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2.2 Graphs showing Poincaré surface of sections with 1/R = (
√

5 +
1)/2 for various values of the kicking strength µ. We have set k = 1
in these calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 Diagram showing points Ĵ = MN

µ Ĵ . Outside this curve we have
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Chapter 1

Introduction

1.1 Classical Chaos and Quantum Chaos

Depending on your point of view, all modern physics either comes from or leads
back to Newton’s contribution to classical mechanics. From the perspective of
quantum mechanics there are many paths between the two theories but one of
the end points always lies fixed somewhere near Newton’s Principia. Of course
modern quantum mechanics is most easily and effectively formulated using the
classical language developed by Hamilton, Jacobi and Lagrange among others.
It is always stressed however that these advancements contain no more extra
physics than that highlighted back in 1687 by Isaac Newton.

The many ways that we have managed to connect classical to quantum physics
are all referred to collectively as the correspondence principle. Among these is the
connection between the uncertainty principle and the Poisson bracket notation.
The principle also manifests itself in the relationship between Hamilton-Jacobi
theory and Schrodinger’s wave mechanics and the relationship between the La-
grangian and the Feynman’s path integral. In all cases however, the correspon-
dence principle means that we obtain classical mechanics from quantum me-
chanics in the classical, ~ → 0, limit. A problem arises however when one tries
to reconcile the principle with what is now called chaos. To understand where
the problem lies and where the theory of quantum chaos has come from, a brief
historical discussion is perhaps in order.

It is Henri Poincaré who is credited with first recognizing the phenomena of
chaos in 1913. He writes ‘it may happen that small differences in the initial conditions
produce very great ones in the final phenomena. A small error in the former will produce
an enormous error in the latter. Prediction becomes impossible, and we have the fortu-
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1.1: Classical Chaos and Quantum Chaos 3

itous phenomenon’ [1]. At issue here was the stability of the solar system itself.
Poincaré had been looking for regularity in the motion of a system of planets,
to see if it could be written as the sum of a uniformly convergent series. Using
his considerable computational abilities he succeeded in showing that regularity
would not occur even in the simplest systems. He discovered that series used to
describe the motion would often diverge because of small denominators appear-
ing in the calculations. This was surprising because as far as anyone could tell
the motion of the solar system was stable.

Around this time the quantum mechanical revolution was beginning to take
over. The fundamental nature of the issues being analysed probably meant that
the importance of the Poincaré’s analysis was not recognised by many in the
field. This not to say that the quantisation problems associated with nonlin-
earity in general were not appreciated. A multi-dimensional generalisation of
the Wentzel-Kramer-Brillouin (WKB) approximation to quantum mechanics was
suggested by Einstein in 1917 [2]. He clearly understood that the approach, now
known as Einstein-Brillouin-Keller (EBK) quantization, would not work if the
classical dynamics were non-integrable. The contributions of Van Vleck [3] and
the path integral approach to quantum theory introduced by Feynman [4] would
also play an important role in the subsequent development of periodic orbit the-
ory and semi-classical physics. However, it is fair to say that quantum mechani-
cal and non-linear issues were generally kept separate.

The solar system was still stable half a century later when contributions by
Chirikov [5] ∗ and the so called KAM theorem, developed between 1954 an 1968
in a series of papers by Kolmogorov, Arnol’d and Moser, illuminated this puz-
zling issue of stability [7–9]. It was explained that the series expansions that
described the motion of these systems would remain convergent so long as the
natural frequencies of the system’s orbits were not resonant with each other [10].
These contributions stressed that while the notions of stability and regularity are
similar, they are also fundamentally different. ‘It shows that if one thinks of such
systems as a struggle between order and disorder, order is more powerful than
had been thought’ [11].

The ‘fortuitous’ sensitive dependence on initial conditions was rediscovered in
1963 by Lorenz [12]. This time, backed up by powerful computation machines,
the discovery would effect drastic changes on our understanding of physics. It
eventually led to the realisation that we were ill equipped to predict the long

∗Also see the review [6]
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time behaviour of the vast majority of physical systems. The apparent random-
ness observed in calculations had nothing to do with external noise (statistical
physics deals with such issues remarkably well). The randomness and unpre-
dictability comes from within what were thought to be well understood systems.
To paraphrase Chernikov, this ‘Stochasticity or chaos’ is ‘understood as the occurrence
of statistical dynamics in the absence of random forces’ [13].

