequence of
the way F is constructed from A and the second because it follows from the first with
(anti) self-duality. It turns out that if a Euclidean metric is used on R4, it is also possible
to prove a kind of converse to this result for finite action solutions to the field equations.
I will proceed to do this.

First, it is of interest to know under what conditions on the potential A the action
integral converges. It is obvious that a necessary condition for convergence is that F (x)
tends to zero as x tends to infinity. It is also clear that this condition will be satisfied if
A(x) and its first derivatives tend to zero for x to infinity. However, because the condition
that F tend to zero is gauge invariant, we can also take A tending to any gauge transform
of to zero instead of zero itself. Thus the we demand:

Aµ(x) → g−1(x)∂µg(x) (x →∞) (2.5)

It can actually be proved that this is implied by the requirement that F approach zero
on the edge of space, so it follows that this condition on A is necessary for convergence
of the action. Several interesting remarks can be made about this condition.

First of all, the gauge transformation g mentioned in it does not necessarily have to be
defined for all values of x, but only for large values, that is values outside a three-sphere
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of large radius, say R. In fact, if we restrict g to a sphere of radius larger than R, then
we get a function of S3 into the gauge group G, which will have an integer topological
invariant k analogous to the degree of a map of S3 into S3. This invariant will have
the same value on any sphere of radius greater than R, because all these restrictions of
g, when pulled back to the sphere of radius R + 1 by orthogonal projection will give
continuous deformations of the restriction of g to this particular sphere. Therefore we can
say that g itself has an integer topological invariant k (continuous transformations of g
induce continuous transformations of the restrictions of g to the aforementioned spheres).
It can be shown that g can be globally defined on R4 if and only if k is equal to zero.

Second, the condition (2.5) can be incorporated in the condition that Aµ be extendable
to a potential on the four dimensional sphere obtained by adding to R4 a point at infinity.
In fact, if we use the inverse of stereographic projection to map R4 into S4 then it is not
difficult to see that the requirement of finite action on R4 is equivalent to the requirement
that the integral over S4 of the volume form corresponding to the action be finite. Because
S4 is compact, this will certainly be the case if this form can be extended to an integrable
volume form on all of S4. Of course, in principle, one could still have potentials which
give finite action on R4, but can not be continuously extended to S4. However, it turns
out that this does not happen. For a proof, see [14]. In the rest of this chapter we shall
therefore assume our potential to be continuous and defined on S4; this is equivalent to
requiring finiteness of the action.

On S4 there is a theorem relating the integer invariant k mentioned above to an integral
expression in the field F . For the group SU(2), this is

8π2k =

∫
S4

Tr {F ∧ F} (2.6)

For other groups one has to take suitable multiples of k. The wedge product in the
equation can be calculated by taking for the antisymmetric tensor F the antisymmetric
differential form associated with it. In local coordinates, this gives:

(F ∧ F )µνρσ =
1

4
εµνρσFµνFρσ (2.7)

Using the same wedge product, we can rewrite the action (2.1) as follows:

S = −
∫

S4

Tr {F ∧ ∗F} (2.8)

If we now rewrite F in terms of its self-dual and its anti-self-dual part:

F = F+ + F− = (F + ∗F ) + (F − ∗F )

and if we note that the trace of the wedge of a self-dual and an anti-self-dual operator is
equal to zero, then we can rewrite the action (2.8) to give

S =

∫
d4x Tr

{
F− ∧ F− − F+ ∧ F+

}
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We can also rewrite the equation (2.6) for the instanton number in terms of F+ and F−.
This yields

8π2k =

∫
Tr

{
F+ ∧ F+ + F− ∧ F−}

Combining these formulae, we find

S = 8π2k − 2

∫
d4x Tr

{
F+ ∧ F+

}
= −8π2k + 2

∫
d4x Tr

{
F− ∧ F−}

.

Since both of the trace terms that occur in this equation are positive, it follows that
we have

S ≥ 8π2|k|,

with equality if ∗F = −sign(k)F . We thus find that if we fix any value for k, a potential
with this k which makes the action attain its minimal value of 8π2|k| will give rise to a
self-dual field for k negative and an anti-self-dual field for k positive.

2.3 Constructing Potentials by Embedding

In this section I will describe a method to construct potentials for vector bundles that
applies to many interesting cases. In the next section, I will apply this method to construct
self-dual potentials on S4.

Suppose that we have a vector bundle E of rank n over a manifold X, which can be
embedded in the trivial bundle X ×RN (N ≥ n). With this, we mean that at each point
x of X, we can identify the fibre Ex over x with an n-dimensional subspace of RN in a
way which depends differentiably on x. In this situation, a section f of E can be identified
with a function F of X into RN . A connection ∇ on E can then be defined through:

(∇µf)(x) = P (x)∂µF (2.9)

Where for every x, P (x) is a linear projection of RN onto the subspace of RN that
corresponds to the fibre over x. Of course, P (x) will also be required to vary smoothly with
x. If no further conditions are imposed on P , then ∇ will just be a GL(n, Q) connection,
where Q corresponds to the real numbers, the complex numbers, or the quaternions
2, depending on whether the manifold X is real, complex or quaternionic. If we do
impose further requirements on P however, then we can get connections and potentials
for subgroups of GL(n, Q). In particular, if we require that P (x) is orthogonal projection
for every x, then we get an O(n), U(n), or Sp(n) potential, depending on Q. The last
statement can be explicitly checked if we write the connection in terms of a gauge for the
bundle E, as we will now do.

2see the appendix for a definition and some more useful information about these
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A gauge u(x) for E is a choice of basis for the fibre over x that varies differentiably
with x. In this case, this means that for every x, we can take u(x) to be an injective linear
map from Rn into RN that has the fibre over x as its image. If we require u(x) to fix
the inner product, then the orthogonal projection P (x) will be given by P = uu∗, while
u∗u = 1. A section f of the bundle E can now be written in the form f(x) = u(x)g(x),
where g is a function on X with values in Rn. This makes it possible for us to compute
the potential Aµ corresponding to our connection. We have:

∇µ(ug) = uu∗∂µ(ug) = u(∂µ(g) + u∗(∂µu)g)

Which shows that the gauge potential is given by

Aµ = u∗∂µu (2.10)

Mind that this formula does not imply that Aµ is gauge equivalent to zero, unless N = n.
If we now note that u∗u = 1 implies that u∗∂µu = −∂µ(u∗)u = −∂µ(u)∗u, then we see
that A∗ = −A and thus that Aµ does indeed belong to the desired Lie algebra.

From the formula for the potential we find for the field:

Fµν = ∂µu
∗∂νu− ∂νu

∗∂µu + [u∗∂µu, u∗∂νu] (2.11)

This formula gives the field in terms of n×n matrices, as one would expect for the field of
a bundle of rank n. However, because we have embedded E in X × RN , it is really more
natural in this case to work with fields and potentials in terms of the embedding, i.e. in
terms of N×N matrices. That way, we can actually do all necessary calculations without
ever choosing a gauge. I will now show how to do this, by recalculating the gauge field.

Let Q = I − P be the complementary projection to P and define a potential A′ and
corresponding covariant derivative ∇′ on X × RN by

A′µ = Q∂µQ

∇′µ = ∂µ + Aµ

If we let ∇′ work on a vector function f which takes values in the fibres of E, i.e. for which
Pf = f and thus Qf = 0, then we see that this covariant derivative is equal to ∇ on E:

∇′µf = ∂µf + Q∂µQf = ∂µf + Q∂µQf −Q∂µ(Qf) (2.12)

= ∂µf −Q2∂µf = (1−Q)∂µf = P∂µf = ∇µf

The expression for the field F ′
µν corresponding to A′ is now calculated in the usual way,

through the formula

F ′
µν = (∂µA

′
ν)− (∂νA

′
µ) + [A′µ, A

′
ν ].
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This calculation is considerably simplified if one realises that the commutator term van-
ishes. This can be shown using ∂µQ = Q∂µQ + (∂µQ)Q, which in turn follows from
Q2 = Q. The final result of the calculation is given by:

F ′
µν = ∂µQ∂νQ− ∂νQ∂µQ (2.13)

We will now check explicitly that this gives the same field as the equation (2.11). On
the way, we will obtain a useful formula for the gauge field which we will need later.
To do our check, let us look at the restriction F of F ′ to the sub-bundle of X × Rn

which we have identified with E. We can multiply F ′ by P both on the left and on the
right without changing anything. Multiplying on the right changes nothing because every
vector function f which takes values ”in E” will have Pf = f . Multiplying on the left
nothing changes because on E, we have

PFµνf = P [∇′µ,∇′ν ]f = P (∇′µ∇νf −∇′ν∇µf) = P (∇µ∇νf −∇ν∇µf)

= P (P∂µ(∇νf)− P∂ν(∇µf)) = P∂µ(∇νf)− P∂ν(∇µf) = [∇µ,∇ν ]f = Fµνf

where we have used (2.12) in the second and third step and P 2 = P in the fifth. Now
that we have established that F = PFP, we can write

Fµν = P (∂µQ∂νQ− ∂νQ∂µQ)P = P (∂µP∂νP − ∂νP∂µP )P (2.14)

using (2.13) and Q = I−P . At this point we can choose a gauge u. If we then substitute
P = (uu∗) in (2.14), we get

Fµν = u [u∗(∂µ(uu∗)∂ν(uu∗)− ∂ν(uu∗)∂µ(uu∗))u] u∗

and after some algebra, the expression in the square brackets reduces to (2.11) as expected.
The useful formula for the field that I promised we would obtain during this calculation

is the formula (2.14). The reason that it is useful, is the fact that it makes it easy to
write the field in terms of a gauge for E⊥, the bundle complementary to E. This is by
definition the bundle that X as its base space and for which the fibre over x ∈ X is the
orthogonal complement in Qn of the fibre over x in E. If v is an orthogonal gauge for E⊥,
then we will have Q = vv∗. Substituting this into the second member of (2.14), we get

Fµν = P (∂µ(vv∗)∂ν(vv∗)− ∂ν(vv∗)∂µ(vv∗))P.

Using Pv = 0 and v∗P = 0, this can be simplified to

Fµν = P (∂µv∂νv
∗ − ∂νv∂µv

∗)P

This formula only holds if the gauge used is orthogonal. However, if we have a linear,
but not orthogonal gauge v, then we can still obtain an analogous formula, using a polar
decomposition of v. Such a decomposition is given by
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v = αρ

where α is an N × k matrix which satisfies α∗α = Ik. Any matrix whose columns contain
an orthonormal base for the column space of v will fulfill this criterion and therefore, we
can find the columns for a good α by orthogonalising the columns of v. Once we have
a good α, it follows automatically that ρ2 = v∗v. Also, α will in fact be an orthogonal
gauge for the bundle V and so we will have Q = αα∗ = vρ−2v∗. As before, we can now
substitute for Q in (2.14) to obtain

Fµν = P (∂µvρ−2∂νv
∗ − ∂νvρ−2∂µv

∗)P (2.15)

This formula will be crucial for the construction of self-dual fields in the next section. Note
that we do not need the explicit form of the matrices ρ and α to calculate F ; knowledge
of v suffices.

2.4 Construction of Sp(n) self-dual potentials

In this section, we will apply the general construction of potentials which we have just
introduced to the case where the base manifold X of the bundle is S4, or equivalently,
P1(H). This will lead to a method for the construction of self-dual potentials for the
gauge groups Sp(n) and for arbitrary instanton number k. This method has been named
the ADHM-construction, after Atiyah, Hitchin, Drinfeld and Manin, who discovered it
[15]. At the end of this section we will formulate a theorem that states that the given
construction actually yields all possible self-dual field configurations. The material in this
section assumes some familiarity with the quaternions H. Readers unfamiliar with these
can consult appendix A for some useful information about these.

Let us start by defining a matrix-valued function v on H2 :

v : (x, y) 7→ Cx + Dy (2.16)

Here (x, y) are the quaternionic coordinates on H2, while C and D are constant (k+n)×k
matrices of quaternions. Let us now make the following assumption:

Rank(v(x, y)) = k for all (x, y) 6= (0, 0) (2.17)

If this is satisfied, then the columns of v(x, y) will span a k-dimensional subspace Vx,y of
Hk+n. It is clear from the definition of v that this subspace depends only on the quotient
xy−1. This means we can see v as a way of associating a k dimensional quaternionic vector
space to each point in P1(H). We simply take (x, y) to be the collective coordinates of a
point in P1(H) and associate to this point the vector space Vx,y. This recipe thus gives us
a quaternionic k-vector bundle V over P1(H) and with that a gauge, given by the columns
of v. Moreover, V is automatically embedded into P1(H) × Hn+k and thus we also have
the orthogonal bundle E = V ⊥, which naturally has quaternionic dimension n.
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Let us now give E the covariant derivative induced by the orthogonal projection P ,
as in (2.9). After choosing a gauge for V , the curvature F can then be calculated using
(2.15). Producing such a gauge is not difficult: In all points (x, y) of P1(H) which have
y 6= 0, the matrix v(x, 1) will do fine. Substituting this in (2.15) gives

F = PC
{
(∂µx)ρ−2∂ν x̄− (∂νx)ρ−2∂µx̄

}
C∗P (2.18)

where ρ2 = v∗v = (x̄C∗ + D∗)(Cx + D) and the bar denotes quaternionic conjugation.
Now suppose that ρ2 is a matrix with only real entries. In other words, suppose

(x̄C∗ + D∗)(Cx + D) is a real matrix (2.19)

In that case, its inverse ρ−2 will also be a real matrix and hence it will commute with the
scalar quaternions ∂µx and ∂νx in (2.18). This means we can write

Fµν = PCρ−2 {(∂µx)∂ν x̄− (∂νx)∂µx̄}C∗P. (2.20)

It is now easy to see that F ’s behaviour under duality will be completely determined by
the factor in curly brackets. But this term is self dual ! Hence, it follows that any v which
is defined as in (2.16) and which satisfies the conditions (2.17) and (2.19) will give rise to
a multi-instanton for the group Sp(n).

At this point, we have the field for an instanton solution, but we don’t have the
potential yet. Also, the field F is still given in terms of n + k × n + k matrices, instead
of n× n matrices. Both these problems can be resolved by choosing an orthogonal gauge
for the bundle E. This is just a k + n× n matrix u(x) which satisfies the conditions

u∗v = 0

u∗u = In×n. (2.21)

Once we have such a u, we can write the potential and field in terms of n × n matrices
using formulae (2.10) and (2.11)

Of course, we still have to verify that the instantons we have found will have the desired
value k for the instanton number. Though it is possible to check this by direct calculation,
it is more aesthetically pleasing to look at the question from a higher mathematical
viewpoint. The topological invariant we call the instanton number can be proved to be
additive for direct sums of bundles (see for example [16]). We will not do this here, but
we do notice that it can be easily seen from the integral formula (2.6) in the special
case where Fµν is block diagonal with the curvatures of the summand bundles as blocks.
Now notice that the direct sum of the bundles E and V = E⊥ is just the trivial bundle
S4×R4(n+k). Therefore, checking that E has instanton number k is equivalent to checking
that V has instanton number −k. But V is by definition a direct sum of k quaternion
line bundles: Their fibres over the point (x, y) of P1(H) are just the lines given by all
quaternion multiples of the columns of v(x, y). Now each of these line bundles can be
identified with the standard line bundle over P1(H) which associates to (x, y) the line of all
scalar (quaternion) multiples of (x, y). This bundle has instanton number ±1, depending
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on conventions. In our case, it has to be −1, which leads us to conclude that V has
instanton number −k and therefore, E has instanton number k.

Let us now look back at the definition of the matrix v(x, y) in (2.16). Though this
definition was a convenient starting point for the construction of instantons, it also intro-
duces a lot of unnecessary parameters. These correspond to the fact that there are many
different choices of the matrices C and D that will make the columns of v span the same
subspace of Hn+k. In other words: the parameters in our construction do not only account
for the gauge freedom of the bundle g, but also for the gauge freedom on its complement
V . The extra parameters can be removed by choosing v to be of the following form:

v(x) =

(
Λ

B − xIk×k

)
(2.22)

where Λ is a constant n× k matrix and B is a constant k × k matrix. It is shown in [17]
that this can be done without loss of generality. With v in this form, the reality condition
(2.19) takes the form

Λ∗Λ + B∗B −B∗x− x̄B + x̄x is a real matrix.

But, taking into account that x̄x is always real and that the above condition has to hold
for all x, including x = 0, we see that this is equivalent to the two conditions

Λ∗Λ + B∗B is a real matrix (2.23)

B∗x + x̄B is a real matrix for all x ∈ H (2.24)

But one easily sees that the last of these conditions is equivalent to requiring:

B is a symmetric matrix (2.25)

The regularity condition (2.17) for v can also be written in terms of Λ and B. This gives

((B − x)ξ = 0) ∧ (Λξ = 0) ⇒ ξ = 0 (2.26)

where ξ is a k vector of quaternions.
Now it turns out that if we have v in the form (2.22) we can actually find a u which

satisfies the conditions (2.21) explicitly. We start from the following ansatz for u :

u(x) =

( −In×n

U

)
σ (2.27)

Here, U is a k × n matrix and σ is a self adjoint n× n matrix. With u in this form, the
equations (2.21) become

−Λ + U∗(B − xI) = 0

σ−2 = I + U∗U (2.28)
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As long as B − xI is invertible, we can solve the first equation for U∗. This gives

U∗ = Λ(B − xI)−1. (2.29)

Of course, this then also gives us U and σ and hence, we have determined u completely.
Substituting this u into (2.10), we obtain Aµ in terms of U and σ :

A = σU∗∂µ(Uσ) + σ−1∂µσ. (2.30)

This expression will have singularities at points where B − xI is not invertible, but these
singularities are not physical. They arose because we forced the gauge u to be of the form
(2.27) and we can remove them by an appropriate gauge transformation.

We now have a construction of instanton solutions for all symplectic gauge groups and
arbitrary instanton number. However, from the above, it is absolutely not clear whether
or not we will find all instantons in this way. In fact, at first sight, this would seem very
unlikely. Still, it is true, as was proved by Atiyah, Hitchin, Drinfeld and Manin [15]. We
will not give the proof here, as it would require mathematics beyond the scope of this
thesis. 3 We will however state the result for Sp(1) = SU(2) [15, 18, 19] in the form of a
theorem, as promised at the start of this section. This theorem also states when instanton
solutions derived from different matrices v are gauge equivalent.

Theorem 1 Every k-instanton for SU(2) arises from quaternionic parameters (Λ, B),
where Λ is a k vector and B is a symmetric k× k matrix. Λ and B are required to satisfy
the reality condition (2.23) and the regularity condition (2.26). In a certain gauge, the
potential corresponding to (Λ, B) will be given by

Aµ =
Im(U∗∂µU)

1 + U∗U
(2.31)

where U is equal to [Λ(B−xI)−1]∗. The singularities in Aµ, which arise when (B−xI) is
singular, can be removed by a gauge transformation. The potentials defined by (Λ, B) and
(Λ′, B′) are gauge equivalent if and only if Λ′ = qΛT and B′ = T−1BT , with q ∈ Sp(1)
and T ∈ O(k).

The formula for Aµ given in this theorem can be easily derived from (2.30), if one realizes
that, for the case of Sp(1) = SU(2), σ is actually just a real number. From the fact that
Aµ can be written as an imaginary quaternion, we can see explicitly that Aµ(x) ∈ su(2),
as we would want for an SU(2) gauge potential. 4

2.5 Some explicit instanton solutions

After all the hard work we did to describe the general construction of instantons in the
previous section, it would be a shame not to use it. Let us start with the easiest case

3The interested reader may find a description of the proof which is somewhat less technical than the
original articles in [17]

4see appendix A for details about the identification of su(2) with the imaginary quaternions
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to which the construction applies: that of the SU(2) instanton with k = 1. In this case,
the parameters Λ and B are both just (scalar) quaternions. This means that the reality
condition (2.23) is automatically satisfied. Moreover, we see from theorem 1 that we can
use the gauge ambiguity to choose Λ to be a real number. Taking Λ to be a real number
unequal to zero, we also automatically satisfy the regularity condition (2.26). We now
have five parameters left, which describe all solutions with instanton number one. It is
easy to see that four of these, the ones contained in B, just correspond to a translation
of the space time origin. Also, we see that the parameter Λ is just an overall scale factor,
which will determine the size of the region of space time in which the influence of the
instanton will be felt. Therefore, let us restrict to the solution with B = 0 and Λ = 1.
U(x) will then be given by

U(x) = −(x−1)∗ = − x

|x|2 (2.32)

For the gauge potential, this gives

Aµ = −(
∂µx̄)x− x̄(∂µx)

2|x|2(|x|2 + 1)
= Im

[
x−1∂µx

1 + |x|2
]

(2.33)

As expected, we have a singularity at x = 0. We have said before that we would be able
to remove any such singularities by a gauge transformation. In this case, this can easily
be shown explicitly. Using the quaternionic identity

Im[f(x)∂µf(x)] =

(
f(x)

|f(x)|
)

∂µ

(
f(x)

|f(x)|
)

,

we see that Aµ is asymptotically equal to a gauge transform of zero at x = 0. We have

Aµ ∼ φ(x)−1∂µφ(x)

with φ(x) = x/|x|2. If we now perform the gauge transformation given by φ−1 = φ̄, we
find the following form for A : 5

Aµ =
Im[x∂µx]

1 + |x|2 (2.34)

and we see that A is now regular everywhere on R4. The field F also takes a nice form in
this gauge:

Fµν =
∂µx∂ν x̄− ∂νx∂µx̄

(1 + |x|2)2
(2.35)

5The one instanton formulae (2.34) and (2.35) we give here were actually found by Belavin et al.
before the existence of the the ADHM-construction [20].
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We can easily see that this F is indeed self-dual, everywhere regular (even at infinity)
and that the Lagrangian density corresponding to F is maximal at the space time origin,
where we had said the instanton would be located.

Now let us go on to multisolitons. We will choose the k vector Λ to be real and the
k × k matrix B to be diagonal,i.e.

Λ = (λ1, . . . , λk), B = diag(b1, . . . , bk), (2.36)

where the λi are real numbers and the bi are quaternions. With this choice of B and
Λ, the reality condition (2.23) is automatically satisfied. If all the bi are distinct and all
the λi are non zero, then the regularity condition (2.26) is also satisfied. Moreover, the
number of free parameters involved in the choice of the λi and bi stays the same if we
work modulo gauge transformations (see theorem (1)). It follows that the present choice
of Λ and B will give us a 5k parameter family of instantons. These are the so called ’t
Hooft instantons.

Now let us calculate the gauge potential, using formula (2.31). The vector U in this
formula can be easily calculated; we have:

Ui = −λi
xi − bi

|xi − bi|2 . (2.37)

We see that each of the Ui is just the same as the function U which determines the
potential for a one instanton solution with scale λi at location bi. This has very interesting
consequences for the potential A. This is given by

Aµ =
k∑

i+1

{
Im [Ui∂µUi]

1 + |U1|2 + . . . + |Uk|2
}

(2.38)

Now if we are at a space time location x that is far removed from all the locations bi,
then all the Ui will be small. This means that all the terms |Ui|2 in the denominator of
2.38 will be small and we have

Aµ ∼
k∑

i+1

{Im [Ui∂µUi]} (x →∞)

from which we see that, asymptotically, the potential A is just the sum of the potentials
of k basic instantons, located at bi and with scales λi. Of course, instead of taking x
to infinity, we could also have taken the scales λi to zero. This confirms our previous
statement that the scale of an instanton determines the size of the space time area it
influences.

Now let us look near one of the instanton locations bi. Letting x approach bi, we see
that Ui becomes very large compared to the Uk with k 6= i. This means that we have,
asymptotically:

Aµ ∼ Im [Ui∂µUi]

1 + |Ui|2



50 CHAPTER 2. YANG-MILLS INSTANTONS

but this is just the field of one instanton located at bi. Concluding, we can say that
near each of the locations bi, the field is like that of an instanton located at bi. Of course
this property will be valid in a limited area of space time, which will be largest if the
instantons are far apart and/or have small scale parameters, i.e. if the overlap between
the instantons is as small as possible.

The remarkable properties shown above confirm the intuitive expectation that one
should be able to build multi-instantons by superposition of instantons asymptotically far
removed from each other. However, from theorem 1, we can deduce that the family of
solutions given here does not nearly cover all of the possibilities. A count of the parameters
involved in the general construction gives 8k − 3 parameters for the general k instanton
(modulo gauge transformations) and we have only found a 5k parameter family here.
There seems to be no reason to expect that the other solutions will also be approximate
superpositions of single instantons. As we do not want to make Yang-Mills instantons the
main focus of this thesis, we shall not go into this question here, but go on to the subject
of magnetic monopoles.



Chapter 3

BPS-monopoles and Nahm’s
construction

3.1 The Georgi-Glashow model

Consider again a gauge theory, this time defined on R4 with the Minkowskian metric,
with Lagrangian density:

L = −1

2
Tr(FµνF

µν) + Tr(DµΦDµΦ)− U(Φ) (3.1)

This is called the Yang-Mills-Higgs Lagrangian density. The gauge group is taken to be
SU(2). F and D are defined as in chapter 2, Φ a Lie algebra valued function that behaves
like F under gauge transformations and U is a gauge invariant potential. For the potential
U , we take

U(Φ) = −λ

2

(
Tr(Φ2)− v2

)2
(3.2)

with λ and v positive real parameters. The equations of motion are:1

DµF
µν = e[Φ, DνΦ] (3.3)

DµDµΦ = −λΦTr(Φ2 − v2). (3.4)

One of these equations, the analogue of Gauss’ law in electromagnetism, is not a real
dynamic equation, but rather a constraint on the initial conditions for the theory. We
can see this by writing this equation in the following form:

DiDiA0 + e[Φ, [Φ, A0]] = DiȦi + e[Φ, Φ̇] (3.5)

Here, the dot denotes time differentiation. Now one can show that the operator DiDi +
e[Φ, [Φ, ]], which works on A0, is invertible on functions that go to zero sufficiently rapidly

1note that we have reinstated the fundamental electric charge e

51
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at the edge of space, if the fields are such that the energy is finite. Therefore, if A0

satisfies this condition, it is uniquely determined in terms of the other fields and their
derivatives. Thus we see that A0 is not really a dynamic variable independent of the other
fields. We could also have found this by calculating the conjugate momentum to A0. This
is identically zero.

Now if we want to choose an initial field configuration for this theory, we can’t just
take any configuration, but we have to take a configuration which satisfies Gauss’ equation
above. Configurations which do not satisfy this equation are unphysical. The physical
configuration space of the theory is thus the space of field configurations which satisfy
Gauss’ equation, rather than the space of all field configurations.