In order to deal with chaos, concepts such as positive Liaponov exponents
and fractal boundaries found their way into the literature. However, the idea
of point like particles and exactly deterministic trajectories on which this new
language was based could clearly not be reconciled with theory that now had
the uncertainty principle as its corner stone. How could the idea of uncertainty
in position and momentum be reconciled with the idea of sensitive dependence
on initial conditions?

While the singular nature of the classical limit in the correspondence principle
had always been a bit of a frustration to physicists, the emergence of chaos from
obviously deterministic equations left many with the view that it represented a
hole in our understanding of both quantum and classical mechanics. Interesting
discussions on these problems of definition can be found in numerous texts, see
[10,14–18] and the references therein. It is generally accepted however that these
apparent contradictions are the result of conflicting mathematical frameworks
and not something inherent in the physical world.

The term quantum chaos or quantum chaology is now understood to mean the
study of quantum systems whose classical counterparts display the properties
associated with classical chaos. This pragmatic approach is now adopted by the
majority in the field. This means however, that what are called signatures of quan-
tum chaos, that is the quantum manifestations of classical chaos, are now what
must be identified and examined.

Many of the signatures now applied in the field were already in use describ-
ing other aspects of complexity in quantum theory. For example, random matrix
theory was already well established as a means of understanding the complicated
processes going on inside atomic nuclei. The theory describes the statistical prop-
erties of the eigenvalues of complicated and unknowable Hamiltonians by es-
sentially allowing the matrix elements of the Hamiltonian be random [19]. The
eigenvalue repulsion that was associated with these complicated processes is also
seen to be evident in the numerical calculations of quantum chaotic systems.

The problem of quantizing ergodic systems has also taken a giant leap for-
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ward with the introduction of the Gutswiller trace formula, see [20–22]. The new
approach, built upon the ideas of Van Vleck and the path integral approach to
quantum theory, allowed for the effective quantization of certain complicated
systems through the knowledge of the classical systems periodic orbits alone.
These trace formulae are especially adept at dealing with what has been dubbed
hard chaos. This is when there are no stable periodic orbits anywhere in the sys-
tem.

Despite these advances, there are still limits to the complexities of the systems
that can be analysed. While this may seem obvious it means that researchers in
quantum chaos have had to be selective about the types of system they attempt
to understand. We can summarise the most important properties:

• Implicitly, the classical system should display some chaos. However, the
system should be also easy to model and therefore it is essential that there
are only a few variables of the motion.

• It must also be possible to numerically solve the quantum mechanical equa-
tions of motion. In many ways, this is perhaps the most restrictive require-
ment. Many seemingly straightforward Hamiltonians require an enormous
computational effort to solve the corresponding Schrödinger equation.

• Finally, and most importantly, these systems should be open to experimen-
tal verification.

One popular system used in the study of quantum chaos is that of the 2 di-
mensional billiard with non-linear boundary conditions. The problem is classi-
cally simple to analyse since changes in direction and velocity of the particle can
depend only on the angle of collision with the boundary. These types of sys-
tems display hard chaos and are therefore especially suited to the trace formula
approach mentioned above. The requirement that the systems be relatively easy
to numerically model is also fulfilled. Most importantly the system also lends
itself to easy experimental probing albeit in an unexpected way. The equations
of motion for the billiard system are identical to Maxwell’s equations describing
the EM-field inside a microwave resonator [22].

1.1.1 Time Dependent Hamiltonians

Another important set of ‘simple’ systems are those with non-linear Hamiltoni-
ans. These systems are generally understood to display what is known as weak
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chaos. This means they can display both chaotic and stable dynamics depending
on the initial configuration of the system. The existence in the classical system
of integrable and chaotic dynamics means that there must exist a boundary be-
tween the two. These systems are therefore key to understanding the transition
from regular to chaotic dynamics. In most classical cases this transition to chaos
can be understood through the correct application of the KAM theorem men-
tioned above, see [23–25]. However, understanding the quantum mechanics of
the transition is still an area of active research.

An important subgroup of nonlinear dynamical systems are those that are
subject to time-dependent external forces. Unfortunately, while this time de-
pendence is relatively easy to examine experimentally, it can be very difficult
to model the quantum system numerically. However, a special type of model
known as a periodically kicked system provides a welcome compromise. These
systems generally display the weakly chaotic properties required and have numer-
ous other advantages besides.

The time dependence allows chaos to exist in systems that are essentially one
dimensional. This makes things easier for everybody except the experimentalist.
The classical equations of motion can be written in terms of an iterative mapping
of the conjugate position and momentum variables. This allows one to easily plot
the particles position and momentum at discrete time periods on the phase plane
making up what is called a Poincaré surface of section. These diagrams can be
a very powerful visual aid and can greatly help ones understanding of the the
system dynamics.

The quantum mechanical versions of these problems are also much easier to
model. The ‘kicking’ we refer to is generally regarded as being an instantaneous
perturbation to the free evolution of the system. This means the quantum dy-
namics can be factorised into two separate operations. This is analogous to the
way the classical system is examined only now matrix operations take the place
of the iterative mapping.

The periodic time dependence also allows one to apply the what is called the
Floquet theorem to the problem [26]. The eigenvectors of the Floquet operator
are called the stationary states of the system. The eigenvalues associated with
these stationary states can also be calculated and the results of random matrix
theory can be employed here.

Using these techniques, and if the role of ~ can reliably controlled, the numer-
ical modeling of the quantum system can then be used to connect classical, semi-
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classical and quantum results. The compromise is, as we have mentioned, that
these systems are harder to test experimentally. However, significant improve-
ments in quantum control in recent years have led to an impressive complement
of experimental data.

1.1.1.1 The Kicked Rotor

One of the most widely studied kicked systems both classically and quantum
mechanically is that of the kicked rotor. The iterative process that determines
the Poincaré surface of section is called the standard or Taylor-Greene-Chirikov
map [6,24]. The conjugate variables used are that of an angle and the conju-
gate angular momentum. Classically it obeys the KAM theorem and because
one of its conjugate variables is cyclic it is relatively easy to simulate quantum
mechanically [27].

This model is one of a few kicked systems that classically displays anomalous
diffusion characteristics. The ’anomalous’ generally refers to a rapid increase or
decrease in the energy growth rate of an ensemble of classical particles [28,29].
Responsible for these sudden changes is a kind of classical resonance between the
perturbation strength and the free motion of the rotor. These resonances mani-
fest themselves as stable structures in the classical Poincaré surface of section or
phase-map.

One of the more striking properties of the purely quantum system is that of
dynamical localisation. Classically when all bounding KAM curves have broken
up the statistical diffusion associated with chaos takes place. However, a quan-
tum state represented in the unbounded angular momentum basis will initially
begin to diffuse and spread out much like that of the classical ensemble. Oddly
the quantum system eventually run into some kind of boundary [17,22,26,30].
This boundary is significant because it can be brought about only through quan-
tum interference of the state with itself. The result has been explained by a ap-
plying a tight-binding approximation to the model and the process is then un-
derstood as a kind of Anderson localisation for a time dependent system [31–33].
This remarkable property has implications in the field of quantum control and
has been claimed as the explanation for the reduction of the microwave field
ionization rate of hydrogen atoms [34]. This property has been verified experi-
mentally by [35].

The quantum system also displays what has become known as chaos assisted
tunneling. The tunneling refers to the ability of the quantum state, under certain
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conditions, to tunnel through the classical KAM curves. This means a quantum
state, localised in a certain region of phase space, has the ability to reach areas
of the phase plane that are inaccessible to a classical particle. This property has
been demonstrated experimentally with cold atoms in [36].

Another interesting effect is what is known as quantum resonance, see [27,
37]. Essentially it is the non-trivial dependence of the system on the quantum
parameter ~. In particular it has been demonstrated that quadratic energy growth
may occur within the system when ~ is some fraction of 2π. Amazingly, these
effects have also been demonstrated experimentally [38].

Other kicked systems are also known to display these properties. The kicked
particle in a 1-dimensional infinite potential well being one notable example.
This system is similar to the KR in two important ways. Firstly, both systems
are known to obey the KAM theorem. This means the break up of periodic orbits
under perturbation is well understood. Secondly, both systems are bounded in
one of their conjugate variables. Namely the angle for the KR and position for
the kicked particle in a box. An obvious question to ask is whether the unusual
properties mentioned above are exclusive to these systems that are bounded in
conjugate position space and obey the KAM theorem?

In order to answer this question we therefore study an alternative periodically
kicked system. The kicked harmonic oscillator does not obey either of these crite-
ria but nonetheless has been shown, under certain conditions, to display proper-
ties similar to those mentioned above. However, the fact that the KAM theorem
does not apply in our case and the unbounded nature of the unperturbed sys-
tem means that the kicked harmonic oscillator can also display a wide range of
radically different behaviours.