Next to the equations of motion, we have the Bianchi identity

Dµ
∗F µν = 0 (3.6)

which follows from the definition of F .
We want to take the model described by (3.1) a bit more seriously than the physically

rather uninteresting models we have studied up to now. For a start, we would like to
derive the particle spectrum. To do this, we first rewrite the Lagrangian in terms of
coordinates on su(2). 2 We will use Roman indices for these, to distinguish them from
the space time coordinates. The Lagrangian density then takes the form

L = −1

4
F a

µνF
aµν +

1

2
DµΦaDµΦa − λ

4
(ΦaΦa − v2)2 (3.7)

where the action of Dµ is described by

(DµΦ)c = ∂µΦ + eεabcAb
µΦc. (3.8)

A change of gauge can be viewed as a spacetime dependent rotation of the vectors Φ and
Fµν .

To find the particle spectrum of our model, we have to look at the second order varia-
tion of the Lagrangian about the vacuum. If the vacuum corresponded to the configuration
with all fields equal to zero, we would have three massless vector bosons corresponding to
the Aa and three massive scalars corresponding to the Φa. However, if we look closer, we
see that the configuration with zero fields does not minimise the energy and can therefore
not be identified with the vacuum. To write down an equation for the energy, we first
define fields E and B in the usual way.

Eai = F ai0 (3.9)

Bai = −1

2
εijkFajk (3.10)

where the spatial indices i, j, k run from one to three. The energy density is then given
by

2for details, see section A.2 in the appendix
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M =
1

2
{Ea

i Ea
i + Ba

i B
a
i + D0Φ

aD0Φ
a + DiΦDiΦ}+ U(Φ). (3.11)

This expression is the 00-component of the energy-momentum tensor for this theory.
The energy-momentum tensor itself can be computed most easily by varying the metric
(around the Minkowskian metric) and taking as the energy-momentum tensor the varia-
tion of the action as a consequence of this procedure. For a proof that this works, see e.g.
[21]

We see that any field configuration which has the Aµ equal to zero and Φ constant and
of length v will minimise the energy and therefore be suitable as a vacuum. Of course,
any gauge transform of these vacua will also be a vacuum. For now, let us choose the
vacuum to be given by Avac

µ = 0 and Φvac = (0, 0, v). If we now write

Φ = Φvac + φ

and choose the gauge in which φ1 = φ2 = 0, then we can rewrite the Lagrangian as

L = −1

4
F a

µνF
aµν +

(ev)2

2
Aµ1A1

µ +
(ev)2

2
Aµ2A2

µ (3.12)

+
1

2
∂µφ3∂µφ

3 − 1

2
λv2(φ3)2

to second order in the fields and their derivatives. From this we conclude that, in stead
of three massless vector bosons and three massive scalars, we really have two massive
vector bosons, one massless vector boson and a massive scalar. In our present gauge, in
which Φ is forced to point in a fixed direction, the massive vector bosons are associated
with the components of A normal to Φ. They have classical mass equal to ev. We will
refer to these particles as gauge bosons. The massless vector boson is associated with the
component of A in the direction of Φ. We will call this particle the photon. The massive
scalar associated to Φ is called the Higgs boson. its classical mass is equal to v

√
λ. With

this particle spectrum, it will not come as a surprise that our model first turned up as an
attempt to describe unified electromagnetic and weak interactions. The first article (ref.
[22]) in which it appears is by Georgi and Glashow, which is how the model got its name.

3.2 Embedding electromagnetism; monopoles appear

Like the Yang-Mills theory considered in chapter 2, the Georgi-Glashow model is a gener-
alisation of electromagnetism. We have an su(2) valued vector potential Aµ and we have
defined su(2) valued E and B fields in (3.9). However, this time we also want to embed
electromagnetism itself into the theory. We would prefer to do so by giving an expression
for a real number valued electromagnetic vector potential aµ, as the vector potential is the
most fundamental object in electromagnetism. In gauges in which Φ points in the same
internal direction everywhere, we have an obvious candidate for this vector potential. We
would like to define aµ as the component of Aµ in the direction of Φ. This would make
sense, because we had previously associated this component of Aµ with the photon. How-
ever, we can not define aµ this way for any arbitrary gauge, because this would make the
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real number valued gauge field fµν derived from aµ gauge dependent. This is undesirable,
because the electric and magnetic fields contained in f should be physically observable and
all observables should be gauge independent. Because of this difficulty, we will not work
directly with an electromagnetic vector potential. In stead we will give a gauge invariant
expression for an electromagnetic field tensor fµν which, in a gauge with Φ pointing in a
fixed direction, equals the expression we get from antisymmetric differentiation of aµ. ’t
Hooft proposed the following form for fµν :

fµν = Tr
(
Φ̂Fµν

)
− 1

e
Tr

(
Φ̂[DµΦ̂, DνΦ̂]

)
(3.13)

where Φ̂ is equal to Φ/Tr(Φ2). It is easy to see that this definition is gauge invariant and
that in regions where DµΦ vanishes, f is exactly the component of F in the direction of
Φ. With some effort, we can also see that

fµν = ∂µ(Aa
νΦ̂

a)− ∂ν(A
a
µΦ̂a)− 1

e
εabcΦ̂a∂µΦ̂b∂νΦ̂

c (3.14)

Note that the last term is just the volume of the parallellepipid spanned by Φ̂, ∂µΦ̂

and ∂νΦ̂, divided by e. It follows that this term is zero if Φ is confined to a single plane.
Thus, if Φ points in a single direction, then the field tensor f will certainly be equal to
the quantity obtained by antisymmetric differentiation of aµ, as we required.

From (3.13), we can now define the electric and magnetic fields E and B in the usual
way:

Ei = f i0 (3.15)

Bi = −1

2
εijkfjk (3.16)

We can also define a magnetic current density jµ and the electric current density je
µ in

terms of fµν . We take

jµ = ∂∗νfνµ = −1

2
εµνρσ∂

νfρσ (3.17)

je
µ = −∂νfνµ (3.18)

or equivalently,

j0 = ∇ ·B ji = −(∇× E)i − ∂tBi

je
0 = ∇ · E je

i = (∇×B)i − ∂tEi

from which we see that j and je are defined exactly so that E and B satisfy the Maxwell
equations (0.1) for an electromagnetic system which includes magnetic charges. In an
ordinary electromagnetic system, these magnetic charges would automatically be zero,
because the field tensor would be the antisymmetric derivative of a potential. Here, this
is not necessarily the case. If we look at fµν as given in (3.14), then we see that the
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last term in this equation may give rise to a non-zero magnetic charge/current density.
Substituting (3.14) into (3.17) yields

jµ = − 1

2e
εµνρσε

abc∂νΦ̂
a∂ρΦ̂

b∂σΦ̂c (3.19)

In this expression, all terms with multiple differentiations of one field have disappeared
because of the antisymmetry of εµνρσ. Using only this same antisymmetry, it is easy to
verify that jµ is a conserved current:

∂µjµ = 0.

Note that we do not need any information on the time evolution of the field Φ to derive
this result, except that it is differentiable. We might therefore expect jµ to have some
topological meaning. In particular, we may hope that the total magnetic charge g is
constant on homotopy classes of the field Φ. To prove this, we have to show that the total
flux of the magnetic current density ji through the sphere at infinity is zero. To do this,
let us us recall some basic facts:

1. If the field f is the antisymmetric derivative of a potential, then the magnetic
charge/current density is zero.

2. In regions of space where Φ points in a fixed direction, f is indeed the antisymmetric
derivative of a potential (see formula (3.14 for this))

3. The magnetic charge/current density is gauge independent (this can be read of from
(3.17))

4. for every point x in space where Φ(x) is non-zero, there is a continuous gauge
transformation which will make the field Φ point in a fixed direction on an open
neighbourhood of x. (If Φ(x) is zero, the gauge transformation which achieves this
may have to be discontinuous)

Combining these facts, we see that the magnetic charge/current density can only be
nonzero at locations in space where Φ vanishes. This is an interesting result in itself, but
it does not help us to show that g is constant on homotopy classes unless we restrict to the
space of field configurations which keep the energy finite. From (3.11) we see immediately
that in order for the energy of a field configuration to be finite, v(Φ) will have to approach
zero on the edge of space. More explicitly, we will have to have

ΦaΦa → v2 (x →∞) (3.20)

This means that on the ”sphere at infinity”, |Φ|2(x) has to be equal to the non-zero
constant v2 everywhere. Obviously, this implies that Φ is nowhere zero on the sphere at
infinity, from which it follows that ji will be zero on this sphere. Hence, if finite energy is
required, the total magnetic charge g will be constant on homotopy classes of the field Φ.
In particular, this implies that field configurations with different total magnetic charge
will be topologically distinct.
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The above analysis does not seem to depend essentially on the fact that the gauge
group is SU(2). As long as we can construct an Abelian field tensor which satisfies the
condition 2 and as long as Φ can be gauge transformed to point in a fixed direction locally,
we will still find that the magnetic charge g is homotopy invariant.

Now when we do make use of the fact that Φ is an element of su(2), which can be
interpreted as a 3-vector, we can actually give the homotopy invariant g a nice geometrical
interpretation. It follows from (3.20) that Φ̂(x) will be a continuous function everywhere
on the sphere at infinity. So we see that, for every field configuration with finite energy, we
will have a corresponding continuous map of spheres given by x → Φ̂(x). Such a map will
have an integral winding number or degree N , which can not be changed by a continuous
deformation of Φ̂. Roughly speaking, N is the number of times the map the surface of
the image is covered by the surface of the original (taking orientation into account). It
can be shown (see e.g. [23]) that N is equal to the integral over space of the 0-component
of a topological current density k, given by

kµ =
1

8π
εµνρσε

abc∂νΦ̂
a∂ρΦ̂

b∂σΦ̂c (3.21)

But one sees easily that k is exactly equal to e
4π

times the magnetic current density j.
Thus, there is an intimate connection between the occurrence of magnetic monopoles
in this theory and the winding number N : For the total magnetic charge g of a field
configuration, we have

g =
4πN

e

We will therefore call the winding number N the monopole number and if we can find a
solution that has monopole number N , we will say that it is in the N -monopole sector.

The idea that magnetic monopoles could arise as topologically non-trivial solitons
of gauge theories was first proposed by [3] and [4]. This is why the monopoles of the
Georgi-Glashow model are called ’t Hooft-Polyakov monopoles.

3.3 Bogomol’nyi’s equation

In the previous section, we found clues that there may exist solutions to the Georgi-
Glashow model which have non-zero magnetic charge. On the other hand, we have not
found any such solutions yet. Generally, this is very difficult, because of the complexity of
the equations of motion (3.3). In stead of dealing with these directly, we will first derive
a lower bound on the energy of a solution with a given electric charge q and magnetic
charge g. In the static case, this will also give us an equation for the minimal energy
solution with these charges, which turns out to be much easier to solve than (3.3).

We will start by deriving the energy bound. Recalling the expression for the energy
given in (3.11), we have for the energy M :

M =
1

2

∫
d3x

{
Ea

i Ea
i + Ba

i B
a
i + (D0Φ)2 + DiΦ

aDiΦ
a + 2U(Φ)

}
. (3.22)
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It is easy to see that we have

M ≥ 1

2

∫ {
d3xEa

i Ea
i + Ba

i B
a
i + +DiΦ

aDiΦ
a
}

, (3.23)

with equality if U and D0Φ are equal to zero. Rewriting the right hand side, we find

M ≥ 1

2

∫
d3x

{
(Ea

i − sin θDiΦ
a)2 + (Ba

i − cos θDiΦ
a)2

}
+ sin θ

∫
d3x {Ea

i DiΦ
a}+ cos θ

∫
d3x {Ba

i DiΦ
a}

≥ sin θ

∫
d3x {Ea

i DiΦ
a}+ cos θ

∫
d3x {Ba

i DiΦ
a} (3.24)

Where θ can be any angle. Now let us concentrate first on the last term in this equation.
Using partial integration and the definition of the covariant derivative (see f.e. (3.8)), we
find

∫
d3x {Ba

i DiΦ
a} = −

∫
d3x {ΦaDiB

a
i }+

∫
S2∞

d2Si {ΦaBa
i } (3.25)

where S2
∞ denotes the sphere at infinity. Now the Bianchi identity (3.6) implies that

DiB
a
i = 0 and therefore, the first term on the right hand side disappears. If we require

the energy to be finite, then, in the second term, we can write Φ = vΦ̂, since we are
looking at Φ on the sphere at infinity. This leaves us with

∫
d3x {Ba

i DiΦ
a} = v

∫
S2∞

d2Si

{
Φ̂aBa

i

}
(3.26)

Now let us look back at the original equation for the energy (3.22). We see that finiteness
of the energy requires that the integral of DiΦaDiΦ

a over large spheres converges to zero.
Together with the fact that |Φ| = v on S2

∞, this implies that in the right hand side of
(3.26), we can change ΦaBa

i to bi without changing the result. Thus we finally find

∫
d3x {Ba

i DiΦ
a} = v

∫
S2∞

bid
2Si = vg (3.27)

where g is the total magnetic charge of the field configuration.
If we substitute this result into (3.24) and take θ = 0, we get U ≥ vg. For negative

g, this is of course trivial. However, if we take θ = π, we get U ≤ vg. This means that
generally, we can write

U ≥ v|g| (3.28)

This bound is known as the Bogomol’nyi bound, as it was Bogomol’nyi who first derived
it in his article [24] From the above, it is clear that we have equality in (3.28) if and only
if v(Φ) and D0Φ are zero and the Bogomol’nyi equation
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Bi = sign(g)DiΦ (3.29)

is satisfied.
Note that at this point, we have not used the equations of motion (3.3) yet. This

means that the bound (3.28) has to be satisfied for all field configurations with finite
energy, whether they solve the equations of motion or not. This makes it plausible that
the Bogomol’nyi bound (3.28) will be satisfied quantum mechanically as well as classically.

If we do use the equations of motion, we can get an even better estimate for the
energy, though of course it is not clear a priori whether this will still hold for the quantum
mechanical version of the theory. Looking back at the second to last term in equation
(3.24), we see that we can rewrite this

∫
d3x {Ea

i DiΦ
a} = −

∫
d3x {ΦaDiE

a
i }+

∫
S2∞

d2Si {ΦaEa
i } (3.30)

again, using partial integration and the definition of the covariant derivative. Now the
equation of motion (3.3) for F gives us

DiE
a
i = eεabc(D0Φb)Φc (3.31)

and using this and the antisymmetry of εabc, we find that the first term in (3.30) is equal
to zero. Reasoning in the same way as before equation (3.27), we find that the second
term in (3.30) is equal to the total electric charge q, leaving us with

∫
d3x {Ea

i DiΦ
a} = vq (3.32)

If we now substitute (3.32) and (3.27) into (3.24), we find the bound

M ≥ vq sin θ + vg cos θ (3.33)

for arbitrary θ. Of course we want to make the choice of theta that maximises the
right hand side. It is not difficult to see that this is the angle θ for which we have
cos θ = g/

√
q2 + g2 and sin θ = q/

√
q2 + g2, yielding

M ≥ v
√

q2 + g2 (3.34)

This generalised version of the Bogomol’nyi bound was first found by Coleman et al. [25].
It is clear that in this equation, we have equality if and only if U(Φ) is zero and the fields
satisfy the following equations:

D0Φ
a = 0 (3.35)

Ea
i = sin(θ)DiΦ

a

Ba
i = cos(θ)DiΦ

a
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with θ as above.
Because these equations are easier to deal with than the field equations, it makes

sense to look at the version of our theory with U set to zero. In this limit, we can hope to
find a solution to the equations of motion which attains the bound (3.34) by solving the
generalised Bogomol’nyi equations (3.35). In fact, it is easy to see that any solution to the
equations (3.35) which has cos(θ) 6= 0 will automatically solve the equation of motion for
the field Φ and satisfy Gauss’ law; both essentially reduce to the Bianchi identity (3.6).
It is less easy to see whether a solution to (3.35) will also satisfy the other equations
of motion. This will be the case if the E-field is zero. With the E-field equal to zero,
the Lagrangian is equal to minus the energy and thus at a maximum. Thus, at least all
the solutions to (3.35) which have cos(θ) = ±1 will also solve the full field equations.
Generally, what we have to do is solve the Bogomol’nyi equations and then check that
the obtained solution also satisfies the field equations (3.3). For all solutions we will
encounter, this will be the case.

Before we go ahead and solve the Bogomol’nyi equations, a remark about working
with U equal to zero is in order: We should ask ourselves whether the idea of monopole
sectors still applies in this limit. There would seem to be reason for concern, because
the field configurations with nonzero magnetic charge arose as a result of the boundary
condition (3.20), which in turn was originally needed to ensure that the potential U (3.2)
would approach zero at infinity. Removing U , we would also remove the necessity for
this boundary condition. Classically, this does not present a problem; we can just impose
the condition. Quantum mechanically, there are problems. First of all, one can not just
set U zero; there will be quantum corrections to the classical theory which will create a
new, nonzero U [26]. I will come back to this later. Secondly, it is not always possible
to impose boundary conditions on quantum fields like Φ for all times. Time evolution
can cause a change in the expectation value of a field Φ if there are paths of finite action
between configurations with different expectation values for this field. Fortunately, this
problem does not occur in our case, because any path that connects configurations with
different expectation values for Tr(Φ2) at infinity will automatically have infinite action,
even with v = 0.

3.4 Solving Bogomol’nyi’s equations: Part 1

We have taken some trouble to arrive at the equations (3.35) and it is now natural to
ask whether these equations have any (non-trivial) solutions and if so, whether we can
describe their most important properties or even construct them explicitly. In this section,
we will apply elementary techniques to get some general results and finally a family of
dyons with magnetic charge 1. We will restrict ourselves to static solutions.

In the static case, the first of the equations (3.35) reduces to

εabcAb
0Φ

c = 0 (3.36)

This will be satisfied if an only if we choose A0 so that it is parallel (or anti-parallel) to
Φ. That is:

Aa
0(x) = r(x)Φa(x).
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Substituting this into the the second of the equations (3.35), we obtain the following
equation for r(x):

(∂ir)Φ
a = (sin(θ)− r) DiΦ

a

This is solved by taking r(x) equal to the constant sin(θ). Thus, given a time independent
solution (Ai, Φ) to the last of the generalised Bogomol’nyi equations (3.35), we can solve
the first two equations as well by choosing

Aa
0(x) = sin(θ)Φa(x). (3.37)

The task that remains then, is solving the last of the equations (3.35). Now recall the
original Bogomol’nyi equation (3.29) for positive charge:

Bi = DiΦ (3.38)

It is easy to see that a field configuration (A, Φ) will solve this equation if and only if the
configuration (A, Φ/ cos(θ)) solves the equation

Bi = cos(θ)DiΦ (3.39)

Thus we only have to look for the solutions of (3.38) to find the solutions of (3.39) for
arbitrary θ. There is one subtlety here: the configuration (A, Φ/ cos(θ)) will no longer
satisfy the condition that |Φ| has to approach v at infinity. However, since we have set
the potential U to zero, the value of v can really be chosen arbitrarily. Therefore we can
use the configuration (A, Φ/ cos(θ)), if we take (A, Φ) to be a solution to (3.38) for which
|Φ| goes to v cos(θ) at infinity.

At this point, we have reduced the problem of solving the equations (3.35) to that of
solving the equation (3.38) for given monopole charge g. Before we go ahead with this,
let us look back at the equations of motion (3.3). In the previous section, we noted that a
solution to the Bogomol’nyi equations with cos(θ) = ±1 would also solve the equations of
motion. Here, we have given a method to construct a solution to Bogomol’nyi’s equations
with arbitrary given θ from a solution with θ = 0. Now suppose we have a solution with
θ = 0. With hardly any algebra, one can then show that the associated solutions to the
generalised Bogomol’nyi equations (3.35) will also satisfy the equations of motion. 3 In
other words: if we have monopoles of minimal energy, we also automatically have dyons
of minimal energy !

3Recall the equations of motion for the electromagnetic field:

DµFµν = [Φ, DµΦ]

Suppose that, for some given Φ(x), these are solved by Bi = DiΦ, Ei = 0. Now define Φ̃ by
Φ̃(x) = Φ(x)/ cos(θ). If we change the fields as described above, so that we have B̃i = cos(θ)DiΦ̃, Ẽi =
sin(θ)Di

˜Phi, then the contribution of the B-field to the right hand side of the equation of motion will
change to cos2(θ)[Φ, DµΦ], while at the same time a contribution from the E-field, equal to sin2(θ)[Φ, DµΦ]
is introduced
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These dyons have a remarkable property that allows us to extract some information
on their asymptotic behaviour without actually solving Bogomol’nyi’s equations. Substi-
tuting the generalised Bogomol’nyi equations (3.35) into the energy density (3.11), we see
that we have

M =
1

2
{Ea

i Ea
i + Ba

i B
a
i + DiΦ

aDiΦ
a}

=
1

2

{
sin2(θ)DiΦ

aDiΦ
a + cos2(θ)DiΦ

aDiΦ
a + DiΦ

aDiΦ
a
}

= DiΦ
aDiΦ

a

= ∂iΦ
a∂iΦ

a +
∑

i

Φa∂2
i Φ

a − Φa(DiDiΦ)a =
3∑

i=1

∂2
i (|Φ|2) (3.40)

where the last equality uses the equation of motion for Φ (i.e. DiDiΦ = 0). It follows
that the energy density of the dyons depends only on the length of the Higgs field ! Let
us now calculate the total energy of a configuration with Higgs field Φ(x). We have

M =
1

2

∫
d3x

{
∆(|Φ|2)}

=
1

2
lim

R→∞

∫
S2(R)

dS2
{∇(|Φ|2)}

=
1

2
lim

R→∞

∫
S2(R)

dS2
{
∂r(|Φ|2)

}
=

1

2
lim

R→∞
4πR2∂r|Φ|2 (3.41)

where S2(R) denotes the sphere of radius R and centre at the space origin and where |Φ|2
is the average of |Φ2| over this sphere. Filling in the mass formula for a dyon from (3.34)
we find that for large r, we will have to have

2πr2∂r|Φ|2 = v
√

q2 + g2

and hence, after integration, we find:

|Φ(r)|2 ∼ v2 − v
√

q2 + g2

2πr
(3.42)

Now it is possible (see [27]) to show that the angular derivatives of |Φ(r)| are of order r−2

as r goes to infinity and from this, it follows that the asymptotics for the average of |Φ|2
which we have found here are actually good for |Φ|2 itself (to order r−2). We conclude
that for a solution to Bogomol’nyi’s equations with charges (g, q), we will have

|Φ(r)| ∼ v

(
1−

√
q2 + g2

4πvr

)
(r →∞) (3.43)
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for a pure monopole solution, this reduces to

|Φ(r)| ∼ v

(
1− N

ver

)
(r →∞) (3.44)

where N is the monopole number. This asymptotic behaviour of the Higgs field turns out
to be very important for the dynamics of BPS-monopoles. The 1

r
-term in the asymptotic

expansion signals the fact that the Higgs field mediates a long range force. This is possible
because we have taken the limit of vanishing potential and in this limit the Higgs particle
is massless (in tree approximation, that is). For monopoles, this long range force turns out
to be equal in magnitude to the coulomb force, but always attractive [28]. This means that
it doubles the force between two monopoles of opposite magnetic charge, while cancelling
the force between monopoles of like magnetic charge. Without this cancellation of long
range forces, it would be impossible to build multimonopole solutions from well separated
monopoles of charge 1. With it, this does turn out to be possible. We will give a more
detailed discussion of the forces between monopoles/dyons in section 4.5

Now we have seen how we can obtain dyons from monopoles and we have given an
important result on the asymptotic behaviour of the Higgs field, but at we still haven’t
seen any actual, real magnetic monopoles yet. To find these, we would have to solve the
equation (3.38) and this in itself is still a formidable problem, especially for high monopole
numbers. For the one monopole sector, the situation is somewhat simpler. Therefore, the
rest of this section will be devoted to a brief sketch of the construction of a one monopole
solution. We will come back to the construction of multimonopole solutions in section
3.5.

We start the construction by introducing the following ”ansatz” for the fields:

Φa(x̄) = δa
i

xi

er2
H(r) (3.45)

Aa
i (x̄) = εa

ij

xj

er2
K(r) (3.46)

where r = |~x| and H and K are required to fulfill the following boundary conditions:

H(r)

r
→ v (r →∞)

K(r) → 0 (r →∞)

where v is the asymptotic length of the Higgs field as in (3.20).
We use the above ansatz because it has several nice features:

• First, a little calculation shows that the ansatz (3.46) for A and the corresponding
boundary condition result in a magnetic field that approaches that of a monopole
with charge 4π

e
as x approaches infinity, as we would expect for a solution of the

field equations in the one monopole sector.

• Secondly, from (3.45) it is immediately clear that Φ will have winding number N
equal to one; the ansatz for Φa is just so that, for any vector y on a large sphere
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around the origin, the internal vector Φ(y) will point in the same direction as y
(if we identify the internal and space coordinates). We can visualise the map from
the ”sphere at infinity” to the internal sphere by thinking of a frightened hedgehog
rolled up into a ball, all its pins pointing outward.

• Furthermore, (3.45) and (3.46) are invariant under the transformations performed
by combining of ”the same” rotations in internal and ordinary space. This means
that, for all physical purposes, our ansatz is rotationally symmetric; if we rotate
it, we can undo the effect of the rotation by a gauge transformation. We perceive
this to be a nice feature of our ansatz, because in general, one often finds that field
configurations that minimise the energy have a lot of symmetry and vice versa.

• Finally, the undetermined functions H and K depend only on the single variable r.
It is this feature that is especially nice in the following, because it allows us to turn
partial differential equations into ordinary ones.

Substituting (3.45) and (3.46) into the Bogomol’nyi equation (3.29), we get:

v2e2r
d

dr
K = −KH

v2e2r
d

dr
H = H − (K2 − 1).

One of these equations follows from equating the diagonal (i = a) elements of Ba
i and

DiΦ
a, the other from equating the off-diagonal ones.

The equations (3.47) can be solved explicitly 4 to give

H(r) =
ver

tanh(ver)
− 1

K(r) =
ver

sinh(ver)

It can be shown that this solution is unique up to spatial translation and gauge trans-
formations and that it satisfies the equations of motion (3.3). The monopole associated
with it is called the BPS-monopole after Bogomol’nyi, Prasad and Sommerfield. 5

This monopole is part of a family of dyons with magnetic charge g = ± e
4π

and arbitrary
electric charge q. It follows from the previous discussion that the fields for these are given
by

Φa(x̄) = δa
i

x̃i

er̃2
H(r̃) (3.47)

Aa
i (x̄) = εa

ij

x̃j

er̃2
K(r̃) (3.48)

Aa
0(x̄) = δa

i

x̃i

er̃2
H(r̃) sin(θ) (3.49)

4for a very explicit account of how to do this, see [29]
5Prasad and Sommerfield [30] were the first to obtain this solution. They actually did so by substituting

the ansätze (3.46) and (3.45) into the original, second order equations of motion, requiring appropriate
boundary conditions and (in their own words) ”shimmying a bit”
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where, as usual, cos(θ) = g/
√

q2 + g2 and sin(θ) = q/
√

q2 + g2 and where x̃i = xi cos θ.
Note that replacing xi by x̃i has the same effect as replacing v by v cos(θ).

These dyons are called Julia-Zee dyons, because Julia and Zee [31] were the first to
propose their existence. 6 The pure monopole is just the special case where θ = 0.

One easily verifies that the Higgs field of the monopole solution does indeed have the
asymptotic behaviour given in (3.44). Moreover, it is not difficult to see that it approaches
zero at the space time origin. As an illustration, |Φ|2 is plotted in figure 3.1 below.
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Figure 3.1: graph of |φ|2

As we can see in the figure, the space origin is actually the only point where the
monopole’s Higgs field is zero. But from the discussion in section 3.2, it then follows
that all the monopole’s magnetic charge is concentrated in this one point. Because the
magnetic charge was defined in such a way that ’t Hooft’s abelian field tensor fµν satisfies
the maxwell equations (with magnetic charge), it then follows that the Abelian magnetic
field of the monopole is actually just that of a standard point monopole of charge 4π

e

located at the origin.
The energy density of the monopole can most easily be derived using the formula

(3.40). We will not give the resulting (long) expression here. In stead, we have made a
graph of the energy density, which is shown in figure 3.2

This figure shows beautifully how the energy of the monopole is concentrated at the
space origin.

We can see from (3.47) that the Higgs field Φ of an arbitrary dyon can be obtained from
that of the monopole just by rescaling the space coordinates xi with a factor of cos(θ). It
follows that all dyons will have a unique zero of the Higgs field at x̄ = 0 and thus that
all dyons have the same magnetic charge distribution and B-field as the monopole. The
energy density of the dyons is also simply related to that of the monopoles. We have

Mdyon(r) = cos2(θ)Mmonopole(r/ cos(θ)).

We see that the peek of the energy density is flattened and broadened when we add
electric charge. In other words: the higher a dyon’s electric charge, the more its energy
get spread out over space.

6The actual solutions were first found by Prasad and Sommerfield [30], using the same method as for
the monopole
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Figure 3.2: graph of the BPS energy density

3.5 Finding multimonopoles: Nahm’s construction

In this section, I will say something about finding multimonopoles, that is, solutions to
the equations of motion with monopole numbers higher than one. Again, we will restrict
ourselves to the time independent case. Three different methods have been developed to
attack this problem:

• There is a method based on techniques that stem from the study of lower dimensional
solitons, due to Forgács, Horváth and Palla [32] [33]

• There is a method that uses twistor theory, due to Atiyah and Ward [34] and later
extended by Corrigan and Goddard [35] and Hitchin [36]

• Finally, there is a method based on the ADHM-construction for instantons, due
to Nahm [37] [38]. This is also called Nahm’s construction, or also the ADHMN-
construction.

Each of these methods has proved successful in providing explicit multimonopole solu-
tions (see the above references and too many others to mention), but the most successful
and currently most used method is Nahm’s construction. One reason for this is, that the
solutions yielded by this construction are automatically regular. In the other frameworks,
regularity of the solutions is not a priori guaranteed. Another reason is, that Nahm’s
construction gives us a very good view of the parameters on which the solutions depend.
We will therefore choose to describe Nahm’s construction here and not the other two
methods. Our treatment of the construction will follow that of Hitchin [39].

Nahm’s construction for monopoles is inspired on the ADHM-construction for self-dual
instantons which we described in chapter 2. To see the link between these instantons and
the monopoles we are working on now, let us introduce a new notation. We define

A4 := Φ.

Because we are only interested in time independent field configurations here, we can ignore
Minkowskian time and introduce a new, Euclidian time dimension, labelled with 4. In



66 CHAPTER 3. BPS-MONOPOLES AND NAHM’S CONSTRUCTION

this way we go from a Minkowskian situation with a gauge potential and a Higgs field to
a Euclidean situation with only a gauge potential (A1, . . . , A4). Now we have introduced
the extra coordinate x4 to get some similarity with the Yang-Mills theory of chapter 2,
but since we really want to describe monopoles, we don’t want our fields to depend on x4

in any essential way. Our first intuition might then be to require the Euclidean potential
Aµ to be independent of the 4-direction. However, we do not have to be so restrictive.
Because of the gauge symmetry of the Euclidean theory, we only have to require that if we
shift all the fields in the x4-direction, we end up with a field configuration that is gauge
equivalent to the one we had before the shift. It is not difficult to see that the gauge
transformations which are to compensate shifts in x4 will form a subgroup S of the group
of all gauge transformations. The map which sends a shift to the corresponding gauge
transformation will then give a representation U of the group of shifts (which is just R)
and the image of this representation will of course just be S In the situation sketched
above, all physical quantities will be invariant under a change of x4. However, the fields
themselves probably won’t be x4-independent. This can be remedied by setting x4 equal
to an arbitrary constant after all calculations in the Euclidean model have been performed
(this is just a partial choice of gauge).

In the new setting we have introduced, the Bogomol’nyi equation takes a particularly
nice form. We have

Bi = DiΦ = DiA4 = Ei, (3.50)

where E denotes the electric field corresponding to the Euclidean gauge potential. Now
the equation B = E is just another way of saying that the electromagnetic field is self
dual and thus we have found that every time independent solution to the Bogomol’nyi
equation corresponds to a self dual gauge potential on Euclidean R4 which does not depend
on Euclidean time. This means that we have to solve the same equations as in chapter 2,
but with very different boundary conditions.

Let us recall how we went to work to solve the self duality equations in chapter 2. We
introduced a matrix v, which depended on the space time coordinates in the following
simple way

v(x) = Cx + D (3.51)

where C and D were constant quaternionic k +1×k matrices (for gauge group SU(2)). 7

We then demanded that v∗v be a real matrix and that v have maximal rank. Once we had
found such a v, we could express the gauge potential and field in terms of a normalised
element of the kernel of v∗, that is: a k + 1 vector u such that

v∗u = 0, u∗u = 1.

The potential would then be given by

7in chapter 2 we worked with homogeneous coordinates on S4, but this does not make sense for the
present boundary conditions and therefore we will work with the restriction of v to R4
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Aµ = u∗∂µu. (3.52)

This procedure would yield a potential with instanton number k. Now notice that the
only way in which the construction depends on the boundary conditions of chapter 2, is
by the size of the matrix v. For instanton number k, v has to be a k +1× k matrix. Here
we are hoping to construct self dual field configurations which are independent of time.
These will obviously make the action for Euclidean Yang-mills theory diverge. Intuitively,
we could say this means that they have infinite instanton number. Therefore, if we want
to still use the ADHM-construction, we have to use an ”infinitely large matrix”, or more
correctly phrased, an operator between infinite dimensional spaces V and W . We will call
this operator ∆. We want to construct ∆ so that it satisfies the following conditions:

1. ∆ is quaternionic linear

2. ∆ is of the form Cx + D, where C and D do not depend on the space coordinate x.

3. ∆∗∆ is real

4. ∆∗∆ is invertible

5. The kernel of ∆∗ has quaternionic dimension 1.

6. ∆(x4 + α) = U(α)−1∆(x)U(α), where α 7→ U(α) is a representation of R in the
group of quaternionic unitary transformations of V .

The first 5 conditions are there to insure that our construction will yield a self dual
SU(2) gauge field. Conditions 3 through 5 are just the infinite dimensional analogues of
the conditions we had posed on v. Note that, in the finite dimensional case, conditions 4
and 5 were both incorporated in the condition that v should have maximal rank. This
is why we did not have to impose them separately before. In the infinite dimensional
case, condition 3 insures that the gauge field constructed from ∆ will be regular (through
the analogue of formula (2.15)), while condition 5 insures that the gauge field we get is
actually an sp(1) = su(2) field, and not, for example, an sp(2) or sp(3) field.

Condition 6 makes sure that the gauge field produced by the construction will in fact
be independent of Euclidean time. We can see this as follows. From condition 5, we see
that the equation ∆∗f = 0 has only a single normalised solution (modulo multiplication
with a unit quaternion). If we denote this solution with u, then it follows from condition
6 that the solution to ∆∗(x4 + α)f = 0 will be given by U∗(α)u. So we see that shifting
the fields along the x4 direction corresponds to a change of gauge, as we had required it
should.

Generally, the gauge field that corresponds to a solution u(x) to the equation ∆∗u = 0
depends only on the quaternionic line that u(x) spans in the vector space v. This is easy to
see if we recall from chapter 2 that u is really an orthogonal gauge for a quaternionic line
bundle over R4 which is embedded into R4 × v. This bundle depends on the quaternionic
lines L(x) in V which we use to represent the fibres, not on the choice of the elements u(x)
which we use to represent these lines. A gauge transformation is just a different choice
of normalised base vectors u(x) for the lines L(x). But all possible representative vectors
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can be obtained from each other by multiplication with a unit quaternion. Therefore,
performing a gauge transformation on the field configuration that corresponds to u is the
same as sending u(x) to U(x)u(x), where U(x) is a quaternionic unitary transformation
of V.

Let us now make some definitions. Let H0 be the space of complex-valued square
integrable functions on the interval [−a, a], where we leave a to be an arbitrary positive
real number for the moment. On H0, we can define a real structure 8 σ by

σ(f)(z) := f̄(−z)

We can now define the vector space V by

V = H0 ⊗ Ck ⊗ C2.

We identify the factor C2 in this product with the quaternions and take Ck to have some
arbitrary real structure σ′. Denoting the quaternionic structure on C2 by j, we have
natural quaternionic structures J and J on Ck and V , given by

J(v1 ⊗ v2) = σ′(v1)⊗ j(v2)

J (f ⊗ v1 ⊗ v2) = σ(f)⊗ σ′(v1)⊗ j(v2)

We will choose to let these structures denote multiplication by j on the right. Now let us
define the vector space W. We take

W =
{
f ∈ H1 ⊗ Ck|f(−a) = f(a) = 0

}
.

where we take H1 to be the Sobolev space of functions whose derivatives are in H0. We
give H1 the same real structure as H0. Ck also gets the same real structure as before.

At this moment, we note that an element f of W can be embedded into W ⊗ C2 by
the identification f ≡ f ⊗ (1, 0). Using this embedding, it makes sense to think of the
quaternionic structure J of V as working on W as well.

For the map ∆ : W → V, we now take a first order differential operator of the form

∆(x)f = (x4 + x1e1 + x2e2 + x3e3) f + i∂zf + i (T1(z)e1 + T2(z)e2 + T3(z)e3) f, (3.53)

where e1, e2 and e3 denote the action of left multiplication by the quaternions i, j, k (see
section A.5 in the appendix for details), and where the Ti are complex k × k matrices
which depend analytically on z ∈ (−a, a). The Ti are called the Nahm data.

We see immediately that this ∆ satisfies condition 2, with C = I. Condition 1 is
equivalent with the requirement that ∆ commute with the quaternionic structure J . For
the first term in ∆, this is trivial: left multiplication by a quaternion commutes with
right multiplication. The second term is quaternionic linear because of our choice of real

8For details on real and quaternionic structures, see A.5
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structure on V and W. We can see this by writing the quaternionic structure J on V (or
W ⊗ C2) in terms of the quaternionic structure J on Ck ⊗ C2. We have

J (f ⊗ v1 ⊗ v2)(z) = f̄(−z)⊗ σ′(v1)⊗ j(v2)

= 1⊗ f̄(−z)σ′(v1)⊗ j(v2)

= 1⊗ σ′(f(−z)v1)⊗ j(v2) = 1⊗ J(f(−z)⊗ v2)

Now we had already identified the element f ⊗ v of W with the element f ⊗ v ⊗ (0, 1) of
W ⊗C2. Now we can obviously also identify the element 1⊗ v1 ⊗ v2 of W ⊗C2 with the
element v1 ⊗ v2 of Ck × C2 and using both identifications, we can rewrite the result we
got above as

(J f)(z) = J(f(−z)) (3.54)

Filling this in in the second term of ∆, we get

i∂z(J f) = i∂z(Jf(−z))

= −Ji∂z(f(−z))

= Ji(∂zf)(−z) = J i∂zf (3.55)

From which we see that this term is indeed quaternionic linear, thanks to our choice of
real structures.

The last term in (3.53) gives

i
3∑

n=1

Tn(z)en(J f) = i

3∑
n=1

Tn(z)enJf(−z)

= −Ji
3∑

n=1

T̄n(z)enf(−z) = J i
3∑

n=1

(−T̄n)(z)enf(−z) (3.56)

So if we require that

Tn(z) = −T̄n(−z), (3.57)

then ∆ is quaternionic linear.
Now let us consider the reality condition 3. We have

∆∗∆ =

(
x̄ + i∂z + i

3∑
n=1

T ∗nen

) (
x + i∂z + i

3∑
n=1

Tnen

)

= −∂2
z +

(
2ix4 −

3∑
n=1

(Tn + T ∗n)en

)
∂z

+|x|2 −
3∑

n=1

∂zTnen + ix̄
3∑

n=1

Tnen + i
3∑

n=1

T ∗nenx +
3∑

m,n=1

T ∗mTnemen (3.58)
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From the first order term in ∂z, we require Tn +T ∗n = 0 for reality and when we substitute
this into the zero order term, we obtain the additional condition

Im

[
3∑

n=1

∂zTnen

]
= Im

[
3∑

m,n=1

TmTnemen

]
. (3.59)

where the imaginary part signifies that the only the coefficients of e1, e2 and e3 in the left
and right hand side have to be equal (The coefficient of 1 may differ). We can rewrite the
above equation more explicitly as

∂zT1 = [T2, T3]

∂zT2 = [T3, T1]

∂zT3 = [T1, T2] (3.60)

(3.61)

These equations are called Nahm’s equations. Using these and Ti = −T ∗i , we may write

∆∗∆ = −∂2
z + 2ix4∂z + |x|2 −

3∑
n=1

T 2
n (3.62)

It is now fairly simple to prove that ∆∗∆ is invertible. First, note that, for f ∈ W, we
have

〈f, ∂zf〉 = 0,

where < ·, · > denotes the L2 inner product on the interval [−a, a]. This follows easily if
one uses partial integration and the fact that f(−a) = f(a) (which was conveniently built
into the definition of W. Using this and (3.62), we can write

< ∆∗∆f, f >=< ∂zf, ∂zf > + < (|x|2 +
3∑

n=1

T ∗nTn)f, f >, (3.63)

using partial integration on the first term in (3.62). Now note that the right hand side of
(3.63) is positive, unless f is identically zero. It follows that ∆∗∆ is injective and hence
invertible.

At this point, we have to check that the kernel of ∆∗ has quaternionic dimension 1.
Now if the Tn are analytic everywhere on the closed interval [−a, a], then we would be
unable to satisfy this condition for k > 1. In this situation, the Ti would automatically be
Lipschitz-continuous on [−a, a] and thus, the first order linear equation ∆∗v = 0 would
have 2k (complex) linearly independent regular (and thus normalisable) solutions on the
interval [−a, a]. We see that, for k > 1, we will have to get rid of some of these solutions.
At the same time, we will still want the Ti to be differentiable on the open interval (−a, a),
as this will insure differentiability of the solutions to ∆∗u = 0. Therefore, we will require



3.5. FINDING MULTIMONOPOLES: NAHM’S CONSTRUCTION 71

the Ti to have simple poles at z = −a and z = a. Note that we have already accounted
for this possibility by taking f(−a) = f(a) = 0 in the definition of W. Let us denote
the residue matrices of the pole at z = −a by ti. Because we have T̄i(−z) = Ti(z) and
T ∗i (z) = −Ti(z), the residues of the pole at z = a will then be given by tti. It is easy to see,
using Nahm’s equations (3.60), that the ti will determine a k-dimensional representation
of SU(2).

We will now calculate the number of solutions to ∆∗u = 0. We will do this by calcu-
lating the index of the operator ∆. This quantity is defined as follows

index(∆) = dim(ker(∆))− dim(ker(∆∗)). (3.64)

Since we have already shown that ∆∗∆ is invertible, we know that the equation ∆u = 0
does not have any (regular) solutions and therefore, the index of ∆ will give us (minus)
the number of solutions to ∆∗u = 0. The reason we do not calculate the number of
solutions to ∆∗u = 0 directly, but work with the index instead, is that the index of an
operator is a kind of topological invariant on ”operator space” 9 This means that in stead
of calculating the index of ∆, we can calculate the index of a simpler operator ∆̃, which
can be ”continuously deformed” into ∆ and still get the right answer. Therefore, let us
define

∆̃f := i

{
∂z +

∑3
k=1 tiei

a + z
+

∑3
k=1 ttiei

a− z

}
f

:= i

{
∂z +

A

a + z
− At

a− z

}
f (3.65)

Where A is a linear map on Ck × C2. It is now natural to take the following ansatz for
solutions to the equation ∆̃u = 0:

u = vα,β(a + z)α(a− z)β

where vα,β is a constant vector in Ck ×C2. We see that this will give a solution if α is an
eigenvalue of A, β is an eigenvalue of At and vα,β is an eigenvector of both A and At with
the eigenvalues α and β. Thus we find 2k complex linearly independent solutions given
by

ui = vi(a
2 − z2)αi

where the vi are independent eigenvectors of A (and hence also of At, since A can be
diagonalised). To see how many of these solutions are normalisable, we have to find the
eigenvalues of A. Computing A2, we find

9The relevant index theorem for this situation can be found in [40]
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A2 =

(
3∑

i=1

ti ⊗ ei

)2

=
3∑

i,j=1

titj ⊗ eiej

=
3∑

i,j=1

titj ⊗ (δij + εijkek) =
3∑

i,j=1

t2i ⊗ I2×2 +
3∑

i,j=1

εijktitj ⊗ ek

=
3∑

i,j=1

t2i ⊗ I2×2 +
3∑

k=1

−tk ⊗ ek =
3∑

i,j=1

t2i ⊗ I2×2 − A

so that we can conclude that A2 + A has the same eigenvalues as
∑3

i,j=1 t2i . But this is
just the Casimir operator (or total spin) for the k-dimensional representation of SU(2)
determined by the ti. If we now require that this representation is the unique irre-
ducible k-dimensional representation, then it follows that

∑3
i,j=1 t2i is equal to the constant

(k−1
2

)(k−1
2

+ 1) = 1
4
(k2 − 1). For any eigenvalue α of A, we will then have

α2 + α =
1

4
(k2 − 1)

from which it follows that the eigenvalues of A will be α1 = −1
2
+ k

2
and α2 = −1

2
− k

2
. The

first value will give rise to a normalisable solution of ∆̃u = 0, while the second will give rise
to a non-normalisable one. The multiplicities of the eigenvalues can be determined using
the fact that the trace of A is zero. We find that α1 occurs k−1 times, while α2 occurs k+1
times. Thus we have found that the equation ∆̃u = 0 has k−1 normalisable solutions. In
a completely analogous way, one can show that ∆̃∗u = 0 has k +1 normalisable solutions.
From this, we find that the index of ∆̃, and hence of ∆, is −2. This proves that the kernel
of ∆∗ has complex dimension 2, and hence quaternionic dimension 1.

We are now left with our last condition, the one that has to insure the time indepen-
dence of our monopole solutions. this condition, too, is satisfied. We have

∆(x + x4)f = eix4(z)∆(x)e−ix4(z)f, (3.66)

which gives us the required unitary representation of R, and

J (eix4(z)f(z)) = J(eix4(−z)f(−z)) = eix4(z)J(f(−z)) = eix4(z)J f, (3.67)

which shows that this representation is quaternionic.
We have now proved that Nahm’s construction produces solutions to Bogomol’nyi’s

equations (if it produces anything at all). However, we have not said anything yet about
the way in which these are produced from the zero modes of ∆. Of course, we will have to
use some analogue of the formula (3.52) which we used to calculate instanton potentials.
Since this formula uses the standard quaternionic scalar product, one would expect that,
to have a valid analogue, we would first have to make an identification of the complex
vector space V on which we are working with a certain quaternionic vector space and
then define the monopole potential through the quaternionic scalar product on this space.



3.5. FINDING MULTIMONOPOLES: NAHM’S CONSTRUCTION 73

In the appendix, it is indicated how such an identification could proceed. However, in
practice, one does not use identifications of the type discussed in the appendix to calculate
monopole potentials in terms of quaternions. In stead, one uses the following formula to
calculate them directly in terms of SU(2) matrices; suppose {u1, u2} is an orthonormal
basis for the kernel of ∆∗, then we have

Aij
µ = 〈u∗i ∂µuj〉 . (3.68)

It would be interesting to see if this equation can also be obtained through some identi-
fication of V with a quaternionic space, but we will not prove or disprove this and go on
with the above formula.

Though we have now shown how to obtain solutions to Bogomol’nyi’s equations using
Nahm’s construction, we have not yet said anything about the magnetic charge of these
solutions. We will now show that this is equal to k (the size of the matrices Ti). We
can deduce this by studying the asymptotic properties of the solutions of ∆∗u = 0 as the
space variable x goes to infinity. In this limit, the only appreciable contribution of the Ti

to ∆∗u will come from the poles. Therefore, instead of ∆ itself, we can study the operator
∆̂ defined by

∆̂f := i

{
∂z − i(x4 + x1e1 + x2e2 + x3e3) +

A

a + z
− At

a− z

}
f (3.69)

where A is the same matrix as above. We have proved above that the equation ∆∗u = 0
has exactly two linearly independent solutions. For large ~x, we expect that this will
also hold for the equation ∆̂∗u = 0. But we can actually find the essential z-dependence
of these solutions fairly easily ! This works as follows: One can easily check that the
operators −i(x4+x1e1+x2e2+x3e3) and A commute. Therefore, we can find simultaneous
eigenvectors of these operators. Let us denote such a simultaneous eigenvector by v and
let’s call the corresponding eigenvalues of A and −i(x4 + x1e1 + x2e2 + x3e3) α and λ
respectively. We then see that the function u given by u(z) = (z2 − a2)αeλz will be a
solution to ∆∗u = 0. Now we have already found the eigenvalues of A above. There are
two: α± = ±k−1

2
, but only α+ gives rise to a normalisable solution, so we can forget about

α−. The two eigenvalues of −i(x4+x1e1+x2e2+x3e3) are easily computed. They are given
by λ± = −ix4 ± r. Thus we see that the two linearly independent solutions to ∆̂∗u = 0
are given by

u+ = v+(z2 − a2)
k−1
2 er−ix4 (3.70)

u− = v−(z2 − a2)
k−1
2 e−r−ix4 (3.71)

where v+ and v− are the appropriate simultaneous eigenvectors of A and −i(x4 + x1e1 +
x2e2 + x3e3). To normalise these solutions, we have to calculate the integrals

I± :=

∫ a

−a

dz
{
u∗±u±

}
= |v±|2

∫ a

−a

dz
{
(z + a)k−1(z − a)k−1e±2rz

}
.
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These can be done by iterated partial integration. It is possible to calculate the exact
answer, but we will only be interested in the first two orders in 1

r
. Now the boundary

terms obtained after n partial integrations will be of order 1
rn , so we want to look at the

first two non-vanishing boundary terms. It is easy to see that these are the boundary
terms we get after k and k + 1 partial integrations (fewer partial integrations would leave
positive powers of both z − a and z + a in the boundary terms). Moreover, we are only
interested in the z = a term for I+ and in the z = −a term for I−, as the other terms will
go exponentially to zero as r goes to infinity. This leaves us with

I± = ±|v±|2 (k − 1)!(2a)k−1e2ra

2rk

(
1− k(k − 1)

4ar
+ O(

1

r2
)

)

and imposing the requirement that I± = 1, we find

|v±|2 = ± 2rk

(k − 1)!(2a)k−1e2ra

(
1 +

k(k − 1)

4ar
+ O(

1

r2
)

)
. (3.72)

According to the formula (3.68) above, the ++ and −− components of the asymptotic
Higgs field corresponding to u will now be given by

Φ±± =

∫ a

−a

dz
{
u∗±∂x4u±

}
= i|v±|2

∫ a

−a

dz
{
(z + a)k−1(z − a)k−1ze±2rz

}
(3.73)

(the off-diagonal elements Φ+− and Φ−+ are easily seen to be zero). The calculation of
the integrals is similar to that of the integrals I± above and we find

∫ a

−a

dz
{
(z + a)k−1(z − a)k−1ze±2rz

}
=

a(k − 1)!(2a)k−1

(2r)k

(
1− 1

2ar
− k(k − 1)

4ar

)

Filling this and the result (3.72) in in (3.73), we find that we have

Φ(x) → i

(
a(1− k

2ar
) 0

0 −a(1− k
2ar

)

)
(3.74)

If we now set a = v, then we see that

|Φ(r)| ∼ v

(
1− N

vr

)
(r →∞) (3.75)

but this is just the formula (3.44) for the asymptotic behaviour of a k-monopole (with
the fundamental electric charge e set to 1). Thus we can conclude that the monopole
number of a solution produced by Nahm’s construction is indeed equal to the dimension
k of the matrices Ti. As a bonus, we can read off the eigenvalues of the asymptotic Higgs
field from (3.74).

We have now come to a point in our discussion of Nahm’s construction at which it
would be the natural to try and construct some actual, concrete monopole solutions. For
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k = 1, this is actually very simple. First, we have to solve Nahm’s equations (3.60). Since
the Ti are just complex numbers (1 × 1-matrices), the commutators in these equations
vanish and we see that the Ti are independent of z. In other words, the Ti are just constant
imaginary numbers. Looking at the equation ∆∗u = 0, we see that these constants define
a shift of the space coordinates xi. Therefore we can limit ourselves to the case Ti = 0 and
shift the solution we find this way in space to obtain the complete three parameter family
of solutions. Solving the equation ∆∗u = 0 for the case Ti = 0 is not difficult; we are
dealing with a first order linear equation with constant coefficients. The solution is just
the BPS-monopole we discussed before (possibly in a different gauge). A nice treatment
that reobtains the equations (3.47) in an economical way can be found in [41].

For k = 2, Nahm’s equations are a lot more difficult to solve than for k = 1, but it is
still possible. The general solution can be given in terms of Jacobi elliptic functions (see
[37]). However, solving the linear equation ∆∗u = 0 with these Nahm data turns out to
be very difficult and as far as I know, it has only been done in the special case where the
resulting monopole configuration is axially symmetric. (see [42]). For higher monopole
numbers, the situation is comparable. Solutions with special symmetries have been found
and continue to be studied, both numerically and analytically (see e.g. [43, 44, 45] and
also [1], from which I took the figure on the front page), but a general solution does not
seem to be near.