1.1.1.2 The Kicked Harmonic Oscillator

The Kicked Harmonic Oscillator (KHO) is a system routed in physical reality.
The system was first proposed as a 2-dimensional model of charges moving in
a homogeneous static magnetic field under the influence of an orthogonal time
dependent propagating electric field [39]. However it has since been proposed as
a model for electronic transport in semiconductor super-lattices [40,41] and for
atom optic modeling using ion-traps [42]. However, the behaviour of the har-
monic oscillator under periodic excitation or perturbation has extra significance
for physics given the important role the unperturbed system plays in quantum
optics and in our understanding of atomic physics.
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This kicked system is radically different from other periodically kicked sys-
tems. Firstly, there are two distinct time scales. There is a natural frequency as-
sociated with the free oscillation as well as the frequency of the periodic kicking
potential. The relative values of these frequencies, which we generally refer to
by the ratio 1/R, have enormous consequences on the behaviour of the system.
We use this ratio to classify the system into two categories. The first category
deals with the systems behaviour when R, and therefore the frequency ratio is,
irrational. The second category deals with the system when the frequency ratio
is a rational number.

The natural frequency of the Simple Harmonic Oscillator (SHO) remains con-
stant regardless of the amplitude of the oscillations. This means that the KAM
theorem, which usually describes the breakup of periodic orbits under perturba-
tion, cannot be applied. This has profound consequences for the behaviour of the
system when the frequency ratio is rational. Even the presence of an infinites-
imally small kick means the spectacular organisation of the classical Poincaré
phase plot into incredible crystal and quasi-crystal tiling patterns. This implies
the instantaneous break up of an infinity of previously stable orbits. What’s more,
these patterns extend to all areas of the phase plane. The unstable orbits now
form what is called a periodic or aperiodic stochastic web, depending on if the
pattern is crystalline or quasi-crystalline. These webs mean that given the correct
initial condition a particle under the tiniest of perturbations is free to move close
to all regions of the phase plane [43,44].

Another feature of the classical model with rational frequency ratio is the ex-
istence under certain special resonant conditions of accelerator modes or islands.
These modes allow for stable ballistic motion throughout the phase space and are
the main reason behind what is called anomalous diffusion. There has been some
previous analysis on the exact classical dynamics associated with these types of
modes as well as some statistical analysis on general properties of the energy
growth [45,46].

Both of these classical effects and many others besides will also be apparent in
the quantum system if we make the quantum parameter ~ small enough. How
these effects manifest themselves in the eigensolutions of the quantum system
however is an open question. In addition to these classical effects we must also
account for the purely quantum contributions to the dynamics. We are speak-
ing specifically of effects like quantum resonance and tunneling that have been
shown analytically and numerically to exist [47–50].
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The case with irrational frequency is interesting because for a non-KAM sys-
tem it behaves very much like the kicked rotor. Under strong enough pertur-
bation, in the classical system, there is the statistical diffusional dynamics as-
sociated with chaos and the energy growth rates can easily be predicted using
elementary techniques. However, the quantum dynamics with the same param-
eters is radically different. Like the kicked rotor there is a strong theoretical and
numerical case to be made for the existence of some sort of quantum suppression
of the energy growth rates [49,52,53].

Of course one could never hope to give a complete review of the kicked oscil-
lator, never mind quantum chaos, in an opening introduction. However, I have
tried to explain some of the motivation behind the subject as a whole as well as
trying to highlight where this study stands in relation to other aspects of the field.
Much more material on quantum chaos and semi-classical physics can be found
in [16,17,20–22,26].

1.2 Study outline

The thesis is constructed as follows. In chapter 2 we examine closely the classical
system. We identify all the properties we are interested in and will later look for
in the quantum system. With regard to much of the analysis I have tried where
possible to provide alternative derivations to those found in the standard texts.
Although the end results often correspond with those given in the literature I feel
that the treatment given here is often more transparent. Included is an alterna-
tive explanation of the classical cell structure and the emergence of the web for
any size perturbation. We also perform new analysis on the periodic islands and
accelerator modes that occur under certain classical resonance conditions. In par-
ticular we identify the stability conditions associated with the classical ballistic
islands responsible for anomalous diffusion. We also give considerable space to
explaining the concept of energy growth of a classical ensemble.