Still, though explicit solutions are only available in special cases, it has been proved
long ago [39] that Nahm’s construction does in fact yield all static solutions to Bogo-
mol’nyi’s equation (3.29). As in the case of the ADHM-construction for instantons, a
truly ”logical”/intuitive proof requires advanced mathematical methods beyond the scope
of this thesis. In [46], Corrigan and Goddard give a proof that doesn’t preserve all the
intuition, but uses only mathematics familiar to most physicists. Given a solution (A, Φ)
to the Bogomol’nyi equations, they study a massless Dirac equation with this solution as a
background field. From the solutions to this equation, they construct a set of matrices Ti

which satisfy Nahm’s equations and all the other requirements for Nahm’s construction.
Using these matrices as Nahm data, they then apply Nahm’s construction and regain
the solution (A, Φ) they started with, thus showing all static solutions to Bogomol’nyi’s
equation can be produced by Nahm’s construction.

As an aside, I want to mention that Corrigan and Goddard’s proof indicates a curious
kind of ”duality” (they call it reciprocity) between the fields (A, Φ) of a solution to
the Bogomol’nyi equation and the Nahm data Ti. While Corrigan and Goddard show
that the Nahm data can be extracted from solutions to the massless Dirac equations in
the background of (Ai, Φ), our description of Nahm’s construction shows that the fields
(Ai, Φ) can be constructed from a massless Dirac equation in the background of the Ti

(the equation ∆∗u = 0). Moreover, while we have shown that the Bogomol’nyi equation is
a self duality equation for a gauge field on Euclidean R4 which is independent of one space
time direction, it can also be shown that the Nahm equations are the self duality equations
for a gauge field on R4 which is independent of three of the space time directions. A nice
generalisation of this interesting phenomenon of reciprocity can be found in [47]

Now let’s go back to the main thread of our story. Though we don’t want to get into
the construction of monopoles with special symmetries, we would like to end this section
with some application of Nahm’s construction and preferably with a physically interesting
one. Therefore, what we shall do is to sketch briefly how one can calculate the number
of parameters involved in the general k-monopole solution, modulo gauge invariance. To
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do this calculation, we have to study perturbations of a solution Nahm’s equations which
leave us in the space of solutions. These perturbations will be solutions to the linearised
version of Nahm’s equations. We will only look at traceless perturbations, as the trace of
a perturbation can always be removed by a spatial translation. Of course, this means we
will have to add the three parameters for spatial translations by hand at the end of the
computation.

To find the linearised equations, let us first write Nahm’s equations in a more compact
form:

∂zTi =
1

2
εijk[Tj, Tk] (3.76)

Now let T̂i(z) be a solution to this equation. Substituting Ti = T̂i + δi, we see easily that
if Ti is to be a solution as well, we will have to have

∂zδi = εijk[T̂j, δk] (3.77)

These are the linearised equations we were looking for. The solutions are just the zero
modes of the operator P defined by

Pδi = ∂zδi − εijk[T̂j, δk] (3.78)

Thus, we are looking for the number of zero modes of P. However, since we are only
interested in physically relevant parameters, we want to exclude the zero modes which
are due to gauge transformations from the counting. It can be shown that if one works
modulo these gauge modes, then PP ∗ is an invertible operator, so that the number of
zero modes of the operator P is equal to its index. This means that, as in the calculation
of the index of the operator ∆∗, we can simplify the operator P, calculate the index of
the simplified operator and draw conclusions about the zero modes of P. Near the pole at
z = −a, we can take a simplified operator P̃ defined by

P̃ f :=

{
∂z +

p

a + z

}
f (3.79)

where the linear operator p is given by

(pδ)i = εijk

[
T̂j, δk

]
The next step in the calculation is now to find the eigenvalues of p with their multiplicities.
These are found in a way which is very similar to the way we found the eigenvalues of the
matrix A in the calculation of the index of ∆∗ above. Again, one shows that p is traceless,
while p2 + p is equal to the Casimir operator for a certain representation of SU(2). The
representation in question is given in its infinitesimal form by the adjoint action of the
residue matrices ti on the complexification of the Lie algebra su(k). One can show (for
example by calculating the character) that this representation splits into k−1 irreducible
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representations of complex dimensions d1 = 3, d2 = 5, d3 = 7, . . . , dk = 2k + 1. The ith of
these irreducible representations then gives us di−2 (real independent) solutions that are
non-normalisable and di +2 solutions that are normalisable at least in the neighbourhood
of z = −a. Thus, the pole at z = −a makes

∑
i{di−2} zero modes of P̃ non normalisable.

At z = a, we have the same situation and another
∑

i{di − 2} zero modes of P̃ become
non normalisable. This means we can now count the number of real parameters we are
left with. We started with 3(k2 − 1) real parameters for the three su(k) matrices δi.
Of these parameters, k2 − 1 disappear because we work modulo gauge transformations.
This leaves us with 2(k2 − 1) parameters. Subtracting the number of parameters for non
normalisable solutions and adding tree for the spatial translations, we obtain

2(k2 − 1)− 2
k−1∑
i−1

(di − 2) + 3 = 4k − 1

real parameters.



Chapter 4

Dynamics of BPS-monopoles

4.1 Monopole dynamics; a geodesic approximation

In the previous chapter, we have looked into the problem of finding classical field configu-
rations for time independent monopoles of minimal energy. We found that for monopole
charge k, there is a 4k − 1 parameter family of such solutions, modulo gauge transfor-
mations. In this chapter, we want to study the low energy dynamics of these monopoles.
To this end, we would like to use a geodesic approximation like the one we treated in
section 1.6. That is, we want to describe monopole motion as a geodesic motion on the
manifold of static minimal energy monopoles, where the metric on this manifold is the
metric induced from the L2-metric on the space of field configurations. This means that
the metric at any point z of the manifold of minimal energy configurations is given by the
L2 inner product of the zero modes of the monopole configuration that corresponds to z.

In principle, there are two things to do before application of this geodesic approxima-
tion is possible. First, we have to find coordinates that describe the manifold of static
monopoles and then we have to calculate the metric from the zero modes that correspond
to these coordinates. Now there is a problem with this approximation here, which did
not occur in the discussion in chapter 1: Since gauge transformations leave the energy
invariant, the manifold of minimal energy monopoles will be infinite dimensional, as any
monopole will have infinitely many zero modes which correspond to infinitesimal gauge
transformations. We do not want to incorporate all these gauge modes into our geodesic
approximation, because most of them do not correspond to physical properties of the
monopole system. Rather, they correspond to a redundancy in our description of the
system. Therefore, we want to somehow get rid of most of these gauge modes, so that we
will (hopefully) be left with a finite number of physically interesting zero modes to work
with.

Note that we do not want to get rid of all gauge modes, as some (or actually:one) will
turn out to have physical significance. Therefore, what we should really do at this point,
is determine which class of gauge transformations describes real physical symmetries of
the monopole system. The rest of the gauge transformations would then be redundant
and we could look at the configuration space modulo these transformations.

It is argued in [48] (and references therein), that the redundant gauge transforma-
tions are the ones that approach unity at infinity and that are connected to the identity
transformation. We will call these transformations small gauge transformations. and the
remaining ones large gauge transformations. One can identify the small gauge transforma-

78
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tions by requiring that Gauss’ equation (3.5) is satisfied at all times. As we have argued
at the start of chapter 3, this equation should be satisfied for all physical configurations.
We will not repeat the argument given in [48] in detail here, but we will give a partial
proof (which requires less work and fits more easily into our treatment) in section 4.2.
In particular, we will make the extra assumption that we can get of all time dependent
gauge modes through small gauge transformations. Time dependent gauge modes do
not fit comfortably into the zero mode methods we have described in chapter 1, because
there, we always assumed zero modes to be time independent. The easiest way to get rid
of them is to require that A0 is equal to zero at all times. This can always be assured by a
suitable gauge transformation, but here, we assume that it is actually possible to do this
through a small gauge transformation. Note that choosing A0 equal to zero eliminates
only the time dependent zero modes. All time independent gauge transformations keep
the condition A0 = 0 invariant and are thus still allowed. In section 4.2, we will show
that requiring the fields to satisfy the A0 = 0 version of Gauss’ law effectively divides
out the time independent small gauge transformations. That is, we will see that as time
goes by, fields which satisfy Gauss’ law only vary in directions orthogonal to the flow of
small gauge transformations. For the geodesic approximation, this means that we restrict
the geodesic motion on the manifold of static monopoles to a sub-manifold orthogonal to
this flow. The whole analysis then proceeds in terms of coordinates for this sub-manifold
and zero modes which lie along it, or in other words, which are orthogonal to small gauge
modes. In this way, we are effectively working in the space of static monopole config-
urations of minimal energy modulo small gauge transformations. because this is rather
a mouthful, we will call it the moduli space for short. There is a moduli space for each
monopole number and we will call the n-monopole moduli space Mn

There is one subtlety about dividing out small gauge transformations which I should
mention here. In the literature on monopoles, one usually does not just divide out the
group of small gauge transformations, but in stead the bigger group of transformations
which do tend to unity at infinity, but are not necessarily connected to the identity
transformation. For us, this difference is probably not important. In our semi-classical
approximation, we will be unable to see gauge transformations which are not homotopic to
the unity transformation, as these transformations will take us out of the neighbourhood
of the classical solution we are using as a starting point for the approximation. In fact, we
will only deal with gauge transformations which differ by an infinitesimal amount from
unity. Therefore, I expect that using only semi-classical methods, we will not be able to
distinguish between dividing out only the small gauge transformations and dividing out
all gauge transformation which tend to unity at spatial infinity.

Though we have now indicated how a geodesic approximation for monopole dynamics
can be set up, we have not given any arguments as to why geodesic motion along the
moduli space should be a good approximation to the exact monopole dynamics at low
energy. If there would be a gap in the spectrum of the BPS-monopoles, then we would
be able to use estimates like the ones we made in section 1.6 to make this plausible, but
already in the first article ([12],1982) on this subject, Manton remarks that this is not
the case and that there are modes of arbitrary low non-zero energy, corresponding to
low frequency electromagnetic waves. These should be radiated by the monopoles when
they they are in accelerated motion. However, Manton also says that the electromagnetic
radiation emitted by the monopoles should approach zero as the monopole speeds go to
zero. This gives hope that, even though there is no gap, not too much of the kinetic
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energy of the monopoles will be transferred to the non zero modes and the speed of
motion along the moduli space will stay approximately constant. In a later article [49],
Manton actually calculates the amount of energy that the monopoles emit as radiation for
two relatively simple scattering processes and shows that it does indeed become negligible
compared to the total kinetic energy as the monopole speeds go to zero. However, it was
not until 1994, that Stuart finally managed to rigorously prove the validity of the geodesic
approximation for monopole dynamics [50]. The idea of the proof is similar to that of
our discussion at the end of section 1.6, but the estimates involved are so complicated
that including the proof in this thesis would probably double it’s length. Stuart’s main
result can be (sloppily) stated as follows: If we start with a field configuration (A, Φ)
which at time t = 0 lies in configuration space at a distance of order ε2 from the space of
minimal energy monopoles and which has an initial speed along this space of order ε and
in all other directions of order ε2, then, for ε small enough, there will be a time interval
of length O(1

ε
) during which (A, Φ) will stay within a distance of order ε from a geodesic

on the moduli space.
On the one hand, we see from this that the geodesic approximation for monopoles

becomes asymptotically exact if we let the monopole start on the moduli space and let
it’s initial speed go to zero. On the other hand, we see that when we want to do classical
scattering calculations in practice, i.e. with some fixed initial speed, we can expect the
approximation to break down after some finite time. In fact, we can always expect to
describe a stretch of the monopole’s trajectory with length of order one, but not necessarily
the whole trajectory.

4.2 General information on monopole moduli spaces

In this paragraph, we will make much of the material we dealt with in the previous
paragraph much more explicit. At the same time, we will obtain some general information
about monopole moduli spaces. We will work in A0 = 0 gauge, thereby eliminating all
time dependent gauge transformations and leaving all time independent ones.

The easiest way to approach monopole moduli spaces is to look at the zero modes
of monopole configurations. To find these, we would normally linearise the equations of
motion around the monopole in question and then solve the linearised equations to give
the zero modes. In the case of the BPS monopole, there is an easier method: we can
opt to solve the linearised Bogomol’nyi equations in stead of the linearised equations of
motion. The reason for this is, that if we deform a monopole in such a way that we keep
the energy fixed, then the deformed monopole will still saturate Bogomol’nyi’s bound and
will therefore still be a solution to Bogomol’nyi’s equations. Suppose now that (Ã, Φ̃) is
a monopole solution and look at the deformation of this solution given by (Ã + a, Φ̃ + φ).
If we now require that, to first order in a and φ, this is still a solution to Bogomol’nyi’s
equation Bi = DiΦ, then we find that (a, φ) will have to satisfy the following linear
equation.

−1

2
εijk(D̃jak − D̃kaj) = D̃iφ + e[ai, Φ̃] (4.1)

Next to this equation, we have an extra condition on zero modes, which follows from
Gauss’ law. With A0 = 0, Gauss’ law is just a constraint on the time derivatives of the
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fields (Ai, Φ). This constraint easily follows from (3.5). It is

DiȦi + e[Φ, Φ̇] = 0. (4.2)

Now we want to view the dynamics of monopoles as motion along the manifold of static
minimal energy monopoles. The time derivatives of the fields in such a motion will
obviously have to lie along tangent vectors to this manifold. These tangent vectors are
just the monopole zero modes, i.e. the solutions to the equation (4.1). However, not all
of these are allowed if we have to satisfy Gauss’ law at all times. It is easy to see from
(4.2) that the only zero modes which are physically relevant are the ones which satisfy

D̃iai + e[Φ̃, φ] = 0. (4.3)

Such zero modes are said to be in background gauge. Now let us show that this condition
on the zero modes effectively divides out the small gauge transformations. From (4.3), it
trivially follows that we have

∫
d3x

{
(D̃iai)

aΛa + (
1

2
eεabcΦ̃bφc)Λ

a

}
= 0 (4.4)

for all Lie algebra valued functions Λ. In fact, (4.3) and (4.4) are equivalent, even if we
restrict ourselves to compactly supported Λ. If we assume Λ to be compactly supported,
we can use partial integration to rewrite (4.4) as

∫
d3x

{
aa

i D̃iΛ
a + φa(

1

2
eεabcΦ̃bΛc)

}
=:〈

(ai, φ); (D̃iΛ, [eΦ̃, Λ])
〉

= 0 (4.5)

where we have defined a natural inner product < ·; · > on Lie algebra valued vector
functions on R3 through a combination of contracting internal and spatial indices and
taking the L2 inner product on R3.

Now note that, for infinitesimally small Λ, the expression (D̃iΛ, [eΦ̃, Λ]) is just the
variation of the fields that would be caused by the gauge transformation g(x) = eeΛ(x).
Note that this is a small gauge transformation, because it is clearly connected to the unity
transformation and we had required Λ to approach zero at spatial infinity, a requirement
which was needed to enable us to do the partial integration that brought us from (4.4)
to (4.5). Thus we see that the requirement (4.3) on the zero modes is equivalent to the
requirement that zero modes be orthogonal to small gauge transformations, with respect
to the inner product < ·; · > . In other words, by imposing Gauss’ law on the fields, we
are effectively dividing out small gauge transformations.

The inner product < ·; · > on zero modes is also the inner product which gives us the
metric which determines the dynamics on the moduli space. We will now show that this
follows from the physics of the theory, combined with the assumption that the motion
of the fields through configuration space is such that the fields stay on the manifold of
BPS-solutions at all times. To this end, let us assume that we have a set of coordinates
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zk that describe the moduli space. Now if we have a field configuration (A, Φ) that moves
along a path on the manifold of BPS-solutions and satisfies Gauss’ law (4.2) at all times,
then we can identify the path along which the configuration moves with a path on the
moduli space. This means we can express the time dependence of the configuration in
terms of the coordinates zi. That is, we have (A(t), Φ(t)) = (A(z(t)), Φ(z(t))), where z(t)
describes some path through the moduli space. The time derivatives of the fields can now
be written as

(Ȧi(z), Φ̇(z)) = żk(δkAi(z), δkΦ(z)) (4.6)

where (δkAi(z), δkΦ(z)) is the zero mode of (Ai(z), Φ(z)) that corresponds to an infinites-
imal change of zk. Note that (δkAi(z), δkΦ(z)) does not have to be equal to (∂zk

Ai, ∂zk
Φ).

This last expression may have a nonzero inner product with some small gauge transfor-
mations. (δkAi(z), δkΦ(z)) is just the orthogonal projection of (∂zk

Ai, ∂zk
Φ) on the vector

space of zero modes which are orthogonal to small gauge transformations. This means
that in general, we can write

(δkAi, δkΦ) = (∂zk
Ai, ∂zk

Φ) + (Diε, [Φ, ε]) (4.7)

where the gauge parameter ε(x) is some Lie algebra valued function of x that goes to
zero at spatial infinity. If (∂zk

Ai, ∂zk
Φ) is known then ε can be uniquely determined by

requiring that the right hand side of the above equation satisfies Gauss’ law.
We are now in a position to derive an effective Lagrangian for the restricted monopole

dynamics we are considering here. First, let us write down the full Lagrangian (cf. formula
(3.1)) for the gauge A0 = 0. This is given by

L =
1

2

∫
d3xTr

{
ȦiȦi + Φ̇Φ̇ +

1

2
FijFij + DiΦDiΦ

}
. (4.8)

We see that, in this gauge, there is a clear distinction between the first two terms,
which represent the kinetic energy of the configuration, and the last two terms, which
represent (minus) the potential energy. Because we have restricted our configurations to
lie in the manifold of configurations with minimal potential energy, the last two terms are
actually constant in time. This means that they are not relevant to the dynamics of our
restricted system and we can leave them out of our effective Lagrangian. The first two
terms can be rewritten using (4.6) and this leads to the following effective Lagrangian:

L =
1

2

∫
d3x

{
Ȧa

i Ȧ
a
i + Φ̇aΦ̇a

}
=

1

2

∫
d3x {żkδkA

a
i żlδlA

a
i + żkδkΦ

a żlδlΦ
a}

=
1

2
〈(δkA, δkΦ); (δlA, δlΦ)〉 żkżl =:

1

2
gkl(z)żkżl (4.9)

and we see that this is just the Lagrangian for geodesic motion on the moduli space
endowed with the metric g defined through the inner product < ·; · > of the zero modes, as
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we expected. The Hamiltonian that follows from this Lagrangian can be easily calculated.
It is given by

H =
1

2
g−1

kl (z)pkpl (4.10)

where pk is the momentum conjugate to zk. Note the analogy between this formula and
the formula (1.39) we found in section 1.5.3 for the lowest order effective Hamiltonian for
a theory with only scalar fields and without gauge modes. Just as there, we see that, if the
zero mode corresponding to a change of zk is non-normalisable, then the coordinate zk is
not physically relevant. Here, we can see this most easily from the effective Lagrangian; if
any non-normalisable mode is excited, then the Lagrangian, and hence the kinetic energy,
diverges. Thus, for physical applications, we are only interested in normalisable zero
modes.

Note that, though the above argument does give the metric on the moduli space, it
certainly does not prove that the geodesic approximation for monopole dynamics works.
In fact, by looking at configurations which were restricted to lie on the manifold of solu-
tions with minimal potential energy, we artificially prevented that any energy would be
transferred into the modes orthogonal to this manifold. Therefore, it is not surprising
that we ended up with a Lagrangian which describes a geodesic motion. The whole point
of the proof for the geodesic approximation (see [50]) is to show that, even when there
are no artificial constraints on the monopoles’ dynamics, the energy that flows into the
orthogonal modes becomes negligible as the monopole speeds go to zero. Once one has
given such a proof, one can say in retrospect that the monopole are effectively confined
to the manifold of configurations with minimal potential energy and still use the above
argument to find the effective action and the metric on the moduli space.

At this point we are really back at the end of the previous section, with this difference,
that we now have some explicit formulae to work with. Let us now do something really
new and calculate the dimension of the moduli space. We have already done most of the
work for this at the end of section 3.5. There, we found that the most general monopole
of charge k depends on 4k − 1 parameters, if we divide out all gauge transformations.
From this, we can conclude that a k-monopole moduli space will have at least 4k− 1 zero
modes and that any zero modes that we have not counted yet have to be gauge modes.
Of course, we are looking modulo small gauge modes, so we are left with the task to
find the number of large gauge modes that are orthogonal to all small gauge modes, or
equivalently, all large gauge modes that satisfy the condition (4.3).

Now one checks easily that, if (Ã, Φ̃) is a monopole solution, then all time independent
gauge modes around it will be given by

(a, φ) = (D̃iΛ, e[Φ̃, Λ])

for some Lie algebra valued function Λ of the space coordinates. Substituting this into
the condition (4.3), we find the following condition on the function Λ :

D̃iD̃iΛ + e2
[
Φ̃, [Φ̃, Λ]

]
= 0 (4.11)
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Now there is a one dimensional space of solutions to this equation which can be easily
identified. It is given by

Λ(x) =
χΦ̃(x)

v
(4.12)

where χ is a real parameter. The division by v is necessary to make Λ dimensionless and
also makes sure that the length of Λ(x) at infinity is just |χ(x)|. Substituting the above
into (4.11), we see that the second term on the left hand side is trivially equal to zero,
while the first term becomes zero using D̃iΦ̃ = B̃i and D̃iB̃i = 0. Of course, the question
is now: are there any other physically relevant solutions ?

To answer this question, let us first note once more that any physically relevant zero
mode has to be normalisable. For the gauge mode corresponding to Λ, this means that
we have to have

∫
d3xTr

{
D̃iΛD̃iΛ + [Φ̃, Λ][Φ̃, Λ]

}
< ∞

Since both terms in the integrand are non-negative, it follows that we have to have

D̃iΛ = o( 1
x3/2 ) (x →∞)[

Φ̃, Λ
]

= o( 1
x3/2 ) (x →∞) (4.13)

It follows from the second of these that we have to have

Λ(x) = c(x)Φ̃(x) + o(
1

x3/2
).

Where c(x) is an arbitrary real function of the spatial variables. Substituting this into
the first of the equations (4.13), we find the following equation for c(x)

∂i(ln(c(x))) = −
(
D̃iΦ̃

)
Φ̃−1. (4.14)

Now D̃iΦ̃ has to be at least of order 1
x
√

x
to make the energy of the configuration (Ã, Φ̃)

converge and similarly, Φ−1 has to be of order 1, so we find

c(x) = o(e
1√
x ) (x →∞)

and we see that, at infinity, c(x) is equal to a constant plus terms that decrease to
zero. Effectively, this means that any normalisable gauge mode will be equal to the
mode described by (4.12), plus possibly some small gauge modes. Since we are working
modulo small gauge modes, it follows that the mode given by (4.12) is the sole physically
interesting gauge mode.
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If we now add the large gauge mode we have found to the 4k−1 zero modes we already
had, we see that we have 4k independent zero modes around any k-monopole. We can thus
conclude that the k-monopole moduli space is 4k-dimensional. Weinberg [51] was the first
to (informally) derive this dimensionality. A formal proof can be found in Taubes’ work
[52]. In this article, Taubes applies index theoretical methods directly to the equations
(4.1) and (4.3). We have avoided this by going through Nahm’s transformation.

Let us now give a physical interpretation to the gauge mode we have found. This
is relatively easy, because we can readily identify the collective coordinate to which this
mode corresponds. The gauge mode is just the generator of the one parameter group of
gauge transformations given by χ 7→ ee χ

v
Φ̃ and we see that χ can be used as the collective

coordinate corresponding to the gauge mode. Note that χ is a periodic coordinate with
period 2π

ev
, because Φ̃ has eigenvalues ±iv at infinity (away from infinity, we can neglect

the effect of a change in χ, because we are working modulo small gauge transformations).
Though it is not clear if and how one should physically distinguish between config-

urations with different values of χ, it is easy to see what happens as χ becomes time

dependent. If we gauge transform the fields (Ã, Φ̃) by ee
χ(t)

v
Φ̃ at time t, then we effectively

turn on an E-field proportional to the B-field. More explicitly, in A0 = 0 gauge, we have

Ei = Ȧi and the deformation in ˜̇Ai due to the gauge transformation ee
χ(t)

v
Φ̃ is given by

δχȦi = ∂t(D̃i(
χ

v
Φ̃)) =

χ̇

v
D̃iΦ̃ =

χ̇

v
B̃i (4.15)

We can now find the electric charge of the deformed configuration by calculating the flux
of its Abelian electric field E through the sphere at infinity. However, it is clear that this
flux will be just χ̇

v
times the flux of the Abelian magnetic field B. This last flux would give

us the magnetic charge and so we find without any serious calculation, that the electric
charge of the deformed configuration will be χ̇

v
g, where g is the magnetic charge. Thus,

we see that the time dependence of the collective coordinate χ determines the electric
charge. Of course, as the electric field is turned on, the energy is also raised and we go
from a situation with only a potential energy of vg to a situation with the same potential
energy, but with an added kinetic energy of gχ̇2

v
.

Next to χ, there are three more collective coordinates which are are easy to identify
and present in all the monopole moduli spaces. These are the coordinates corresponding
to the position of the centre of mass of the monopole configuration. We will call these
X1, X2 and X3. We have already seen these arise explicitly in our description of Nahm’s
construction as the traces of the matrices Ti. Generally, one can show [53] that the n-
monopole moduli space has the form Mn = R3 × (S1 ×M0

n)/Zn. Here, the R3-factor
corresponds to the centre of mass coordinates Xi and the S1 is just the circle parametrised
by χ. M0

n is a simply connected 4(n − 1)-dimensional hyperkähler manifold which is
sometimes called the moduli space of ”strongly centred” monopoles, because it describes
the dynamics of monopoles in the coordinate system for which the centre of mass of the
monopole configuration is located at the space origin at all times. The n-fold cover of
Mn, R3 × S1 ×M0

n, is metrically a direct product. That is, the metric on R3 × S1 is
independent of the coordinates on M0

n and vice versa. This makes it pleasant to work
with coordinates for this n-fold cover in stead of directly with coordinates for Mn. When
we do this, we have to implement the identification modulo Zk by identifying certain
sets of coordinates, which describe identical field configurations. We will see an explicit
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example of this in the two monopole case which is discussed in section 4.4.
I will not give a detailed proof that M0

k is a Kähler manifold, but I will indicate the
three anti-commuting complex structures that go with this manifold. These can be seen
most easily in the notation of section 3.5, i.e. in a Euclidean setting with a ”dummy
coordinate” x4 and with A4 := Φ. In this notation, the linearised Bogomol’nyi equation
(4.1) and the gauge condition (4.3), which together determine the tangent vectors of Mn,
take the form

D̃1a1 + D̃2a2 + D̃3a3 + D̃4a4 = 0 (4.16)

−D̃1a4 − D̃2a3 + D̃3a2 + D̃4a1 = 0

D̃1a3 − D̃2a4 − D̃3a1 + D̃4a2 = 0

−D̃1a2 + D̃2a1 − D̃3a4 + D̃4a3 = 0.

The top equation in this set is the gauge condition, the rest are the three component
equations of the linearised Bogomol’nyi equation. These four equations can be restated as
one equation if we combine the four components of a(x) into a single element of su(2)⊗H.
Let us then write

(a1, a2, a3, a4) ≡ a4 ⊗ 1 + a1 ⊗ i + a2 ⊗ j + a3 ⊗ k.

Similarly, let us define an operator D̄ on su(2)⊗H-valued fields by

D̄ := D̃4 ⊗ 1− D̃1 ⊗ i− D̃2 ⊗ j − D̃3 ⊗ k

With this definition, we can write down the four equations (4.16) in the single quaternionic
equation

D̄a = 0. (4.17)

Now note that the operator D̄ commutes with quaternionic right multiplication. It follows
that, for any quaternion q, we have D̄(aq) = (D̄a)q = 0. Since the solutions to D̄a = 0
can be identified with tangent vectors to Mn at (Ã, Φ̃), it follows that the tangent spaces
of Mn are all closed under the action of quaternionic right multiplication. In particular,
multiplication on the right by the quaternions i, j and k gives Mn three anti-commuting
almost complex structures, which we will call e1, e2 and e3. These structures are given
explicitly by

e1(a1, a2, a3, φ) = (φ, a3,−a2,−a1) (4.18)

e1(a1, a2, a3, φ) = (−a3, φ, a1,−a2)

e1(a1, a2, a3, φ) = (a2,−a1, φ,−a3)

(4.19)

We will not prove that these almost complex structures are actually complex struc-
tures, but we do want to note that they leave the inner product < ·; · > and hence the
infinitesimal metric g invariant.
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To end this section, I want to mention that the moduli spaces Mn have an alterna-
tive description in terms of certain moduli spaces which can be defined on the space of
Nahm data Ti. We have already seen that the Nahm data have the right number of pa-
rameters modulo gauge transformations and that their traces correspond to the collective
coordinates Xi, but the correspondence goes much further. A similar construct to the
one described above gives the moduli spaces of Nahm data three anti-commuting com-
plex structures and one can in fact show that they are hyperkähler manifolds. Moreover,
Nakajima [54] has proved that the moduli space of Nahm data for SU(2) monopoles of
charge n, with its natural L2 metric, is isometric to the n-monopole moduli space Mn.
This makes these moduli spaces the same for all practical purposes.

4.3 Metric and Dynamics on M1

In this section, we will calculate the metric on the one monopole moduli space M1 and
discuss the resulting classical and quantum dynamics. This will be a fairly brief exercise,
as most of the work was already done in the previous section.

From the information presented in section 4.2, we can easily draw the conclusion that,
as a manifoldM1 is just R3×S1, where the factor R3 corresponds to the three parameters
Xi for spatial translations and the factor S1 to the parameter χ whose time dependence
determines the electric charge. To calculate the metric, we need to know the explicit
forms of the zero modes that correspond to χ and the Xi. For χ, we derived in section
4.2 that we have

(
δχÃi, δχΦ̃

)
=

(
1

v
D̃iΦ̃, 0

)
. (4.20)

For the zero modes corresponding to spatial translations, we have to have

(
δXj

Ãi, δXj
Φ̃j

)
=

(
∂jÃi, ∂jΦ̃j

)
+

(
D̃iΛj, e[Φ, Λj]

)
(4.21)

for certain su(2)-valued functions Λj which approach zero at infinity. The first term
on the right hand side of this equation is just the change in the fields (A, Φ) due to a
translation in the j-direction. This is just the zero mode we would expect. The second
term is an infinitesimal small gauge transformation, which is needed to bring this zero
mode into background gauge.

We could find the functions Λj, and thereby the explicit form of the translational zero
modes, by substituting the above equation into the gauge condition (4.3), but there is
a more elegant way. We can obtain the translational zero modes from the gauge mode
(4.20) by applying the three complex structures e1, e2 and e3 given in (4.18) to it. This
gives

e1

(
δχÃi, δχΦ̃

)
=

(
0, D̃3Φ̃,−D̃2Φ̃,−D̃1Φ̃

)
= −∂1

(
Ãi, Φ̃

)
+

(
D̃iA1, e[Φ̃, Ã1]

)
e2

(
δχÃi, δχΦ̃

)
=

(
−D̃3Φ̃, 0, D̃1Φ̃,−D̃2Φ̃

)
= −∂2

(
Ãi, Φ̃

)
+

(
D̃iÃ2, e[Φ̃, Ã2]

)
e3

(
δχÃi, δχΦ̃

)
=

(
D̃2Φ̃,−D̃1Φ̃, 0,−D̃3Φ̃

)
= −∂3

(
Ãi, Φ̃

)
+

(
D̃iÃ3, e[Φ̃, Ã3]

)
,

(4.22)
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where we have used Bogomol’nyi’s equation B̃i = D̃iΦ̃ in going from the second to the last
members of these equations. Comparing the last members to equation (4.21), we can see
that we have indeed obtained the translational zero modes (just take Λi = −Ãi). The zero
modes as we have given them in (4.22) are automatically in background gauge, because the
complex structures ei preserve this condition (it is just the first of the preserved equations
(4.16)) and the gauge mode (4.20) was already in background gauge. Of course, one can
also easily verify directly that the background gauge condition is satisfied.

Now that we have all the zero modes in background gauge, calculating the metric is
easy. The off-diagonal elements all vanish, while the diagonal elements are independent
of ~X and χ and are given by

gXiXi
= v2gχχ =

∫
d3x

{
D̃iΦ̃D̃iΦ̃

}
= M, (4.23)

where M is the total energy of the configuration (Ã, Φ̃), i.e the mass of one monopole.
Thus, the low energy dynamics of one monopole are governed by the Hamiltonian

H =
1

2M

(
P 2

1 + P 2
2 + P 2

3

)
+

v2

2M
P 2

χ , (4.24)

where the Pi are the momenta conjugate to the Xi and Pχ is the momentum conjugate
to χ. Needless to say, we have Pi = Ẋi and Pχ = χ̇ and these quantities are constants
of the motion. Thus, classically, the monopole moves along a straight line in R3 at a
constant speed and it also has a constant speed along the S1 factor of the moduli space,
which means that its electric charge is conserved. The values of the momenta (Pi, Pχ)
can be chosen arbitrarily and thus the monopole can move at arbitrary speeds and have
an arbitrary electric charge.

When we look at the quantum mechanics of the Hamiltonian (4.24), we get a fairly
similar picture. The momenta Pi and Pχ are still constants of the motion and each
eigenstate of H is uniquely labelled by the quantum numbers pi and pχ which represent
the eigenvalues of Pi and Pχ. Explicitly, we have

|~p, pχ >= ei(~p· ~X+pχχ).

Here, the pi can still be chosen arbitrarily, but pχ, and thus the electric charge, is
now quantised in units of e, because |~p, pχ > has to be single valued when we vary the
2π
e

-periodic coordinate χ.
Note that all we have done here for one monopole is also valid as a description of the

dynamics of the centre of mass of a configuration of n monopoles. The only difference is
that the mass M of a one monopole configuration will have to be replaced with the mass
of the n monopole configuration in this case.

Note also that we can see from the results of this section that the geodesic approxima-
tion is really a low velocity approximation. Since we know the exact field configuration for
a static monopole, we can produce the exact field configurations for a moving monopole
by applying a Lorentz boost to these. Especially at high velocities, such a boost would
cause a Lorentz contraction of the monopole, thus making the fields at any given instant
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quite different from the uncontracted fields of a static monopole. We also know the field
configurations for a static Julia-Zee dyon. 1 We could produce these from monopoles by
turning on an E-field, but we had to rescale the fields after doing this in order to still
satisfy the boundary conditions. In the geodesic approximation, we can produce a static
dyon by a uniform motion on the S1 factor. Here we see once more that the approximation
works better at lower speeds; The geodesic approximation ”forgets” to rescale the fields,
but this effect becomes negligible at low electric charges, i.e. at low speed on S1.

4.4 Metric and Dynamics on M2

In this section, we will treat the low energy dynamics of a system of two monopoles. To
do this, we need the metric on the moduli space M0

2 of two monopole configurations.
If all two monopole configurations and their zero modes were known explicitly, then we
would be able to find this metric by direct calculation, as we did for the one monopole
case. However, this is not the case. 2 Of course, we can still find the metric on the
R3 × S1-factor of the double cover of the moduli space in the same way as in section 4.3,
but this still leaves us with the task to determine the metric on the moduli space M0

2 of
strongly centred two monopole configurations. For this manifold we cannot calculate the
metric directly. Still, Atiyah and Hitchin [53] managed to find the exact metric on M0

2 by
exploiting the fact that this moduli space is hyperkäler and admits an isometric SO(3)
action.

This SO(3) action on the moduli space is induced from the action of SO(3) on the
space of field configurations. Since this action just rotates field configurations in space, it
leaves their L2 inner products fixed. Hence, it also fixes the metric on the moduli space,
as this is induced from the L2 metric on the space of field configurations.

It can be shown that two monopole configurations are never spherically symmetric and
axially symmetric if and only if the monopoles’ centres (the zeros of the Higgs field) are
located at the same point. Therefore, the orbits of the SO(3) action on the moduli space
M0

n of strongly centred monopoles are three dimensional, except in the one special case
where the monopoles are both located at the space origin. As a result, we can parametrise
M0

n in terms of a variable r which determines the separation between the monopoles, two
angular variables θ ∈ [0, π] and φ ∈ [0, 2π], which determine the orientation of the axis that
joins the monopoles and an angular variable ψ ∈ [0, 2π], which parametrises a rotation
about this axis.3 Note that the radial variable r does not actually have to be equal to
the separation of the monopoles, as long as it determines this separation uniquely. This
means we can redefine r to suit our purposes later. The angles θ, φ and ψ are called the
Euler angles. They give a parametrisation of SO(3). For a good review of their precise

1See the equations (3.47). Note that for comparison with the geodesic approximation, we either have
to transfer these into A0 = 0 gauge or apply the inverse transformation to the fields obtained from the
geodesic approximation.

2Note that the exact Nahm data for all two monopole configurations are known and that in principle,
it should be possible to calculate the metric by exploiting the isometry between the moduli space of Nahm
data and that of monopole configurations. However, this was not the way the metric was first found. In
fact, the isometry between the moduli spaces was found long after the two monopole metric

3In principle, we could also need an additional discrete index to label distinct SO(3) orbits of con-
figurations which do have equal separation between the monopole centres. It turns out that this is not
necessary, but we will not prove this.
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definition, see e.g. [55].
Though the orbits of the SO(3) action are almost all three dimensional, they are not

isomorphic to SO(3), because the field configurations in the moduli space are invariant
under a discrete group of symmetries. These are given by

s1 : θ 7→ π − θ, φ 7→ π + φ, ψ 7→ −ψ, χ 7→ χ (4.25)

s2 : θ 7→ θ, φ 7→ φ, ψ 7→ π + ψ, χ 7→ π + χ

s3 : θ 7→ π − θ, φ 7→ π + φ, ψ 7→ π − ψ, χ 7→ π + χ

To get a one to one parametrisation of the moduli space, we have to identify sets of
coordinates that are related by these symmetries. Note that while s2 and s3 involve a
change in the coordinate χ on the S1 factor of the moduli space, s1 changes only the spatial
location of the monopoles. To be precise, s1 corresponds to point reflection in the origin
and hence it exchanges the monopoles. The fact that the fields are invariant under this
transformation tells us that monopoles are indistinguishable particles. In the double cover
R3× S1×M0

2 of M2, the identification corresponding to s1 has already been performed.
The symmetry s2 is the symmetry that corresponds to the Z2 in R3×(S1 ×M0

2) /Z2. The
fact that s2 leaves the fields invariant means that rotation of a monopole configuration by
an angle of π radians around the axis joining the monopoles can be undone by a shift of π
radians on the phase factor of the moduli space. It is likely that monopole configurations
that differ only by a constant phase shift on the S1 factor of the moduli space cannot be
physically distinguished. Therefore, the symmetry s2 may physically appear as a discrete
rotational symmetry of two monopole configurations. The symmetry s3 does not have to
be discussed separately, as it is the product of s1 and s2

We now want to write down an expression for the metric onM0
2 that makes the SO(3)

invariance as clear as possible. To this end, we introduce three one-forms σ1, σ2 and σ3,
given by

σ1 = − sin ψ dθ + cos ψ sin θ dφ (4.26)

σ2 = cos ψ dθ + sin ψ sin θ dφ

σ3 = dψ + cos θ dφ

These one forms have an interesting physical meaning in the theory of rotations of rigid
bodies which will be of use to us. The position of a rigid body in space can be described
by the position of one reference point in the body (usually the centre of mass) and Euler
angles θ, φ and ψ defined as above. If one fixes the reference point in the origin, the motion
of the body is described by a set of time dependent Euler angles, i.e. by a path through
SO(3). The components of the instantaneous angular velocity of the body in space will
then be given by one forms on SO(3). Naturally, these one forms can be changed by
rotating the inertial frame in which one chooses to study the body. However, if one fixes
an orthogonal coordinate frame in the body (so that it rotates with the body), then the
components of the angular velocity in this frame will be independent of the angle from
which one chooses to look at the body in the laboratory. Now the one forms σi above are
just the one forms which give the components of the angular velocity of a rigid body in
an orthogonal frame that moves with the body (see for example [55],p.176). Hence they
are SO(3) invariant.
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If we now write the metric in terms of dr and the SO(3) invariant one forms σi, then
the condition that the metric is SO(3) invariant becomes just the condition that the
coefficients of the metric are independent of the Euler angles. Moreover, one can show
[56] that the metric takes the form

ds2 = f 2dr2 + a2σ2
1 + b2σ2

2 + c2σ2
3, (4.27)

where the functions a, b, c and f depend on r only.
Before we determine the functions a, b, c and f, let us first write the Lagrangian and

the equations of motion in terms of these. The Lagrangian for two monopole motion is

L =
M

2
(ẊiẊi + χ̇2) +

µ

2
(f 2ṙ2 + a2ω2

1 + b2ω2
2 + c2ω2

3), (4.28)

where µ is the reduced mass of the monopole system 4 and where we have written ωi for
the component of angular velocity that corresponds to σi, i.e.

ω1 = − sin ψ θ̇ + cos ψ sin θ φ̇, etc.

We see that the analogy with rigid body motion persists. If r is kept constant, this would
be exactly the Lagrangian for the free motion of a rigid body with principal moments of
inertia equal to µa2, µb2 and µc2. It follows that the equations of motion for a, b and c
are the same as those for the rigid body. These are most conveniently expressed in terms
of the angular momentum L. In an inertial frame these will of course be constant, but in
the coordinate system that moves with the body, we have (cf. [55],p.204)

∂tL = L× ω (4.29)

For the axes of the moving system we will of course take the principal axes of the body
and hence the components of L are given by

L1 = µa2ω1, L2 = µb2ω2, L3 = µc2ω3

Filling this in in (4.29) gives us the equations of motion for the ωi (in terms of the Li)

∂tL1 =

(
1

µb2
− 1

µc2

)
L2L3 (4.30)

∂tL2 =

(
1

µc2
− 1

µa2

)
L3L1

∂tL3 =

(
1

µa2
− 1

µb2

)
L1L2

4Note that, in this section, we use units in which e and v have the numerical value 1, following [57].
It follows that M = 4π and µ = 2π and that we have χ2 in stead of χ2

v2
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Of course, these equations are not really the equations for a rigid body in free motion,
because r varies in time. This implies that the ”moments of inertia” µa2(r), µb2(r) and
µc2(r) change in time and hence the ”body” changes shape during the motion. The
equation of motion for r that follows from (4.28) is

µ2f∂t (f∂tr) =
∂ra

a3
L2

1 +
∂rb

b3
L2

2 +
∂rc

c3
L2

3 + (4.31)

Note that, whatever the time behaviour of r and whatever the form of the functions
a, b, c, we can always solve the equations for the angular motion by taking two of the Li

zero and the third equal to a constant. These three kinds of special solutions correspond
to rotations of the ”body” around one of its principal axes. When the functions a, b, c
and f are known, the time dependence of r can then be determined from the equation
(4.31) above.

The rigid body analogy also helps in finding the constants of the motion for the
monopole system. Next to the centre of mass momentum and the total electric charge,
they are the total energy of the relative motion, given by

E =
1

2
µ(f 2ṙ2 + a2ω2

1 + b2ω2
2 + c2ω2

3) =
1

2
µf 2ṙ2 +

L2
1

2µa2
+

L2
2

2µb2
+

L2
3

2µc2
(4.32)

and the three components of the angular momentum, when measured in an inertial
system. Note that these are not the Li, as these are the components of the angular
momentum in the frame that rotates with the body. Still, the length of the angular
momentum is the same in the inertial and rotating frames and hence we do know that
L2

1 + L2
2 + L2

3 is a constant.
To go further, we need to determine the functions a, b, c and f in the metric. This

can be done by using the fact that the moduli space M0
2 is a hyperkäler manifold. It can

be shown that the Riemann curvature tensor for a four dimensional hyperkähler manifold
is necessarily self dual. That is, we have to have

Rµνρσ =
1

2
εµναβRαβρσ.

This condition translates to a system of differential equations for the components of the
metric. For the SO(3)-invariant metric we have given in (4.27), this system reduces to
the following three equations for the functions a, b, c and f.

2bc

f

da

dr
= (b− c)2 − a2 (4.33)

2ca

f

db

dr
= (c− a)2 − b2

2ab

f

dc

dr
= (a− b)2 − c2

(4.34)



4.4. METRIC AND DYNAMICS ON M2 93

Note that these equations can be obtained from each other by cyclicly permuting
{a, b, c}. Note also that the function f in these equations is to a great extent at our dis-
posal, because it can be changed by a redefinition of the radial coordinate r. Atiyah and
Hitchin [53] found that, given f, there is an essentially unique solution to the equations
(4.33) which gives a regular, complete metric and makes generic SO(3) orbits three di-
mensional. 5 Atiyah and Hitchin found this solution by setting f = abc. Later, Gibbons
and Manton [57] found the same solution in a somewhat more explicit form, which we
will use.

In stead of f = abc, Gibbons and Manton chose f = −b/r. They then set

r = 2K sin(
1

2
β), (4.35)

where K is the elliptic integral given by

K(k) =

∫ π/2

0

dτ
√

1− k2 sin2 τ . (4.36)

We see that r(β) is strictly increasing (and hence invertible) for β between 0 and π. We also
see that r has to take values between π and infinity. This implies that we cannot identify
r completely with the separation between the monopoles, because there are monopoles
which have zero separation. However, we will see that the separation between monopoles
does at least increase with r and that, when r is large, it does make sense to think of r
as (approximately) the monopole separation. Let us now write down the solution. This
takes the form

w1 = − sin(β)r
dr

dβ
− 1

2
r2(1 + cos(β)) (4.37)

w2 = − sin(β)r
dr

dβ

w3 = − sin(β)r
dr

dβ
+

1

2
r2(1− cos(β))

when we define

w1 = bc, w2 = ca, w3 = ab

From the formulae given here, one can easily derive a formula for a, b and c in terms of
the elliptic integral K and its inverse. We will not write this out explicitly, but in stead,
we include a numerically obtained graph of the functions a, b and −c, taken from [57]
(see figure 4.1).

5Note that there are also two solutions which do give a complete metric and generically three dimen-
sional SO(3) orbits, but do not result in a a regular manifold. One of these is the solution given by
f = −1, a = b = c = r

2 . This looks very much like the flat metric on R4, but because a, b and c are
only equal to r

2 in stead of equal to r, there is in fact a conical singularity at r = 0. This singularity
would be removed if we let the Euler angles parametrise SU(2) in stead of SO(3). The other solution is
a Taub-NUT metric we will study later in this section. This, too would give a regular manifold if SO(3)
was replaced with SU(2).
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Figure 4.1: graph of the functions a,b and (minus) c that appear in the Atiyah-Hitchin metric (4.27).
Taken from [57].

We see that a = 0 at r = π. This reflects the fact that configurations in which
the monopoles are both located at the origin are axially symmetric and thus only two
dimensional (in stead of three dimensional). We also see this reflected in a coordinate
singularity, called a bolt, at r = π. On a path that goes through the bolt, the Euler
angles can make a discontinuous jump without making the path discontinuous. Figure
4.2 illustrates how this comes about.

Figure 4.2: Schematic representation of a monopole scattering process. Taken from [53].

This figure shows a schematic representation of a two monopole scattering process. As
the monopoles approach each other, they deform until, when they are coincident, their
mass is mostly concentrated in a toroidal structure around the origin. 6 After this, the
monopoles can separate again in a completely different direction, which creates a jump in
the angles which describe the orientation of the axis which joins the monopoles. However,
from the picture, it should be clear that this discontinuity in the coordinates does not
correspond to a discontinuity in the monopoles’ motion.

6Numerical analysis shows [58] that this is indeed the case for configurations of two monopoles whose
centres coincide
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Using an asymptotic expansion for the elliptic integral K, one can obtain an asymptotic
expansion for the functions a, b and c as r becomes large. This is given by

a = r

√
1− 2

r
− 4r2

(
1− 1

2r2

)
e−r + . . . (4.38)

b = r

√
1− 2

r
+ 4r2

(
1− 2

r
− 1

2r2

)
e−r + . . .

c = −2

√
1− 2

r
+ . . . (4.39)

The neglected terms in a and b are of order r−1e−r, those in c are of order e−2r times an
algebraic function of r. We see that, as r becomes large, a and b become large compared
to c. In terms of our rigid body analogy, this means that, as r increases, the body becomes
long and thin, like a thin rod with the same orientation as axis that joins the monopoles.
We also see that a and b become asymptotically equal at large r. It follows that the
angular momentum component L3 is conserved when the monopoles are well separated.
It was first argued by Manton in [59] that this extra conserved quantity corresponds to
the relative electric charge of the monopoles (we will present his argument in section 4.5).
Thus, at large separation, the electric charges of the monopoles are individually conserved.

The exact form of the functions a, b and c is so complicated, that even though all
the constants of the motion are known, we still cannot give the general solution to the
equations of motion (4.30) and (4.31). However, Atiyah and Hitchin [53] have described
the special solutions for which two of the ”angular momenta” Li vanish and the third
is a constant (i.e. for which the ”body” that corresponds to the monopole configuration
rotates about one of its principal axes). We will now give a very brief description of the
scattering processes they found.

For L2 = L3 = 0, we have two monopoles scattering. Their impact parameter and
speed are determined by the constants L1 and E. The time dependence of r can be
determined most easily through the conservation law (4.32) for the energy E of the relative
motion. Rewriting this, we get

ṙ2 =
1

f 2

(
2E

µ
− L2

1

µ2a2(r)

)
(4.40)

From this we see that, if we start out with the monopoles asymptotically far apart and
moving towards each other, the relative speed ṙ decreases monotonically from its asymp-
totic value of 2E

µ
, i.e. the monopoles repel each other. Before their centres coincide,

the monopoles reach a point of smallest separation, after which ṙ changes sign and the
monopoles move back out to infinity. The angle through which the monopoles scatter in
this process can also be (numerically) calculated. As the impact parameter goes to zero,
this scattering angle increases monotonically from 0 to π/2.

When L1 and L3 are zero and L2 is a non zero constant, the equation that determines
the radial motion becomes

ṙ2 =
1

f 2

(
2E

µ
− L2

2

µ2b2(r)

)
(4.41)
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At large monopole separations, the motion that follows from this equation is the same as
that in the case we discussed previously, because a = b asymptotically. However, when
the monopoles get near each other, the scattering can differ from what we saw before,
because b, unlike a, does not go to zero at r = 0. In stead, it goes to π. This implies that
we now have two different kinds of scattering. If L2

2 is greater than 2µπ2E, then we will
still have ṙ = 0 before the monopole centres coincide and the scattering is similar to that
described above. If L2

2 smaller than 2µπ2E, then the monopoles do move closer and closer
until their centres coincide. When the monopole centres coincide, the axis that joins the
monopoles is instantaneously rotated by π/2 and the monopoles separate again in the
direction orthogonal to the plane in which they approached. Figure 4.2 can be seen as
a schematic representation of this phenomenon if the approaching monopoles are taken
to be at different heights in the plane vertical to the paper. In the process, L2 and L3

exchange roles, so that the outgoing monopoles have L2 = 0 and L3 6= 0. This indicates
that the monopoles’ orbital angular momentum has been converted into a relative electric
charge, so that the separating particles are dyons. These dyons attract, as can be seen
from the new expression for ṙ2 after the exchange of L2 and L3. We have

ṙ2 =
1

f 2

(
2E

µ
− L2

3

µ2c2(r)

)
(4.42)

and since c2 diminishes as r grows (cf. figure abcplot), ṙ also diminishes as r grows, i.e.
the dyons attract. This attraction is quite remarkable, because it depends only on the
relative charge of the dyons and not on their absolute charges. In fact, we see that the
force between dyons without any orbital angular momentum is always attractive, even if
the dyons are oppositely charged. Because of the attraction between these dyons, there
are once more two possibilities. Either they have enough kinetic energy to escape to
infinity or they don’t. In the last case, the dyons come back to the origin, where L2 and
L3 change roles again, and so they are converted back into monopoles. These then move
out to infinity in the plane perpendicular to the plane in which the monopoles originally
approached. Obviously, this last kind of scattering process may take arbitrarily long and
it is the question whether the geodesic approximation will hold long enough to give an
adequate description of the real scattering in all cases.

The case with L1 = L2 = 0 and L3 6= 0 is just the reverse of one the L1 = L3 = 0
processes. We start with two dyons which collide head on and we end up with two
monopoles flying away in the plane perpendicular to the line along which the dyons
approached.

The simplest scattering process is of course the case L1 = L2 = L3 = 0. This is
a limiting case of all the families of processes that we have described up to now. In
this process, the incoming particles are monopoles which approach each other head on
until their centres coincide. As soon as this happens, the axis that joins the monopoles is
rotated through an angle of π/2 radians and the result is a configuration of two monopoles
moving out back to back. Figure 4.2 can be seen as a representation of this process.

The monopole scattering orbits we have just described are the only ones which are
known exactly. To study general scattering orbits, one has to rely on numerical methods.
Some numerical results on classical two monopole scattering were presented by Temple-
Raston in [60]. These results indicate that the general scattering has features that are
similar to those of the special cases we have just described. That is, there is scattering
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with and without electric charge exchange and the scattered particles generally do not
stay in the plane in which they approached. Temple-Raston also showed that the time
behaviour of two monopole configurations can depend chaotically on the initial conditions
[61].

We will not go into the numerical analysis of monopole dynamics. In stead, we will
study the dynamics of well separated monopoles analytically. To study well separated
monopoles (i.e. at large r), we can replace the Atiyah-Hitchin metric with its asymptotic
form 4.38. In fact, we will even neglect the exponentially decreasing terms in 4.38 and so
we will work with the metric given by

a = b = −rf = r

√
1− 2

r
(4.43)

−c =
2√

1− 2
r

This metric is identical in form to the so called Taub-NUT metric which appears in the
study of gravitational instantons [62], but it has a negative mass parameter. One can
easily check that this asymptotic metric is actually an exact solution of the equations
(4.33) for the functions a, b and c. It can also be shown that it is geodesically complete
and finite, but that the corresponding manifold has a conical singularity [53].