In chapter 3 a detailed analysis of the quantum mechanics of the delta kicked
oscillator is given. The approach is to define what is called the Fractional Fourier
transform and show that it is, up to a phase, the evolution operator of the Simple
Harmonic Oscillator (SHO). We supply most of the background material for this
in appendix A.1. Through the definition it is then a simple task to write out
the evolution operator for the perturbed system. These results are essential to
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understanding the numerical model presented later.
The last few sections of the chapter are dedicated to the analytical analysis

of the quantum system. We first review the tight binding approximation put
forward by Frasca [52] and analysed by Engel [51]. This analysis best explains the
concept of dynamical localisation when the system’s frequency ratio is irrational.
We comment briefly about the accuracy of this model and where is should break
down.

We then review some of the analysis by Borgonovi and Rebuzzini [49] on
the translational invariance of the kicked system for R = 3, 4, 6 and concentrate
particularly on the the R = 4 case. The emphasis is placed on understanding the
changes in the systems stationary state structure around values of ~ associated
with quantum resonance. This is done by examining what are called Self-Fourier
functions (SFF’s). We introduce three separate but related functional structures,
all of which help illuminate particular processes occurring within the quantum
dynamics.

Chapter 4 is dedicated to explaining thoroughly our numerical model. We be-
gin with a brief introduction to the idea of representing a discrete quantum state
as an array in computer memory. We then show how the relationship between
the discrete Fourier transform (DFT) and the continuous Fourier transform(FT)
can be used to effectively simulate continuous quantum systems on a discrete
vector. Importantly we show how the parameter ~ is controlled by the grid size
and the coordinate boundary of the simulation.

The rest of the chapter is concerned with the technical details of the numerical
algorithm. In particular we concentrate on explaining the concept of the discrete
fractional Fourier transform (DFrFT). Since much of the notation used in explain-
ing these concepts have been adopted with digital signal processing in mind we
make a considerable effort to keep the notation as quantum mechanical as possi-
ble.

Chapter 5 is a compilation of the most relevant numerical simulations and
observations. It is organised as follows. We first concentrate on the system with
irrational kicking frequency ratio. We give some visual examples of the quantum
and classical systems evolving in phase space. In this way we introduce the con-
cept of comparing the evolution of a normally distributed classical ensemble and
a quantum coherent state. We then show how the mean energies of both systems
evolve in time and how with small ~ they behave very similarly.
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We perform a very detailed numerical analysis on the dynamical localisation
effects seen in the quantum system and attempt to quantify this effect in terms of
~. While doing so we shall show that complete localisation of the quantum state
only occurs for specific ranges of the perturbing kick and the quantum param-
eter ~. We then numerically calculate some of the systems stationary states and
associated quasi-energies and perform some statistical analysis on this data. In
particular we wish to discern if the there is any grounds for believing that states
become extended if the kick strength becomes large enough or if ~ becomes small
enough.

The numerical analysis of the R = 4 system is slightly different in approach.
We are primarily interested in displaying some of the properties that have been
predicted in chapter 3. We first look at the eigenstates of the systems Floquet
operator. We wish to check if some of the unusual structures described 3 are
displayed by the numerically calculated eigenstates. We give special attention
to the structure of the stationary states under parameters for which the classical
system undergoes ballistic energy growth.

We then use our model to analyse thoroughly the effects that ~ has on the en-
ergy growth rates. In particular we are interested in looking for the predicted in-
creases in these rates due to quantum resonance. We examine the diffusion char-
acteristics of quantum system when classical resonance effects are also present.
We will then finally look for evidence that the quantum system can exploit classi-
cal and quantum resonance effects simultaneously to achieve super-ballistic en-
ergy growth.

We have tried to emphasise how underlying classical structures affect both
the quantum dynamics and eigensolutions. One reason for this emphasis on the
classical phase space structures is because of our development of the aforemen-
tioned numerical procedure which is based on the fractional Fourier transform.
This has allowed us to analyse the quantum dynamics in much more detail that
had previously been possible. This development and of course the constant de-
velopment of better computers allows one, in the numerical simulations, to make
~ so small as to be able to place a minimum uncertainty quantum state inside sta-
ble classical regions of the phase plane. As will be demonstrated, it is even pos-
sible to place states initially on the classical structures responsible for anomalous
diffusion. This allows for a very direct and controlled examination of quantum
effects around integrable and chaotic areas of the classical phase space.
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Chapter 2

The Classical System

2.1 Introduction

Kicked Hamiltonian systems are firmly established as prototypical models for
studying chaos. Enormous effort has been spent examining models like the stan-
dard map and the kicked rotator. The study of kicked degenerate systems, those
that do not obey the KAM theorem, have received less attention but display fas-
cinating dynamical properties both classically and quantum mechanically. The
Kicked Harmonic Oscillator (KHO) is an example of such a system. The sys-
tem was originally proposed as a 2-dimensional model of charges moving in a
homogeneous static magnetic field under the influence of an orthogonal time
dependent propagating electric field [1]. It has also been proposed as a model
for electronic transport in semiconductor super-lattices [2,3] and for atom optic
modeling using ion-traps [4].