When one uses the Taub-NUT metric, it makes sense to interpret r as exactly the
separation of the monopole centres. We will see this in section 4.5, where we rederive the
asymptotic metric through a different method. At first sight, the interpretation of r as the
inter-monopole distance may seem problematic, because the metric has a singularity at
r = 2. However, this singularity has no physical significance, as the dynamics of monopoles
can only be approximated through this metric when r is large.

The main reason to work with the Taub-NUT metric is that, for this metric, we have
a = b. It follows from this that the angular momentum component L3, which was only
asymptotically constant in the Atiyah-Hitchin metric, is now an exact constant of the
motion. Physically, this means that, in the system described by the Taub-NUT metric,
the monopoles’ electric charges are individually conserved. The fact that L3 is conserved
considerably simplifies the dynamics. In fact, it turns out that we can now find all classical
orbits using only the constants of the motion. Before we do this, let us first write the
metric in a more convenient form. When we substitute the explicit form of the one forms
σi (see equations (4.26)) and the functions a, b and c into the equation (4.27) for the
metric (noting that f = −b/r), we get

ds2 =

(
1− 2

r

)
(dr2 + r2dθ2 + r2 sin2(θ)dφ2) + 4

(
1− 2

r

)−1

(dψ + cos θdφ)2. (4.44)

We recognise the first term in this equation as 1− r
2

times the ordinary flat metric in R3,
when this is expressed in spherical coordinates (r, θ, φ). We can thus simplify this term by
introducing Cartesian coordinates (r1, r2, r3) for the vector that connects the monopoles’
centres. These will, as usual, be given by
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r1 = r cos(φ) sin(θ)

r2 = r sin(φ) sin(θ)

r3 = r cos(θ)

Note that taking θ 7→ π − θ and φ 7→ π + φ corresponds to taking ~r 7→ −~r, so one may
also easily rewrite the coordinate identifications (4.25) in these new coordinates.

The metric now becomes

ds2 =

(
1− 2

r

)
d~r · d~r + 4

(
1− 2

r

)−1

(dψ + ~w(~r) · d~r)2 (4.45)

where we have defined the (vector) function ~w through

~w(~r) · d~r = cos(θ)dφ

It is not difficult to find an explicit expression for ~w in terms of the Cartesian coordinates
ri, but the result is a bit messy and we will not need it. What we will need is the curl of
~w. This is most easily computed in spherical coordinates. First, we have to give ~w itself
in terms of these. One can easily check that dφ is equal to d~r

r sin(θ)
and hence that we have

the following expressions for ~w and its curl:

~w =
cos(θ)

r sin(θ)
φ̂ (4.46)

∇× ~w =
r̂

r sin(θ)
∂θ(sin(θ)wφ) +

θ̂

r
∂r(rwφ) = − ~r

r3
. (4.47)

Thus we see that ~w is the vector potential for a magnetic monopole located at the space
origin.

Let us now write down the Lagrangian for geodesic motion in the metric (4.45). This
is given by

L =
µ

2

(
1− 2

r

)
ṙiṙi + 2µ

(
1− 2

r

)−1

(ψ̇ + wi(~r)ṙi)
2 (4.48)

The fact that L3 is conserved can easily be rederived from this Lagrangian; it is just the
equation of motion for the cyclic coordinate ψ. Because we will interpret this conserved
quantity as the relative electric charge of the monopoles, we will call it q, i.e. we define

q = −4µ

(
1− 2

r

)−1

(ψ̇ + wi(~r)ṙi). (4.49)

The equation of motion for ψ is then just q̇ = 0. Let us now derive the equations of motion
for the ri. We could find these directly from the equations of motion (4.30) and (4.31)
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we gave earlier, but it is actually easier just to derive them from the Lagrangian (4.48)
above. The momenta πi conjugate to the ri are given by

πk = µ

(
1− 2

r

)
ṙk + qwk (4.50)

We see that πk consists of a part that corresponds asymptotically to the usual linear
momentum and a part due to the electromagnetic interaction of the dyons. To get more
familiar formulae later on, it is useful to introduce the notation pk for the first part of πk,
i.e. we define

pk = µ

(
1− 2

r

)
ṙk

The time derivative of πk can then be written as

π̇k = ṗk − q∂jwkṙj, (4.51)

where we have used the fact that q is time independent. To get the equations of motion,
we also need ∂L

∂rk
. Straightforward calculation yields

∂L

∂rk

= µ
rk

r3

(
ṙiṙi − (

q

2µ
)2

)
− q∂kwiṙi (4.52)

combining this equation with the equation (4.51) for π̇k, we find that the equations of
motion are

ṗk = µ
rk

r3

(
ṙiṙi − (

q

2µ
)2

)
− q(∂kwiṙi − ∂jwkṙj).

We may now rewrite the last term in this equation in a much nicer form, as follows. We
have

∂iwj ṙj − ∂jwiṙj = (δilδjm − δimδjl)(ṙj∂lwm)

= εijkṙjεklm∂lwm

= (ṙ × (∇× w))i = −
(

ṙ× r

r3

)
i

and hence the equations of motion become

ṗ = µ
r

r3

(
ṙ · ṙ− (

q

2µ
)2

)
+ q(

ṙ× r

r3
). (4.53)

From this formula we see that dyons experience an attractive coulomb force proportional
to q2, a Lorentz force proportional to q and a repulsive force proportional to the square
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of their relative velocity, but independent of q. When the dyons are equally charged, only
this last, repulsive force remains and thus we can expect equally charged dyons to have
only scattering orbits. However, if the dyons’ charges are not equal and the relative speed
is low, then the attractive Coulomb force dominates the dynamics. Thus, we may expect
that there will be bound orbits for unequally charged dyons, as well as scattering orbits.
Note that we can also find solutions to the equations of motion that correspond to the
static BPS-monopoles and Julia-Zee dyons we started with. These solutions are of course
given by q = 0 and r = const.

To get some more concrete information the orbits, let us write down the constants of
the motion in Cartesian coordinates. Next to q, we have the total energy (4.32) of the
relative motion, which is now given by

E =
µ

2

(
1− 2

r

) (
ṙ · ṙ +

(
q

2µ

)2
)

. (4.54)

Using this equation, we can write the equations of motion in the form

ṗ =
r

r3

(
2E

1− 2
r

− q2

2µ

)
+ q(

ṙ× r

r3
). (4.55)

which shows that, when E is fixed, the central force between the monopoles becomes
velocity independent. We also see from this formula that when r is large (much larger
than 2), the force becomes just the sum of a Coulomb force and a Lorenz force. This

Coulomb force will be attractive when E is smaller than q2

4µ
and repulsive otherwise. Thus

we see that, for E < q2

4µ
, we can expect to have bound states in which r is always large,

whereas for E > q2

4µ
, we can only expect scattering states (except if r is smaller than 2,

but then the Taub-Nut approximation is not valid). Note also that pure monopoles (q=0)
will not have bound states, as the force between them is always repulsive (for E > 0 and
r > 2)

The next conserved quantities are the three components of the angular momentum
vector J given by

J = r× p− qr̂ (4.56)

We will not derive this form of the angular momentum from first principles, but one may
easily check that J is indeed conserved by computing its time derivative and substituting
the equations of motion. The first term on the right hand side of the equation for J is
just the ordinary orbital angular momentum, while the second is a term which appears
due to the simultaneous presence of both magnetic and electric charges. Since this second
term is orthogonal to the first, we see that the length of the orbital angular momentum
is also conserved.

Next to q and the conserved quantities E and J which were also present for the exact
Atiyah-Hitchin metric, there are three more conserved quantities, united in a conserved
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vector K, which is analogous to the Runge-Lenz vector which occurs in a system of two
particles that interact through a central 1

r2 -potential [55].7 We have

K = p× J +

(
2µE − 1

2
q2

)
r̂ (4.57)

Again, one may easily check that K is conserved using the equations of motion.
Using J and K, we can now determine the orbits for two monopole scattering. First,

we note that the inner product of J and r̂ is constant and equal to −q. It follows that the
angle between r and the constant vector J is always equal to arccos(|q|/|J |). Hence r lies
on a cone with axis J and opening angle arccos(|q|/|J |). Further information about the
orbits can be obtained by computing the inner product of K and r. We have

K · r = (r× p) · J +

(
2µE − 1

2
q2

)
r.

When we write r× p = J + qr̂ and use J · r̂ = −q, this equation can be rewritten as

(
K +

1

q
(2µE − 1

2
q2)J

)
· r = J2 − q2, (4.58)

from which we see that r is confined to a fixed plane. Combining this with the fact
that r was already confined to a cone, we see that the orbits must be conic sections,
i.e. points, (pairs of) lines, circles and ellipses, which correspond to bound states and
parabolae and hyperbolae, which describe scattering processes. Note that our derivation
that the orbits are conic sections is valid only of q is non zero. Thus, we have to treat
the special case of pure monopole scattering separately. In this case, the orbits can be
determined through the equation J · r = 0, which shows that r lies in the plane orthogonal
through J that contains the origin, and the equation K · r = J2 +2µEr, which determines
a cone-like surface. It turns out that all the orbits are hyperbolae, in accord with our
earlier statement that monopoles have only scattering orbits.

Note that the fact that r moves in a fixed plane does not imply that the two particles
whose separation r describes move in the same plane. In fact, it is easy to see that, in
the centre of mass frame, the dyons have to move on conic sections in distinct parallel
planes. The distance between these planes is just the distance from the plane given in
(4.58) to the origin. In the case of pure monopoles, the particles do move in the same
plane throughout their motion, which follows from the fact that r now lies in a plane
through the origin, or alternatively, from the fact that the force between pure monopoles
is central. Schematic pictures of a circular bound dyon orbit and a hyperbolic scattering
orbit of two dyons are given in figure 4.4

The fact that dyons move in distinct parallel planes has consequences for the descrip-
tion of dyon scattering. Though dyons do not move in the same plane throughout their
motion, they do of course move in the same plane asymptotically long before and after the
actual scattering, when their tracks are just straight lines. However, these planes do not

7see also especially exercise 23 on page 124 of [55], where Goldstein treats the angular momentum and
Runge-Lenz vector for a system that includes a Lorentz force



102 CHAPTER 4. DYNAMICS OF BPS-MONOPOLES

(a) (b)

Figure 4.3: (a) circular bound dyon orbit (b) hyperbolic scattering dyon orbit

have to be the same. We say that the orbits are twisted. The twist is described by a so
called twist angle γ. Next to γ, we have the usual scattering angle between the incoming
and outgoing tracks of the scattered particles/ See fig. 4.4 for a schematic picture of what
happens.

Figure 4.4: Schematic picture of a dyon scattering process. The initial and final planes of motion are
shown to demonstrate the notion of a ”twisted” orbit

Gibbons and Manton have given a complete treatment of dyon and monopole scat-
tering. They find the twist and scattering angles in terms of speed, impact parameter
and relative charge and give a differential cross section. Gibbons and Manton have also
explicitly treated the circular orbits which correspond to bound states of dyons. For all
this, we refer the reader to [57].

To end this section, I want to make some remarks about the quantum mechanics on
M0

2. As for the case of M0
1, this can be treated by writing down the Hamiltonian for

geodesic motion and converting this into an operator that works on functions on the



4.5. ASYMPTOTIC METRIC AND DYNAMICS ON MN 103

moduli space. The resulting operator is just the covariant Laplacian on M2. There are
some problems with this quantum mechanical version of the moduli space approximation
which should be noted. First, the ground state energy of the non zero modes of a monopole
will probably vary with the collective coordinates, thus causing an effective potential of
order ~ on the moduli space, which is ignored in the geodesic approximation. This problem
is already present in the classical theory, where the small oscillations orthogonal to the
moduli space have an influence on the motion along the moduli space (cf. the discussion
and graphs on page 31), but it is all the more pressing in the quantum theory, where
it is fundamentally impossible even to choose initial conditions with no energy stored in
the transverse modes. The second and more important problem with the moduli space
approximation is purely a quantum effect. Classically, the mass of the Higgs field is exactly
zero because the Higgs potential is taken equal to zero, but quantum mechanically this is
not so. When we go beyond tree approximation, the Higgs field still has self interaction
and this causes it to get a small mass. When the Higgs field has a non zero mass, it
will also have a finite range and hence, it will no longer be able to mediate a long range
force which cancels the repulsive Coulomb force between the monopoles. Therefore, it
is unlikely that there will be static multimonopole configurations in the exact quantum
theory. Static monopoles would repel each other. This problem can only be really resolved
in supersymmetric generalisations of the Georgi-Glashow model, where supersymmetry
ensures that the mass of the Higgs field stays equal to zero. However, in our version of the
model, we may hope that the effect of monopole-monopole repulsion is small compared
to the effects we have taken into account (being a purely quantum mechanical effect, it
should be of order ~) and continue with the geodesic approximation for lack of a better
method.

I do not have time to go into the quantum dynamics on M2 in detail, but I will state
some general features and give references for the interested reader. The quantum problem
exhibits many similarities with the classical one. The Schrödinger equation for the exact
Atiyah-Hitchin metric has defied a general solution, but Gibbons and Manton [57] have
solved the Schrödinger equation for the Taub-NUT metric explicitly in terms of confluent
hypergeometric functions. Again, they found both bound states and scattering states
and they have given binding energies for the first and cross sections for the last. From
their results, they draw the conclusion that the exact metric will also exhibit bound and
scattering states, but that some of the bound states in the Taub-NUT metric will become
unstable and turn into resonances. Note that we could have expected resonances to
occur from the exact classical dynamics, because there, we already found a type of dyon
scattering process in which the scattering time could increase without bound. Bound
states for the Atiyah-Hitchin metric were later studied numerically by Manton [63]. Their
binding energies turned out to be in very good agreement with the Taub-NUT results.
The quantum mechanics of dyon scattering in the Atiyah-Hitchin metric were extensively
studied by Schroers [64], using a partial wave expansion and numerical methods.

4.5 Asymptotic metric and dynamics on Mn

In this section, we will concern ourselves with the metric on the n-monopole moduli space
Mn. For n > 2, not many analytic results about this metric are available. Of course,
we know from section 4.2 that Mn has a simply connected n-fold cover which splits as
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R3×S1×M0
n, where the factor R3×S1 is flat, but generally, little is known about the exact

metric onM0
n. As far as I am aware, there are only two explicit results for the exact metric

on moduli spaces for more than two monopoles. The first of these is a proof that each of
the M0

n (n > 2) contains a totally geodesic sub-manifold that consists of configurations
of collinear monopoles [65, 66] and has the same metric as the Atiyah-Hitchin manifold.
The second is a calculation of the exact metric on the space of tetrahedrally symmetric
4-monopoles [67]. Rather than to go into detail about these exactly known, but rather
special cases, we will use this chapter to calculate an asymptotic form of the metric onMk

which is valid if all the monopoles are well separated. The calculation we will give was first
done by Gibbons and Manton in 1995 [68], but the idea goes back on an article by Manton
from 1985 [59], in which the same calculation is performed for the special case ofM2. This
led to the Taub-NUT metric we have studied in section 4.4. As we saw there, this metric
approximates the exact metric exponentially well and this led Gibbons and Manton to
conjecture that their asymptotic metric for n monopoles would also approach the real
metric asymptotically fast when the monopoles’ separations become large. Gibbons and
Manton did not prove this and neither will we. The calculation that they gave (and that
we will repeat) is based on physical, rather than mathematical arguments and it is not
clear a priori that it is mathematically sound. However, in a recent preprint, Bielawski
[69] has managed to prove that the Gibbons-Manton metrics are in fact asymptotically
valid up to exponentially decreasing terms. His proof uses the mathematical apparatus
of twistor theory and goes through the moduli space of Nahm data which we have briefly
touched upon before. Using similar methods, Bielawski also found asymptotic metrics
for monopoles with gauge group SU(k) [70]. Unfortunately, we will not be able to go
into details about Bielawski’s results in this thesis, because it would take too much time
and space to introduce the necessary mathematics. We will give the physical calculation
of Gibbons and Manton, not only because it happens to give the right result, but also
because it uses physical ideas that have recently been used and extended by Bak, Lee
and Lee [71] to come to a promising new description of the asymptotic dynamics of BPS
monopoles.

The idea on which the calculation is based is simple. BPS-dyons are subject to
two kinds of interactions: long range interactions, mediated by the Higgs field and the
(Abelian) electromagnetic fields and short range interaction mediated by the components
of the vector potential that correspond to the heavy gauge bosons. Since we want to
treat well separated dyons, we will ignore the short range interactions. This immediately
implies that the electric charges of the individual dyons are conserved, because electric
charge exchange can only take place through the short range interactions (quantum me-
chanically: through the exchange of charged gauge bosons). Our strategy is now to find a
Lagrangian for the electromagnetic and Higgs interaction of n dyons with magnetic charge
g and small, fixed electric charges q1, . . . , qn and to extract a metric from this later, by
interpreting the qi as speeds. Throughout the treatment, we will treat the dyons as point
particles, an idealisation which should be justified at large separations. Next to the usual
electric and magnetic fields E and B, the dyons carry a scalar field φ which represents the
physical content of the Higgs field Φ. Note that most of the physical content of the Higgs
field is in its length; its direction can be changed by gauge transformations. We can even
have magnetic monopoles with the Higgs field in a constant direction if we allow singular
gauge potentials. In the full theory, we did not like to have singularities in the gauge
potential, but in the long distance approximation we are using now we can not even see
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the gauge field of the full theory and so we may as well work with a one component Higgs
field φ, which has to be some function of the length of the original Higgs field Φ. We will
define φ = v − |Φ|, because this gives convenient formulae. For example, using formula
(3.43), we see that the scalar field of a Julia-Zee dyon at long distance is given by

φ(r) =
gs

4πr
(4.59)

where we have defined the scalar charge gs of the dyon through gs =
√

q2 + g2

Let us now write down the Lagrangian for the nth dyon, as it moves in the fields of all
the other dyons. It is of the form

Ln = − 1

γ(ṙn)
(mn − gsφ) + qnṙn ·A− qnA0 + gṙn · Ã− gÃ0. (4.60)

Here A and A0 are the usual electromagnetic vector and scalar potentials at the location
of dyon n due to all the other dyons, φ is the scalar Higgs field we have just defined and
Ã, Ã0 are the so called dual vector and scalar potentials, which are defined so that we
have

∇× Ã = −E

−∇Ã0 − d

dt
Ã = B

The reason we need these dual potentials is that the ordinary potentials couple only to
the electric charge, thus giving only the ordinary Lorentz force due to the magnetic field
and the ordinary Coulomb force due to the electric field of dyons 1 to n − 1. When we
couple the dual potentials to the magnetic charge, we also get the dual Coulomb force
due to the magnetic field and the dual Lorentz force due to the electric field. The way in
which the ordinary electromagnetic potentials appear in the Lagrangian is of course just
the standard way. For a derivation that this is the right way, see for instance Jackson [72].
The dual potentials naturally have to appear in the same way as the ordinary ones (but
with qn replaced by g) to obtain the right dual Lorentz and Coulomb forces. Note that
the dual and ordinary potentials are of course not independent; they both yield the same
fields. In fact, one may obtain the dual potentials from the ordinary ones (up to gauge
transformations) and vice versa. (see for example [71]) However, the resulting expressions
are complicated and for our purposes, it is much easier to keep both types of potentials
present.

The scalar field φ of dyons 1 to n − 1 appears in the Lagrangian in such a way that
its presence just modifies the rest mass of dyon n. One can show easily that, at least
when the electromagnetic and dual potentials are zero, this is the only Lorentz invariant
possibility ([72], ex. 12.3). However, the exact way in which the Higgs field should modify
the particle’s mass can not be deduced from Lorentz invariance. For this, one really needs
to know the force that the particle feels due to the presence of the Higgs field.

The first calculation of this force is due to Manton. In his article [28], he calculated
the force that works on a monopole in a constant magnetic field B in the monopole’s
instantaneous rest frame, as well as the total force that works between two well separated
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monopoles which are at rest at but have an acceleration along the axis that joins them.
Indirectly, this gives the force the Higgs field exerts on a monopole as the difference
between the total force and the force due to the (nearly constant) magnetic field of the
other monopole.

The calculation of the forces proceeded through the following method. Starting from
the exact BPS monopole solution, Manton constructed an ansatz for a moving solution
by replacing the spatial variable x with x− 1

2
at2, where a is assumed to be small. In other

words, he allowed the monopole to get a small non zero acceleration a, but he did not
allow it to change shape. He then substituted this ansatz into the full Yang-Mills-Higgs
equations of motion and required that they were satisfied at least to first order in a. This
requirement gives an equation from which a can be determined in terms of the fields.
From the acceleration a, one can then immediately calculate the force through Newton’s
formula F = ma

Manton only looked at the rather special cases described above, but this still provided
him with enough information to find the way in which the Higgs field Φ has to appear in
the Lagrangian. The electromagnetic and dual potentials were just put in in such a way
that they would exert the forces we are used to from classical electrodynamics, even though
the real forces had only been calculated for the special case of pure monopoles at rest.
Though this is certainly the easiest and most intuitive way to handle the electromagnetic
potentials, it would be prudent to do a calculation like the one Manton did to see if
moving BPS dyons really respond to electromagnetic fields in the same way as ordinary
dyons. Fortunately, we won’t have to do this ourselves, because it has recently been done
by Bak, Lee and Lee [71]. Using a refinement of Manton’s method 8, they have calculated
the forces that work on a dyon that moves in weak, asymptotically constant electric,
magnetic and Higgs field strengths. They found that, in the dyon’s instantaneous rest
frame, these were given by the formula

Ma = gB + qE + gsH, (4.61)

where B and E are the constant magnetic and electric fields, gs is the so called scalar
charge of the dyon, which is given by gs =

√
q2 + g2, and H is the Higgs field strength,

which is defined through

Hµ = −Φ̂aDµΦa

They also generalised the force formula above to give the force law for a dyon that
moves at an arbitrary velocity v. This is

d

dt
(γ(v)(M − gsrµH

µ)v) = g(B− v × E) + q(E + v ×B) +
gs

γ(v)
H (4.62)

From this force law, we want to extract a force law that involves the scalar Higgs field φ,
rather than the Higgs field strength H. To this end, note the following identity

8Unlike Manton’s method, Bak, Lee and Lee’s method also allows small deformations of the monopoles.
For a short review, see section 4.6
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Hµ = −Φ̂aDµΦa = −Φa∂µΦa

|Φ| = −∂µ|Φ| = −∂µφ

Using this, we get the following force equation in terms of the electromagnetic and dual
potentials and the scalar Higgs field.

d

dt
(γ(v)(M − gsφ)v) = g(B− v × E) + q(E + v ×B)− gs

γ(v)
∇φ (4.63)

But this equation is just the equation of motion for the Lagrangian (4.60) and so we see
that Bak, Lee and Lee’s work provides a fairly solid basis for the choice of Lagrangian we
have made, at least if the fields which appear in the Lagrangian vary slowly or seem to
vary slowly at the locations of the dyons, because the dyons move through them slowly.

The next thing we have to do is write down expressions for the potentials and scalar
field caused by each of the dyons 1 to n−1, as observed at the location of dyon n. This is not
an easy task. In fact, the simplest way to find the exact electromagnetic and Higgs fields
for an arbitrary configuration of moving dyons may be to solve the full equations of motion
for Yang-Mills-Higgs theory. Of course, we have found one particularly important solution
to these equations in chapter 3: Prasad and Sommerfield’s one monopole solution. The
electric and magnetic fields for this solution were just the same as those for a classical point
dyon, because the electric and magnetic charges were concentrated in one point. When we
Lorentz boost the Prasad-Sommerfield solution, we still have an exact solution and from
this, we can obtain the exact electric, magnetic and Higgs fields for a single monopole
moving at a constant speed. Of course, the electric and magnetic charge densities for
the Lorentz boosted solution are just those of a uniformly moving classical point dyon
and hence the electric and magnetic fields will also be those of a uniformly moving point
dyon. Now the fields of an arbitrarily moving electric point charge of strength q may be
obtained from the Liénard-Wiechert potentials (see [72] for a derivation) given by

A0(x, t) =
q

4π(|x− r(t0)| − v(t0) · r(t0)) (4.64)

A(x, t) =
qv(t0)

4π(|x− r(t0)| − v(t0) · r(t0)) ,

where r(t) is the position of the charge at time t and where t0 is the so called retarded
time, which can be determined from the condition that r(t0) has to lie on the backward
light cone from x.

If we write these potentials as (qAlw
0 , qAlw) and their dual potentials (which yield the

same fields) as (qÃlw
0 , qÃlw), then we can write the potentials for a moving dyon as

A0 = qAlw
0 + gÃlw

0 A = qAlw
0 + gÃlw

Ã0 = gAlw
0 − qÃlw

0 Ã = gAlw
0 − qÃlw (4.65)

In the special case that the velocity v in (4.64) is taken constant, these potentials give
the exact fields for a moving BPS-dyon. If the velocity is not constant, then we can not
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be sure that a BPS-dyon will still behave exactly as an ordinary point dyon, because we
can not be sure that the electric charge will stay concentrated in one point. However,
the work of Bak, Lee and Lee [71] indicates that, at least when the acceleration of a
BPS-dyon is small, its electromagnetic fields are still consistent with those of an ordinary
point dyon. Therefore, it is likely that the equation for the potentials given above will be
valid in more general cases than that of a uniformly moving dyon alone.

We shall not be so ambitious as to try and work with this general equation for the
potentials. Our goal is just to find an effective Lagrangian in terms of the dyon velocities
and positions which is correct to second order in the electric charges qi and the velocities
vi, when these velocities and charges are small. Looking back at the Lagrangian (4.60),
we see that this means that we need to know A, to order v0, we need to know A0 and Ã
to order v and we need to know Ã0 to order v2. 9

Let us then find an expansion of the Liénard-Wiechert potentials in powers of the ve-
locity. When we assume that the velocity of the dyons is small and that their acceleration
is negligible to order v2, we may write

r(t0) = r− v|x− r(t0)|+ O(v3).

The expansion of the Liénard-Wiechert potentials in powers of the velocity that we are
looking for can be found by iterated substitution of the above formula in the formulae
(4.64). Explicitly, we find that the denominator in the formulae (4.64) is given by

|x− r(t0)| − v(t0) · r(t0) = |x− r(t)|+ 1

2

(
(v · (x− r(t)))2

|x− r(t)| − v2|x− r(t)|
)

+ O(v3)

= |x− r(t)|+ (v × (x− r(t)))2

2|x− r(t)| + O(v3)

Using this result, it is easy to see that the potentials due to dyon 1 and evaluated at the
position of dyon n must be given by

A0 = q1

4πrn1
− gwn1·v1

4π
+ O(v2) A = −gwn1

4π
+ O(v)

Ã0 = g
4πrn1

(
1 + (v1·r̂n1)2

2
− v2

2

)
+ q1wn1·v1

4π
+ O(v3) Ã = gv1

4πrn1
+ q1wn1

4π
+ O(v2).

(4.66)

Here we have defined rij := xi − xj and we have introduced a Dirac vector potential
w(x) which satisfies ∇×w(x) = − x

x3 and w(x) = w(−x). A possible choice for w is the
potential we gave in formula (4.46), but we may also take a different potential, related
to this by a gauge transformation. We have also defined wij := w(rij) and obviously,
we have wij = wji The terms that involve wn1 are the lowest order terms in the dual
Liénard-Wiechert potentials that appear in the general equation (4.65). The easiest way
to check that they are correct is just to calculate the E and B fields that follow from
these terms. This yields E = 0 and B = g

4πrn1(t)
, which are the correct fields for a moving

monopole to lowest order in the velocity.

9Note that we consider terms like qv and q2 to be of order v2
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Now that we have a low velocity expansion for the electromagnetic fields of a moving
BPS-dyon, let us calculate one for the scalar field. The easiest way to do this is just to
Lorentz transform the scalar field of a static dyon. To turn the static dyon into a dyon
that moves with velocity v, we have to apply the Lorentz transformation Lv given by

Lv :
t 7→ γv(t− v · r)
r 7→ r− γvvt− (γv−1)(v·r)v

v2

(4.67)

Now let x be the point in space where we measure φ and let r be the location of the dyon
which is the source for φ at the time of measurement. Because φ is a Lorentz scalar field,
we have φ′(Lv(x), Lv(r)) = φ(x, r), where φ′ is the Lorentz transform of the field φ, i.e.
where φ′ is the scalar field of the moving dyon. This implies that we have

φ′(r) = φ(L−1
v (x),L−1

v (r)) = φ(L−v(x),L−v(r)) =
gs

|L−v(x)− L−v(r)|
From this expression, we can easily extract the first order terms in q, v and we see that
the scalar field due to dyon 1 at the location of dyon n will be given by

φ =
g

4πrn1

(
1 +

q2
1

2g2
− (v1 · r̂n1)

2

2

)
+ O(v3) (4.68)

Of course this equation is only valid when the effect of the acceleration of dyon 1 is
negligible to this order in v, but we had already made this assumption in our derivation
of the electromagnetic and dual potentials, so there is no further loss of generality here.
We can now substitute the above equation and the equations (4.66) for the potentials
into the Lagrangian (4.60) and, after some algebra, this gives us the following order v2

effective Lagrangian for the motion of dyon n in the fields of dyon 1

Ln = −mn +
1

2
mnv

2
n −

g2(vn − v1)
2

8πrn1

− g

4π
(qn − q1)(vn − v1) ·wn1 +

(qn − q1)
2

8πrn1

Of course, we really want to take the fields of all dyons into account and not just those of
dyon 1. In classical electromagnetism, this would be easy enough, because there, we would
just be able to add the fields of the individual dyons. Here, we can not expect things
to be so simple. The Yang-Mills-Higgs equations that underly our effective theory are
nonlinear and therefore we must expect the dyon fields to have nontrivial (=nonlinear)
superposition. However, we may hope that the superposition becomes asymptotically
linear at large distance from all the dyons. As far as I know, there is no direct conclusive
evidence for this in the general situation, but it has been rigorously proved by Taubes [27]
at least for configurations of static monopoles. Also, the work of Bak, Lee and Lee [71]
shows that the electromagnetic and Higgs field strengths of a single slowly moving dyon
may be superposed linearly on weak constant field strengths. This in particular gives
much hope that we will have linear superposition for the fields of well separated dyons,
because if dyons are far apart, then, at the position of one dyon, the field strengths of the
other dyons should be weak and slowly varying (approximately constant). If we assume
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that linear superposition holds for our well separated dyons, we arrive at the following
Lagrangian for dyon n when it moves in the fields of all the other dyons.

Ln =
1

2
mv2

n −
g2

8π

n−1∑
i=1

(vn − vi)
2

rni

− g

4π

n−1∑
i=1

(qn − qi)(vn − vi) ·wn1 +
1

8π

n−1∑
i=1

(qn − qi)
2

rni

In this expression, we have dropped the constant −mn, which is allowed, since this does
not change the equations of motion. We have also replaced mn with m := vg in the
term 1

2
mv2

n, which is allowed, since it makes no difference to order q2. We see from the
Lagrangian above that the interactions between dyon n and each of the other dyons are
perfectly symmetric (note that we had chosen w so that wij = wji). It follows that, when
we symmetrise the Lagrangian above (so that we get interaction terms for each pair of
dyons) we will get a Lagrangian that gives the correct equations of motion for each of the
dyons. This Lagrangian is

L =
n∑

i=1

1

2
mv2

i −
g2

8π

n∑
1≤i<j≤n

(vi − vj)
2

rij

− g

4π

n∑
1≤i<j≤n

(qi − qj)(vi − vj) ·wij +
1

8π

n∑
1≤i,j≤n

(qi − qj)
2

rij

. (4.69)

Though this Lagrangian is not Lorentz invariant, it is invariant under ”Galilei boosts,”
spatial rotations and translations, which is all we can hope for in a low velocity approxi-
mation.

The momentum πk conjugate to the position of dyon k is given by

πk = mvk − g2

4π

∑
i6=k

vk − vi

rik

− g

4π

∑
i6=k

(qi − qk)wik (4.70)

To write the equations of motion in a nice form, it is also useful to introduce a quantity
pk, which is given by the first two terms on the right hand side of the equation for πk

above. That is,

pk = mvk − g2

4π

∑
i6=k

vk − vi

rik

(4.71)

In terms of the ”momentum” pj, the equation of motion for dyon j is given by

ṗj =
1

8π

∑
i6=j

(g2(vj − vi)
2 − (qj − qi)

2)rji

r3
ji

+
g

4π

∑
i6=j

(qj − qi)(vj − vi)× rji

r3
ji

(4.72)
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We see immediately that these equations are solved by all configurations in which all the
dyons have equal velocity v and electric charge q. These solutions correspond to (boosted)
static BPS multi-dyons and the fact that we find solutions that correspond to these dyons
is a first indication that the approximation we have made works.

A second, more important check on the validity of our approach can be done by
comparing the special case where we have only two dyons with the results we found for
the dynamics of two dyons in section 4.4. This yields a very interesting result indeed. We
see that the equation for the relative motion of the dyons, which we get by subtracting
the equations of motion for the individual dyons given above, is exactly the same as
the equation (4.53) for geodesic motion in the Taub-NUT metric. Thus, for the case of
two monopoles, we have done as well as we could ever hope to do, considering that we
neglected all short range interactions.

In the general case of n dyons, we see that the total force that works on each dyon is
just the sum of the Taub-NUT forces from the other dyons. That is, between each pair
of dyons, there is a repulsive force proportional to the square of the relative speed, an
attractive Coulomb force proportional to the square of the relative electric charge and a
Lorentz force which also involves only the relative electric charge. Note that the word
force as I use it here refers to the time derivative of the quantity p, which is not quite
the same as the linear momentum. However, from the definition (4.71) of the pk, we
see immediately that these quantities do approach the linear momenta when the dyon
separations rij become large.

Of course, we would like to solve the equations of motion, but since the case of one
dyon is trivial and since we have already treated the case of two dyons in section 4.4, we
are left with the case of three or more dyons, which is very complicated. In fact, it would
be quite a surprise if a general solution to the equations of motion could be found for any
number of dyons greater than two, because the problem of three particles interacting only
through attractive Coulomb forces already does not have a general solution. It would
be interesting to study certain specific phenomena which should occur in the dynamics
of three or more dyons, like the scattering of dyons and Taub-NUT bound states, but
unfortunately we do not have time to go into this.

What we will do is give the conserved quantities that result from the Galilei invariance
of the Lagrangian. The invariance under spatial translations is reflected in the fact that
the velocity of the centre of mass is conserved. We may show this explicitly in the
Lagrangian (4.69) by writing

n∑
i=1

1

2
mv2

i =
m

2n

(
n∑

i=1

vi

)2

+
1

n

∑
1≤i<j≤n

1

2
m(vj − vi)

2, (4.73)

from which we see that the centre of mass position is a cyclic coordinate.

The conserved quantity that arises as a result of the invariance under spatial rotations
is a kind of generalised angular momentum, given by

J = 4π
n∑

i=1

xi × vj −
∑

1≤i,j≤n

4π(xi − xj)× (vi − vj) + (xi − xj)(qi − qj)

rij

(4.74)



112 CHAPTER 4. DYNAMICS OF BPS-MONOPOLES

This expression generalises the angular momentum for the case of two particles, which we
gave in equation (4.56)

Let us now try to establish contact between the long distance approach we have de-
scribed so far and the geodesic approximation. For the two particle case, we have already
done this, because we saw that the equations of motion for the dyon positions in the
present approach are the same as those obtained previously for geodesic motion in the
Taub-NUT metric. There are only two differences between the two dyon system we have
here and the Taub-NUT system. The first is that here, the electric charges of the dyons
are constant parameters, whereas in the Taub-NUT case, they are constants of the mo-
tion, associated with the ”internal coordinates” of the moduli space (i.e. the coordinates
which are not associated with the locations of the dyons, but rather with their internal
degrees of freedom). The second is, that in the geodesic approximation, dyons are in-
distinguishable particles, but in the point particle approach they are not. The second
difference can be removed by identifying point particle configurations which differ only
by a permutation of the particles. Removing the first takes a bit more effort. We will
somehow have to interpret all the charges qi as constants of the motion associated with
internal coordinates. To do this, we first have to introduce the required internal coordi-
nates. We will take these to be n phase angles θ1, . . . , θn, one for each dyon. When we say
that two field configurations differ only by a permutation of dyons, we mean that not only
the dyons’ positions, but also their phase angles are identified. The new configuration
space we have constructed now is thus an n-torus bundle over the configuration space of
the point particle system, modulo the action of the permutation group Sn on the particle
indices of the coordinates (xi, θi)

10

Let us now write down the Lagrangian for geodesic motion on this bundle. In general,
this takes the form

L =
1

2
alm

ij vl
iv

m
j + θ̇ic

l
ijv

l
j +

1

2
hij θ̇iθ̇j (4.75)

Here, the bottom index in vl
i denotes the particle number and the top index is a component

index. We take a and h to be symmetric in the particle indices (this is possible without
loss of generality). We want the momenta conjugate to the angles θi to be constants of
the motion. Therefore, we will assume that the metric is T n invariant, or in other words:
that the coefficients alm

ij , cl
ij and hij above do not depend on the θi. The θi are then cyclic

coordinates and the associated conserved quantities are given by

pθi
= hij θ̇j + cl

ijv
l
j (4.76)

Since we want to associate these with the electric charges of the dyons, we will write

qi = κpθi

where κ is some constant which is to be determined later.

10strictly speaking, we should also mod out the action of a cyclic group Zn to come as close to the
moduli space Mn as possible, but we will not do this and work in the connected n-fold cover of Mn.
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What we want to do now is choose the coefficients in the Lagrangian (4.75) so that the
equations of motion for the dyons’ positions that follow from this Lagrangian are exactly
the same as those given in equation (4.72). We could try to do this by direct comparison
of the equations of motion, but there is a more elegant way, which also leads to nicer
formulae later on. First, note that we can rewrite the Lagrangian above as follows

L =
1

2
Glm

ij vl
iv

m
j +

1

2
hij(θ̇i + Wm

ik vm
k )(θ̇j + W n

jlv
n
l ). (4.77)

Here, we have defined Gkl
ij and Wm

jl through

Wm
jl := h−1

jk cm
kl

Gkl
ij := akl

ij − hmnW
k
miW

l
nj

With these definitions, the last term in the Lagrangian is equal to 1
2κ2 h

−1
ij qiqj. It is tempting

to just fill this in and then to equate the Lagrangian above with the Lagrangian (4.69) for
the point particles. However, this procedure does not give us the right metric, because
in substituting for the last term in L, we change the equations of motion for the dyons’
positions. But all is not lost; we can replace the Lagrangian above with the following
point particle Lagrangian without changing the equations of motion for the positions of
the dyons:

Leff =
1

2
Glm

ij vl
iv

m
j +

1

κ
qiW

k
ijv

k
j −

1

2κ2
h−1

ij qiqj (4.78)

When we equate this with the Lagrangian (4.69), we see that we have to have Gkl
ij = gijδ

kl,
where gij is given by

gjj = m− g2

4π

∑
i6=j

1

rij

(no sum over j)

gij =
g2

4πrij

(i 6= j) (4.79)

The Wij must be given by

Wjj = −κg

4π

∑
i6=j

wij (no sum over j)

Wij =
κg

4π
wij (i 6= j) (4.80)

The matrix h−1 presents us with a problem. When we calculate it in the same way as
gij and the Wij, we find

h−1
ij =

κ2

g2
gij −mδij
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But this matrix is not invertible. We could have seen this directly from the Lagrangian
(4.69). The last term in this Lagrangian is just the quadric in “q-space” which is associated
with the matrix h and we see that this has a flat direction along the line where all the
electric charges qi are equal. In other words: the vector (1, 1, . . . , 1) is a non trivial
element of the kernel of h. One may also verify this explicitly form the expression for h
given above. Fortunately, we can redefine h without changing the equations of motion.
In fact, we can add an arbitrary constant matrix to h without changing the equations
of motion that follow from the effective Lagrangian Leff . A logical choice is to add the
matrix mδij. This gives

hij =
κ2

g2
gij (4.81)

and one may easily check that the matrix g is invertible (the associated quadric is positive
definite), so it follows that h is now invertible too.

The last thing we have to do before we can write down the metric is to determine the
constant κ. Suppose we let the angles θi take values in the usual interval [0, 2π]. In that
case, the conjugate momenta pθi

will take integer values when the theory is quantised. It
follows that the electric charges qi will be quantised in units of κ. Of course, we want the
electric charges to be quantised in units of the elementary charge e. This means we have
to choose κ = e = 4π

g

We can now write down the metric. To facilitate comparison with the formulae we
gave previously for the Taub-NUT metric and to obtain nice looking formulae, we will do
this in the units of section 4.4. In these units, the fundamental magnetic charge g and
the mass m are both equal to 4π. If we substitute this and also remove an overall factor
of 4π, we have

ds2 = gijd~ri · d~rj + g−1
ij (dθi + Wik · drk)(dθj + Wjl · drl) (4.82)

where, in these conventions, we have

gjj = 1−∑
i6=j

1
rij

Wjj = −∑
i6=j wij

gij = 1
rij

Wij = wij
(4.83)

For the case of two dyons, this is just the sum of the Taub-NUT metric given in equa-
tion (4.45) and the flat metric on R3 × S1, of which we know that it approximates the
true metric exponentially well. For an arbitrary number of dyons, we see that the metric
is asymptotically flat, so that the monopoles are asymptotically free particles. Gibbons
and Manton also showed that it is hyperkähler. Finally, Bielawski [69] showed that, for
arbitrary numbers of dyons the metric given here approximates the true metric exponen-
tially well at large dyon separations. This result rigorously establishes contact between
the point particle approach we have treated in this section and the geodesic approxima-
tion. In particular, it proves indirectly that when the dyons are well separated, move at
low speeds and have small electric charges and positive unit magnetic charge, the point
particle approach yields mathematically correct results.
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4.6 Beyond the geodesic approximation

Up to now, we have studied the dynamics of BPS-dyons in the framework of the geodesic
approximation. However, there at least two kinds of interesting phenomena which we
cannot study in this approximation. Explicitly:

1. We cannot study scattering and bound states of dyons which have unlike magnetic
charges, because there are no static solutions with dyons of unlike magnetic charges.

2. We cannot study processes that involve electromagnetic or Higgs radiation, because
the degrees of freedom associated with radiation are all contained in the non zero
modes of the dyons, which are ignored in the geodesic approximation.

To study these phenomena, we will have to think of a description of BPS-dyons which
captures a different part of the physics than the geodesic approximation. To find this,
we don’t have to look far; the point particle model we introduced in the previous section
can easily be extended to include dyons of opposite magnetic charges. In fact, the only
reason we did not do this straight away was that we wanted to establish contact between
the point particle and the geodesic approximation as efficiently as possible.

Still, even with the extended point particle model, we cannot study radiative phenom-
ena. The reason for this is, that in this approach the fields ~A and φ do not have their own
dynamics; they depend only on the positions of the dyons. Recently, this shortcoming has
been at least partially remedied by Bak, Lee and Lee [71]. Based on a study of the full
Yang-Mills-Higgs field equations, they have proposed a modification of the point particle
model in which the dyons are still point particles, but in which the fields through which
they interact do have their own dynamics. Unfortunately, I do not have enough time to
treat Bak, Lee and Lee’s model in detail, but I will give their most important results here
and describe briefly how they were obtained.

First, Bak, Lee and Lee study the deformation and acceleration of a dyon due to weak
electric, magnetic and Higgs field strengths which are asymptotically constant at spatial
infinity. To this end, they use the ansatz

Φa(x, t) = Φ̄(x− r(t); θ) + Πa(x− r(t); θ)

Aa
i (x, t) = Āa

i (x− r(t); θ)− taiĀ
a
0(x− r(t); θ) + αa

i (x− r(t); θ)

Aa
0(x, t) = Ā0(x− r(t); θ)− taiĀ

a
i (x− r(t); θ) + αa

0(x− r(t); θ) (4.84)

Here, r(t) is the position of the centre of the dyon at time t. This is assumed to be in
uniformly accelerated motion with acceleration a. If we look at the dyon in the frame in
which it is instantaneously at rest in the space origin at t = 0, we may thus write r(t) =
1
2
at2. The fields with the bars are the fields of a Julia-Zee dyon as given in equation (3.47);

the angle θ is just the angle which gives the electric charge of the dyon (q = g tan(θ)).
We see that the terms with the bars above represent the fields of a BPS-dyon that moves
non-relativistically with velocity at. The fields α and Π are supposed to be O(a). They are
there to account for deformations in the dyon’s fields due to interactions with the electric,
magnetic and Higgs field strengths. In fact, these field strengths are implemented through
the fields α and Π, by means of the boundary conditions
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r →∞ : Bi → (B0)i Ei → (E0)i Hi → (H0)i. (4.85)

Note that the deformations α and Π are assumed to depend on time only through the time
dependence of the position r of the dyon centre. It is not a priori clear that solutions to the
full equations of motion which have this property exist. However, when we substitute the
ansatz (4.84) into the the equations of motion, we will see that the resulting equation for
α and Π does not involve t itself, but indeed involves only r. Before we write this equation
down, it is convenient to introduce the notation Ã for the part of the A-field that includes
the deformations due to interaction, but excludes those due to motion. Explicitly, we
define

Ãa
µ := Āa

µ + αa
µ

Correspondingly, we define D̃ and F̃ as the covariant derivative and field strength derived
from the potential Ã.

If we now substitute the ansatz (4.84) above into the equations of motion (3.3) for the
Georgi-Glashow model, we find the equations [73] 11

(
D̃j + aj

)
F̃ ij + e

[
Ã0, D̃iÃ0

]
= −e

[
D̃iΦ̃, Φ̃

]
D̃i

(
D̃i + ai

)
Ã0 + e2

[
[Ã0, Φ̃], Φ̃

]
= 0

D̃i

(
D̃i + ai

)
Φ̃ + e2

[
[Ã0, Φ̃], Ã0

]
= 0. (4.86)

The first two of these equations come from the equations of motion for A and the last one
from that that for Φ. The above equations are rather difficult to work with, but it turns
out that one can find a less complicated set of equations whose solutions all satisfy the
above equations to O(a). This set of equations is

B̃a
i = ∓(D̃i + ai)(cos(θ)Φ± tan(θ)α0)

D̄iD̄iα0 = −e2 cos2(θ)
[
[α0, Φ̄], Φ̄

]
(4.87)

The situation we have here is somewhat analogous to the situation we had in chapter 3,
where we studied the Bogomol’nyi equations (3.35) in order to find solutions to the Yang-
Mills-Higgs equations (3.3). In fact, the analogy is closer than it seems at first, because
when we look at the above equations in the special case for which the acceleration a
and the deformations α and Π are zero, we see that they reduce to the single equation
Bi = ∓ cos(θ)DiΦ, which is one of the Bogomol’nyi equations for a dyon. Note also that
one needs the fact that the unperturbed fields satisfy the Bogomol’nyi equations to prove
that the equations (4.87) imply the equations (4.86).

The first of the equations (4.87) gives us the non-Abelian magnetic field. At infinity,
we may obtain the Abelian magnetic field from this by projecting on the non-perturbed

11Note that we are working in the Prasad-Sommerfield limit, i.e. the parameter λ in the equations of
motion (3.3) is taken to be zero
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Higgs field Φ̄. Similarly, we may obtain the Abelian electric field at infinity from the
following expression for the non Abelian electric field:

Ei = −tajF̄ij +
(
D̃i + ai

)
Ã0 (4.88)

By imposing the boundary condition (4.85), one may now determine the acceleration a
from (4.88) and the first of the equations (4.87), if one makes the additional assumption
that the deformation function α0 is asymptotically of the following form:

αa
0(x− r; θ) =

cos(θ)C · (x− r)

|x− r| (x− r) (4.89)

where C is a constant vector. Substituting this in (4.88) and the first of the equations
(4.87) and applying the boundary conditions, we obtain two linear equations for a and C
and these finally yield the result

C = ∓1

v
[sin(θ)B0 − cos(θ)E0]

a = ∓1

v
[cos(θ)B0 − sin(θ)E0 ∓H0] (4.90)

From the expression for a, we get the force that works on the dyon in its instantaneous
rest frame. Using cos(θ) = g

gs
, sin(θ) = q

gs
and M = vgs, we see that this is given by

Ma = gB0 + qE0 + gsH0 (4.91)

Remember that we have already used this result and its generalisation (4.62) to an ar-
bitrary inertial frame as input for the point particle approximation we described in the
previous section. However, one can do something extra in the current approach. Now
that a and C are determined, it is actually possible to find an explicit solution to the
equations (4.87) which is everywhere regular and can be expressed in terms of elemen-
tary functions [71]. We will not give this solution here, because it is rather a large and
complicated expression, but we will give the asymptotic electromagnetic and Higgs field
strengths that can be derived from it. In the frame in which the dyon is instantaneously
at rest in the origin at t = 0, these are given by

B(x, t) ∼ B0 +
g

4π

R̂− v

(1− R̂ · v)3R2
− q

4π

R̂× v
R2

+
g

4π

R× (R× a)
R3

− q

4π

R× a
R2

(4.92)

E(x, t) ∼ E0 +
q

4π

R̂− v

(1− R̂ · v)3R2
+

g

4π

R̂× v
R2

+
q

4π

R× (R× a)
R3

+
g

4π

R× a
R2

(4.93)

H(x, t) ∼ H0 +
gs

4π

R̂− v

(1− R̂ · v)3R2
+

gs

4π

(R · a)R̂
R2

(4.94)

H0(x, t) ∼ H0 +
gs

4π

R̂ · v
(1− R̂ · v)3R2

+
gs

4π

R · a
R2

(4.95)

Here we have defined R := x − r. Since the dyon is in uniformly accelerated motion,
we have R(t) = x − 1

2
at2. Similarly, we have v(t) = at. All the expressions on the right
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hand side of the formulae above should be evaluated at the retarded time t0, which can
be determined from the condition that r(t0) has to lie on the backward light cone from
x. We see from the equations above that we have not only the usual near-zone fields for a
dyon (the terms of order 1

r2 ), but also radiation fields. These are given by the terms which
involve a explicitly. We can see that these terms represent radiation from the fact that
they are of order 1

r
. In the point particle approach of the previous section, we did not have

these radiation fields, because we assumed the acceleration to be negligible. Note that
the electromagnetic fields (both near-zone and radiation fields) are of exactly the form
we would get in duality invariant Maxwell theory. In fact, one sees immediately from the
formulae above that all the field strengths are consistent with electric-magnetic duality.
The same is of course true for the force law (4.91) above.

From the above, it is clear that electromagnetic and Higgs radiation are produced
whenever a dyon is accelerated. Once such radiation has been emitted from a dyon, it
can scatter with another dyon which lies in its path. Such scattering could influence dyon
dynamics and could also be important for the detection of dyons. Thus, it makes sense
to study processes in which light or Higgs radiation scatters off a dyon. Bak, Lee and Lee
have done this, making use of a perturbative scheme analogous to the one we have just
described.

This time, the dyon is supposed to be in oscillatory movement whose magnitude and
direction are given by a vector a, due to an incoming plane wave of electromagnetic and
Higgs radiation which has wave vector k and angular frequency ω. These ingredients lead
to the following ansatz for the fields

Φa(x, t) = Φ̄a(x− r(t); θ) + Re
{
Πa(x− r(t); θ)e−iωt

}
Aa

µ(x, t) = Āa
µ(x− r(t); θ) + Re

{
αa

µ(x− r(t); θ)e−iωt
}

, (4.96)

where the functions α and Π are again deformations of the dyon’s fields which are sup-
posed to be O(a). Substituting the above ansatz into the equations of motion yields
complicated equations for which one can again find solutions relatively easily by the use
of an analogue of the Bogomol’nyi equation. After a lot of algebra, one then finds the
following asymptotic Electromagnetic and Higgs radiation fields:

B = Re
{ iω2

gs
[gk̂× (k̂× a)− qk̂× a]veik·x−iωt + 4πiω[gx̂× (x̂× a)− qx̂× a]

eik·x−iωt

x

}

E = Re
{ iω2

gs
[qk̂× (k̂× a) + gk̂× a]veik·x−iωt + 4πiω[qx̂× (x̂× a) + gx̂× a]

eik·x−iωt

x

}

H = Re
{
−iω2(a · k̂)k̂veik·x−iωt +

4πiω2

gs
(a · x̂)x̂

veik·x−iωt

x

}

H0 = Re
{
−iω2(a · k̂)veik·x−iωt +

4πiω2

gs
(a · x̂)

veik·x−iωt

x

}
(4.97)

In these expressions, we can clearly distinguish terms which represent the incoming
plane wave and terms which represent an outgoing spherical wave. On comparing the
above expressions with the radiation fields for a uniformly accelerated dyon given in the
equations (4.92), we see that the radiation that the dyon emits due to electromagnetic
and Higgs scattering is just the radiation it should emit due to the oscillatory motion
induced by the incoming wave.
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From the asymptotic fields given above, one may also derive differential cross sections
for the scattering of electromagnetic and Higgs waves on dyons. These are given by

(
dσ
dΩ

)
em→em

=
(

g2
s

4πM

)2

sin2 Φ
(

dσ
dΩ

)
em→Higgs

=
(

g2
s

4πM

)2

cos2 Φ(
dσ
dΩ

)
Higgs→em

=
(

g2
s

4πM

)2

sin2 φ
(

dσ
dΩ

)
Higgs→Higgs

=
(

g2
s

4πM

)2

cos2 φ
(4.98)

Here, Φ is the angle between x and gBinc + qEinc (where “inc” stands for incoming) and
φ is the angle between r and Hinc ∼ k̂. We see immediately that the cross sections are
invariant under electric magnetic duality, because they involve only gs, which is just the
symmetric combination of q and g

Bak, Lee and Lee have found that all the above results, which they obtained from
the full theory through the use of classical perturbation theory, could also have been
obtained from an effective theory in which the dyons are treated as point particles and
the only fields are the (Abelian) electromagnetic fields and an isoscalar Higgs field φ, as
in the point particle model of the previous section. However, in contrast to the model
of the previous section, the fields in Bak, Lee and Lee’s model are not just functions of
the particles’ positions and speeds, but they have their own dynamics and consequently,
their own equations of motion. The equations of motion for both the fields and the dyon
positions can be conveniently summarised by means of the following effective action:

Seff =

∫
d4x

{
1

4
F µνFµν − 1

2
F µν(∂µAν − ∂νAµ)− 1

2
∂µφ∂µφ

+
n∑

i=1

[
− 1

γ(ṙi)
(Mi + (gs)iφ)δ3(x− ri)

−qiδ
3(x− ri)[A0 − ṙ ·A]− giδ

3(x− ri)[Ã0 − ṙ · Ã]

]}

Here, the ri are the positions of the dyons and the qi and gi their electric and magnetic
charges. Ã is the dual vector potential we introduced in section 4.5. Up to a gauge
transformation, we can define this as a functional of F and hence of A. This functional
is non-local, which makes the value of the above action as a starting point for quantum
physics rather doubtful. However, this should be no problem for classical physics, as long
as we get the right Euler-Lagrange equations.

To obtain the equations of motion from the action, we have to view F and A as inde-
pendent fields and vary them separately. When we do this, we obtain the generalisation
of Maxwell’s equations which includes magnetic charges. The charges in these equations
are just the electric and magnetic point charges due to the dyons. Varying the field φ
gives the equation of motion

∂µ∂
µφ =

n∑
i=1

(gs)n

γ(ṙ)
δ3(x− ri(t)) (4.99)

From the equations of motions for the fields, we may rederive the asymptotic fields of an
accelerated dyon given in (4.92). The equations of motion for the dyon positions are just
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the equations (4.62) we used in the point particle approach of the previous section. We
have already shown that these incorporate the force law (4.91) we derived in this section.
In fact, all the results of this section and the previous can be recovered using only the
equations of motion for the fields and the particles. One can even derive the generalisation
of the Gibbons-Manton point particle model to the case where the magnetic charges of
the dyons can be equal to plus or minus g and the electric charges are not necessarily
very small. In the next section, we will study the dynamics of oppositely charged dyons
by means of this generalised point particle model.

4.7 Dynamics of dyons of unlike magnetic charge

In this section, we will study the dynamics of a system of dyons which have magnetic
charges ±g. As in section 4.5, we will consider the dyons as point particles with Abelian
electromagnetic fields and an isoscalar Higgs field. In the same way as in section 4.5, we
may find an O(v2) effective Lagrangian for this theory. The only essential input we need
in the derivation of this effective Lagrangian is an expansion of the electromagnetic and
dual potential and the scalar Higgs field of a dyon to the appropriate orders in v. We
do not want to use the expansions (4.66) and (4.68) given in section 4.5, because they
treat the electric and magnetic charges in an asymmetrical way; the electric charges are
assumed to be of order v. Although this is a logical thing to do from the point of view
of the geodesic approximation, in which the charges are associated with speeds, we do
not a priori want to restrict ourselves to the case of small electric charges in our current
long-distance theory, where the charges are just constants. Thus, we have to modify the
expansions (4.68) and (4.66). This is most easily done for the expansion of the Higgs field.
Using the same derivation as in section 4.5, but keeping terms of order q3 and higher, we
see that the scalar Higgs field of dyon 1 at the location of dyon n is given by

φ =
gs

4πrn1

(
1− (v1 · r̂n1)

2

2

)
+ O(v3) (4.100)

To get the electromagnetic fields, we can again use the low velocity expansion of the
Liénard-Wiechert potentials for the part which is due to the presence of electric charge,
but to get the part caused by the magnetic charge as well, one has to use the form that
the field tensor takes in this case and some formulae which connect A and Ã to the field
tensor F. For the details of the calculation I refer the reader to [71]. Here, I will just give
the result, which is exactly what one would intuitively expect, namely:

A0 = q1

4πrn1

(
1 + (v1·r̂n1)2

2
− v2

2

)
− gwn1·v1

4π
+ O(v3) A = q1v1

4πrn1
− gwn1

4π
+ O(v2)

Ã0 = g
4πrn1

(
1 + (v1·r̂n1)2

2
− v2

2

)
+ q1wn1·v1

4π
+ O(v3) Ã = gv1

4πrn1
+ q1wn1

4π
+ O(v2).

(4.101)

Using these expansions for the potentials and the expansion for the Higgs field, we may
now proceed as in section (4.5) to derive an effective Lagrangian for the dyon system
which is correct to order v2. This yields the following expression:
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L =
n∑

i=1

1

2
miv

2
i −

1

8π

n∑
1≤i<j≤n

(gs)i(gs)j
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2

rij

− 1

4π

n∑
1≤i<j≤n
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1

4π

n∑
1≤i,j≤n

(gs)i(gs)j − qiqj − gigj

rij

− 1

8π

n∑
1≤i,j≤n

((gs)i(gs)j − qiqj − gigj)

{
vi · vj + (r̂ij · vi)(r̂ij · vj)

rij

}
(4.102)

We see immediately that this slow-motion effective Lagrangian is invariant under electric-
magnetic duality. We may see this as an indication that the full theory is indeed also
invariant under this duality, as conjectured by Montonen and Olive [6], but it certainly
is not proof, because the classical approximation we are using here is very likely to break
down at strong coupling and duality in the full theory is dependent on the strong coupling
regime as much as on the weak coupling regime. If duality does indeed hold in the full
theory then one may speculate that the above Lagrangian could give a description of the
slow motion of dyons even at large coupling. However, this too would certainly need
further investigation.

Let us now descend once more to the situation in which all the electric charges are
small, i.e. qi = O(v) for all i. In that case, the effective Lagrangian above reduces to

L =
n∑

i=1

1

2
mv2

i −
1

8π

n∑
1≤i<j≤n

g2 (vi − vj)
2

rij

− 1

4π

n∑
1≤i<j≤n

(qigj − qjgi)(vi − vj) ·wij +
1

8π

n∑
1≤i,j≤n

2g2 − 2gigj − (qi − qj)
2

rij

− 1

16π

n∑
1≤i,j≤n

(2g2 − 2gigj)

{
vi · vj + (r̂ij · vi)(r̂ij · vj)

rij

}
(4.103)

It is easy to check that this reduces to the Lagrangian (4.69) for the Gibbons-Manton point
particle model if we set all the magnetic charges equal to the unit charge g. In general,
we see that the dyons still have only pairwise interaction and that the forces between
two dyons of like charges are the same as those in the Gibbons-Manton model. The
interactions we still need to study are those between dyons of opposite magnetic charges.
To have a closer look at these, let study a system of two dyons with opposite magnetic
charges g and −g and electric charges q1 and q2. In this special case, the Lagrangian
above reduces to

L =
1

2
m(v2

1 + v2
2) +

4g2 − (q1 − q2)
2 − g2(v2

1 + v2
2 + 2(r12 · v1)(r12 · v2))

8πr12

+
g

4π
(q1 + q2)(v1 − v2) ·w12 (4.104)

The momentum π1 and π2 conjugate to r1 and r2 are now given by
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π1 = mv1 − g2v1 + g2(r̂12 · v2)r̂12

4πr12

+ g(q1 + q2)w12

π2 = mv2 − g2v2 + g2(r̂12 · v1)r̂12

4πr12

− g(q1 + q2)w12 (4.105)

As in the case of dyons of like magnetic charge, we can define quantities p1 and p2 which
are parts of the canonical momenta π1, π2 and which approximate the linear momenta of
the particles when the distance between the particles is large:

p1 = mv1 − g2v1 + g2(r̂12 · v2)r̂12

4πr12

p2 = mv2 − g2v2 + g2(r̂12 · v1)r̂12

4πr12

(4.106)

In terms of p1 and p2, the equations of motion take the form

ṗ1 + ṗ2 = 0

ṗ1 − ṗ2 =
r12

4πr3
12

{−4g2 − (q1 − q2)2 + g2(v2
1 + v2

2 − 2(r̂12 · v1)(r̂12 · v2))
}

−g(q1 + q2)(v1 − v2)× r̂12

4πr2
12

− 2g2

4πr3
12

{(r12 · v2)v1 + (r12 · v1)v2} (4.107)

We see that the dominant (O(v0)) force between the dyons is a magnetic Coulomb force,
which is twice the Coulomb force we would have expected if the Higgs field had not been
there. In other words: The Higgs force doubles the attractive Coulomb force in this case.
The magnitude of the other forces that appear is of order v2. We see that, as in the case of
dyons of like charge, there are an attractive electric Coulomb force which is proportional
to the square of the relative electric charge and a repulsive velocity dependent force. This
last force is not exactly the same as the velocity dependent repulsive force we had before.
In particular, it no longer depends only on the relative velocity of the dyons. We also
see a Lorentz force, which is now proportional to the sum, rather than the difference of
the electric charges. Finally, we see from the last term above that an extra non central
velocity dependent force has appeared.

It would be interesting to try and solve the above equations of motion. To me, it
seems unlikely that there will be enough constants of the motion to determine the orbits
completely, at least I have not been able to find them. However, it should be possible to
find good approximate solutions using perturbation theory, starting from the situation in
which only the magnetic Coulomb force is present. Unfortunately, I do not have time to do
this within this thesis, so for now, the above description of the forces between oppositely
charged dyons will have to do. I think it should also be possible to find some special
solutions to the equations of motions relatively easily and I am currently investigating
this.

4.8 Discussion and Outlook

In this thesis, we have studied two different approaches that can be used to describe the
dynamics of BPS dyons in the Georgi-Glashow model. These approaches have different
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regions of validity. Manton’s geodesic approximation works well for dyons of like magnetic
charges, as long as the speeds and electric charges of the dyons are small, but it does not
describe the dynamics of oppositely charged dyons and it neglects the effect of electromag-
netic and Higgs radiation. The effective field theory of Bak, Lee and Lee, which is also
rooted in work of Manton’s, can describe radiative processes and processes that involve
dyons of opposite magnetic charge, but it is only valid if the dyons are far apart. Although
these two approaches give us a fairly good grip on dyon dynamics, there are certainly still
processes left which cannot be described by either of these models. The most prominent
of these are probably the creation and annihilation of dyon-antidyon pairs. Thus, it is
clear that further study into the dynamics of BPS dyons in the Georgi-Glashow model is
still warranted.

It is also interesting to study BPS dyons in generalisations of the Georgi-Glashow
model. These generalisations may go in several directions. One may for example add
matter fields to the theory or one may change the gauge group from SU(2) to some larger
group. Much research has been done in this last direction and the current state of affairs
for, say, the case of SU(N) broken down to U(n − 1) by the Higgs effect is the same as
that for SU(2), as far as the available approaches are concerned. Concrete results, such as
exact metrics on moduli spaces, or even geodesics are not so readily available in general.
Much less is known about the situation in which the gauge group is broken down to a
non Abelian subgroup. In this case, many interesting new phenomena occur. One may
for instance have two dyon configurations that have internal properties that cannot be
ascribed to either of the dyons separately.

Another generalisation of the model we have studied here can be obtained by adding
supersymmetry. The theories which are obtained this way form a natural setting for the
study of electric/magnetic duality. Also, the supersymmetry in these theories guarantees
that the BPS bound can be saturated even quantum mechanically. The study of these
supersymmetric extensions of Yang-Mills theory has recently become very popular, mostly
because of the work of Seiberg and Witten [7].

Finally, it would be very interesting to study non BPS monopoles, that is, to study
’tHooft-Polyakov monopoles without taking the non-physical BPS limit. For very small
Higgs potential (and hence very small Higgs mass), one may be able to do this by a slight
adaptation of either of the methods we have treated in this thesis, but in the more realistic
case where the Higgs particle gets a large mass. the geodesic approximation will certainly
break down. The point particle approach may still be able to give some information even
in this case, if the asymptotic Higgs field is modified to accommodate for the (now) finite
range of the Higgs force, but of course, even if this was done satisfactorily, we would still
be left without a theory to describe the short range interactions of the monopoles.

Concluding we may say that there are many interesting problems still to be adressed
in the theory of magnetic monopoles. Looking back at past results, I cannot help but
look forward to seeing and hopefully helping some of the solutions emerge over the next
four years.



Appendix A

Quaternions and such

A.1 Basic definitions and identities

In this thesis, it will sometimes be convenient to make use of the skew field of quaternions
H. The classical way to define this is to adjoin to the real numbers the three symbols i, j
and k which are taken to commute with real numbers and satisfy the following relations:

i2 = j2 = k2 = −1 (A.1)

ij = −ji = k, jk = −kj = i, ki = −ik = j

A general quaternion will then be of the form

x = x1 + x2i + x3j + x4k.

We can define a conjugation x 7→ x̄ by

x̄ = x1 − x2i− x3j − x4k

We also have a natural norm on the quaternions, which can be conveniently written in
terms of the conjugation:

|x| = √
x̄x =

√
xx̄ =

√
x2

1 + x2
2 + x2

3 + x2
4

The last identity can be easily verified using the relations (A.1). These relations can also
be used to verify that we have

x̄y = ȳx̄, and hence

|xy| = |x||y|.

Furthermore, one can see that if the quaternion x is unequal to zero, then it has a unique
inverse:

124
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x−1 =
x̄

|x|2
From the above it follows that the quaternions defined as above are a division algebra or
skew field and that the quaternions of unit norm form a subgroup of their multiplicative
group. This group of unit quaternions is called Sp(1)

A.2 Identification of Sp(1) with SU(2)

If we identify the symbol i used above with the complex number i, then we can take the
complex numbers to be a sub-algebra of the quaternions. Moreover, we can identify the
quaternions with C2 by writing

x = z1 + z2j

with z1 and z2 uniquely determined by x. Quaternion multiplication can now be written
in terms of complex two by two matrices. For example: multiplication on the right by x
is given by the matrix

(
z1 z2

−z̄2 z̄1

)
This way, we can identify the quaternions with a sub-algebra of the complex two by two
matrices. The quaternions i, j and k then correspond to the Pauli matrices σ1, σ2 and
σ3, multiplied by a factor of −i (the complex number!). 1 Using this identification, we
see that the group Sp(1) of quaternions of unit norm corresponds to the Lie group SU(2)
and that the algebra of imaginary quaternions corresponds to its Lie algebra su(2). In
fact, the identification of (i, j, k) with the canonical basis (iσ1, iσ2, iσ3) for su(2) gives us
a quick way to derive some well known formulae: Let A and B be arbitrary elements of
su(2). Using our identification, we can then write

A = A1i + A2j + A3k

B = B1i + B2j + B3k.

Using only the relations (A.1), we then easily find

[A,B]i =
3∑

j,k=1

εijkAjBk (A.2)

and similarly

Tr(AB) ≡ −2 Re(AB) = 2
3∑

i=1

AiBi. (A.3)

where the factor of 2 appears as the trace of the 2× 2 identity matrix.

1It is possible to take this as the definition of the symbols i, j and k, and physicists may prefer to do
this.
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A.3 Quaternionic linear algebra: Hn and Sp(n).

The only fundamental difference between a field like C and the quaternions is the non-
commutativity of quaternion multiplication. Therefore, it is possible to use the quater-
nions as scalars for a linear space, provided that one decides in advance whether to use
left or right scalar multiplication. In particular, one has the quaternionic vector spaces
Hn with right multiplication, analogously to the spaces Cn or Rn. On Hn, one can de-
fine an inner product analogously to the standard hermitian inner product on Cn, but
using quaternionic in stead of complex conjugation. The linear automorphisms of Hn

that preserve this inner product form a Lie group that is denoted Sp(n). If we identify
a linear transformation with its matrix then we can view these groups as matrix groups
and in particular, we see that this definition of Sp(n) agrees with our previous definition
of Sp(1), just the group of unit quaternions. In general, Sp(n) can be identified with the
group of quaternion matrices A whose (quaternionic) conjugate transposed A∗ is equal
to their inverse (note the analogy with U(n)). A complex realisation of Sp(n) can also
be obtained for general n, by taking a complex representation of the quaternions, as we
did above for the case of Sp(1). The Lie algebra of Sp(n) is the algebra of matrices A for
which A∗ = −A (again, in analogy with U(n)).

A.4 Quaternionic projective spaces

Using the spaces Hn, one can define the n-dimensional quaternionic projective space Pn(H)
to be the collection of all one dimensional subspaces of Hn+1.

The quaternionic projective spaces can be described in terms of so called homogeneous
coordinates. An n + 1-tuple of homogeneous coordinates for an element x of Pn(H) is
just a non-zero element of the one dimensional subspace of Hn+1 to which x corresponds.
Of course, the same element x of Pn(H) will be represented by many different sets of
homogeneous coordinates. To be exact: if we choose to work with scalar multiplication
on the right, then two n + 1-tuples (x1, . . . , xn+1) and (y1, . . . , yn+1) of homogeneous
coordinates will represent the same element of Pn(H) if and only if there is a non-zero
quaternion z, such that

(x1, . . . , xn+1) = (y1, . . . , yn+1)z

From this we see that every element x of P1(H) can be uniquely represented by a set of
homogeneous coordinates of the form (1, y), unless x is the unique point represented by
(0, 1). Thus we find that the quaternionic projective line P1(H) can be seen as a copy of
the quaternions, or equivalently R4, with an extra point added to it. Since P1(H) is also
obviously (path)connected, this means we can identify P1(H) with S4. In chapter 2, we
use this correspondence to describe S4 in terms of homogeneous coordinates.

As an aside, I want to say that it is possible to define and work with quaternionic
manifolds in a manner completely analogous to real and complex manifolds. In fact, it is
not difficult to see that the Pn(H) are quaternionic manifolds of dimension n.
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A.5 Structures and tensor product spaces

Sometimes, it is useful to have an action of the quaternions on a complex vector space V .
Such an action can be defined by means of a so called quaternionic structure. This is a
complex anti-linear map J from V into itself, whose square is minus the identity. That
is, we have

J : V → V (A.4)

J(zv) = z̄Jv (A.5)

J2 = −I (A.6)

If we now define K = iJ , then we can easily verify that the maps (left multiplication by)
i, J and K satisfy the defining relations (A.1) for the quaternions. Thus, if we define

ρ : H× V → V, ρ(x1 + x2i + x3j + x4k, v) = (x1 + x2i + x3J + x4K)(v), (A.7)

then ρ gives an action of the quaternions on V.
We can now define a quaternionic subspace of V as a subspace that is invariant under

the action ρ, or equivalently, under the action of J. In particular, for each non-zero vector
v ∈ V, we can define the quaternionic line spanned by v as the subspace of V spanned
by v and Jv. We will call this line `v. We can easily see that these quaternionic lines are
two dimensional, for suppose that, for some v ∈ V, the line `v is one dimensional, then
we would have Jv = cv for some complex number c. But this is impossible, since it would
follow that

−v = J2v = J(cv) = c̄Jv = c̄cv = |c|2v.

Thus, `v is two dimensional and spanned by v and Jv. It is also easy to show that w ∈ `v

implies `v = `w. In fact, w ∈ `v implies w = ρ(q)v for some quaternion q, which in turn
implies that v = ρ(q−1)w and it follows that v and Jv are contained in `w, giving `w = `v.
We can now easily deduce that any two quaternionic lines in V which have a non-zero
element in common will be identical (both lines will be identical to the line spanned by
the common element).

If V has complex dimension 2, then the above facts about quaternionic lines make it
possible to identify V with the quaternions in a way that is consistent with the action of
ρ. In fact, we can do this in infinitely many ways. These identifications work as follows:
take an arbitrary non-zero element v of V. Since V is two dimensional, we have V = `v

and a basis for V is given by v and Jv. This means that every element w of V can be
written in the form w = z1v + z2Jv, where z1 and z2 are complex numbers. If we now
identify this with a quaternion as follows

z1v + z2Jv ≡ z1 + jz2, (A.8)

then we see that the action of ρ(q) on the left hand side is just the same as right mul-
tiplication with the quaternion q on the right hand side. 2 Note that the identification

2If we had taken the identification z1v + z2Jv ≡ z1 + z2, then the action of ρ(q) would correspond to
left multiplication with the quaternion q, but we will choose to let ρ denote right multiplication here.
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above also gives us an algebra of linear maps on V which correspond to left multiplication
by quaternions. In particular, we have the maps corresponding to multiplication by the
quaternions i, j, k and we will call these e1, e2, e3 respectively.

If V has complex dimension higher than 2, things become a bit more complicated.
Fortunately, we don’t need to develop the general case, because we won’t use it in this
thesis. The interested reader may easily verify, using the properties of quaternionic lines
proved above, that a three dimensional complex vector space cannot have a quaternionic
structure and that a four dimensional complex vector space with a quaternionic structure
can be identified with H2 much like a two dimensional one can be identified with H.

We will now introduce the notion of a quaternionic linear map between vector spaces
V and W with quaternionic structures JV and JW . We define this to be a linear map
that commutes with quaternion multiplication as given by the actions ρV and ρW that
correspond to JV and JW. A necessary and sufficient condition for a map L : V → W to
be quaternionic linear is, that it is complex linear and that we have JW L = LJV . It is easy
to see that a quaternionic linear map L from V to W will send quaternionic subspaces of
V onto quaternionic subspaces of W. In particular, the image of L will be a quaternionic
subspace of W. Also, the preimage under L of a quaternonic subspace of W will be a
quaternionic subspace of V and in particular, the kernel of L will be quaternionic.

Explicit examples of quaternionic linear maps are the maps e1, e2, e3 : V → V defined
above for an arbitrary two dimensional vector space V with a quaternionic structure. In
fact, in this case, it is easy to show that we can write an arbitrary quaternionic linear
operator L from V to V as

L = a0I2×2 + a1e1 + a2e2 + a3e3,

where the ai are arbitrary real numbers. This means that all quaternionic linear operators
on a two dimensional space V with the quaternionic structure are just left multiplication
with some quaternion. We will call such an operator real, if the quaternion in question is
a real number.

Now let V again be a complex vector space with a quaternionic structure J and let
W be some other complex vector space. We would like to define a quaternionic structure
J on the tensor product W ⊗ V. The easiest way to do this is to take

J (w ⊗ v) = w̄ ⊗ (Jv)

This is a good quaternionic structure, but certainly not the only possible one. To define
more general quaternionic structures, we need the notion of a real structure. This is a
complex anti-linear map σ : W → W , whose square is equal to the identity. That is, we
have

σ : W → W

σ(zv) = z̄σ(v)

σ2 = I

A real structure can be taken as an alternative definition of complex conjugation. Using
the structure, one can define alternative real and imaginary parts R(w) and I(w) for any
element w of W by
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R(w) =
w + σ(w)

2

I(w) =
w − σ(w)

2i
(A.9)

These are permuted in the usual way when one multiplies w by i and we also have

σ(R(w) + iI(w)) = R(w)− iI(w), (A.10)

which shows the analogy with complex conjugation explicitly.
An arbitrary complex vector space permits many different choices of real structure,

next to the standard complex conjugation. Any one of these structures will permit us to
define a good quaternionic structure on W ⊗ V by

J (w ⊗ v) = (σw)⊗ (Jv).

Of course, we can easily generalise to the case of n spaces W1, . . . Wn with real structures
σ1 . . . σn. In that case we find that J given by

J (w1 ⊗ . . .⊗ wn ⊗ v) = (σ1w1)⊗ . . .⊗ (σnwn)⊗ (Jv).

is a good quaternionic structure.
If V is two dimensional and identified with H in the way we described above, then we

can identify W ⊗ V with Hn, where n is the dimension of W. This is done as follows. If
v is the element of V which we have identified with the quaternion 1, then we can write
an arbitrary element u of W ⊗ V as w1 ⊗ v + w2 ⊗ Jv, where w1 and w2 are complex
n-vectors. The first thing that comes to mind now, is to identify u with the quaternionic
n-vector w1 + jw2. However, this is not the identification we were looking for, because
with this identification, we would have

J (w1 ⊗ v + w2 ⊗ Jv) = −σ(w2)⊗ v + σ(w1)⊗ Jv, and

(w1 + jw2)j = −w̄2 + jw̄1

and the right hand sides do not in general correspond, unless the real structure σ is
just the ordinary complex conjugation. For general σ, we have to do something slightly
more complicated. First, we note that, if we look at the linear space W with real in
stead of complex scalars, then the maps R and iI defined through (A.9) become linear
projections. Moreover, we have W = R(W ) + iI(W ) and R(W )

⋂
iI(W ) = 0, 3 which

gives W = R(W ) ⊕ iI(W ). We can now take bases in the real linear spaces R(W ) and
iI(W ) - if we already had a base β on W, then we can take R(β) and iI(β) - and we can
write R̂(w) and Î(w) for the (real) coordinate vectors of R(w) and iI(w) with respect to

3We have R(v) = iI(w) ⇒ v + σ(v) = w + σ(w) ⇒ w − v = σ(w + v) ⇒ σ(w − v) = w + v. The last
two expressions together imply w = σ(w) and v = −σ(v), giving R(v) = iI(w) = 0, as claimed.
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the chosen bases. The identification of W ⊗ V with Hn that we were looking for is now
given by

w1 ⊗ v + w2 ⊗ Jv ≡ R̂(w1) + iÎ(w1) + j
(
R̂(w2) + iÎ(w2)

)
. (A.11)

We have just shown that this identification is well defined and one easily checks (using
(A.10)) that it makes the quaternionic structure coincide with quaternionic right multi-
plication, as desired.

As before, we can also define quaternionic left multiplication on W ⊗ V and the
multiplications by i, j, k are given by the formula

ei(w ⊗ v) := w ⊗ ei(v)

(with a slight abuse of notation). Once more, one easily checks that the ei are quaternionic
linear with respect to the structure J on W ⊗ V. Also, If A1, A2 and A3 are real maps on
W which commute with the real structure on W , then the map L defined by

L = A0 ⊗ I2×2 + A1 ⊗ e1 + A2 ⊗ e2 + A3 ⊗ e3,

will be quaternionic linear. If W is finite dimensional, it can be identified with a quater-
nionic matrix, which will be real exactly if A1, A2 and A3 are zero. Therefore, we will call
a map like L real exactly if that condition is satisfied.

This is all we will need about quaternionic structures. A more formal treatment of
real and quaternionic structures and their relation to Lie group actions and of some of
the other subjects in this appendix can be found in [74]
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