There are now a considerable number of papers dealing with the classical sys-
tem and as we will see many ways to generalise the model. Specifically we will
deal with the case where the kicking potential is the even cosine function which
arises naturally from the derivation given below. However, it is very easy to
classify this particular case among more general periodic kicking potentials. The
general behaviour of the system for these potentials can be significantly differ-
ent [5].

The system is most easily classified according to ratio between the perturbing
frequency and the natural frequency of the oscillator. We deal with 2 general
situations: (1) when the frequency ratio is irrational (2) when the ratio is rational.

In the irrational case describing the classical dynamics is relatively uncompli-
cated. In many ways the system behaves as though it obeys the KAM theorem.

16
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When the perturbation or kick is small the majority of the system orbits remain
intact and non-chaotic. We are primarily interested examining the energy growth
of a statistical ensemble of particles when the perturbation has destroyed all sta-
ble orbits. Additional analysis on the diffusional properties of this system can be
found in [14] .

The dynamics of the classical system are much more difficult to describe when
the natural frequency is some multiple of the perturbing frequency. In the par-
ticular cases of when the frequency ratio is 1/R = 1/3, 1/4, 1/6 the perturbation
orgainises the system’s Poincaré surface of section in to a cellular lattice. Between
each cell there exists a web like structure containing a mesh of the systems un-
stable trajectories. This remarkable property means that a particle on the web
is unbounded in position and momentum and could potentially go anywhere in
the phase plane (except off the web) [6–8,12,13].

In the particular case withR = 4 and when the perturbation strength is within
certain ranges the system also displays what is called anomalous energy growth or
anomalous diffusion. These effects are due to a resonance between the natural mo-
tion of the free oscillator and the perturbation. These resonances manifest them-
selves in stable structures or islands inside the web. A particle can be repeatedly
accelerated or remain localised depending on the type of structure it is on.

In this chapter we first derive the Hamiltonian for the delta kicked harmonic
oscillator. We then use a simple canonical transform for to derive a general clas-
sical mapping that describes the discrete time evolution of the system.

In the irrational case we will apply a modified Poincaré Birkhoff theorem to
explain the general dynamics and gradual breakup of the systems stable orbits.
There are pronounced differences between the diffusion properties of the quan-
tum and classical systems and for this reason we review the general diffusion
properties of the classical system. This is a precursor for the subsequent quan-
tum analysis where it will be demonstrated that there is some quantum process
that restricts the diffusion.

In the rational case with R = 4 we firstly present analysis that describes the
organisation of the Poincaré surface of section into the lattice like structure men-
tioned above. We then concentrate on examining the structures that are respon-
sible for the anomalous spikes in the numerical simulations. We are primarily
concerned with the stability and exact locations of such structures and to this
end we derive several new results.

The interested reader can consult [15,16] and the review [6] for alternative ex-
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positions on the classical dynamics of the kicked oscillator. Some of the deriva-
tions from [15,16] are also included below for clarity. A number of monographs
that deal with the general properties of weak chaos and stochasticity in Hamilto-
nian systems also include discussions on the Kicked Harper Model (KHM) and
the associated web map (WM) are also available [9,10]. Under certain conditions
the KHO has been shown to be equivalent to the KHM [11]. This chapter concen-
trates specifically on the KHO although I will try to include results pertaining to
the KHM and the WM where appropriate.

2.2 The delta kicked harmonic oscillator

The delta kicked harmonic oscillator was first proposed as a way of modeling the
dynamics of a charged particle moving in a homogeneous static magnetic field
and an orthogonal time dependent propagating electric field wave packet [9],
that is

~B = B0~ez, (2.1a)

~E(qx, t) = E0

∞
∑

m=−∞
sin(k̄qx −mωt)~ex, (2.1b)

where the constants B0, E0, k̄ and ω are all real. We use the term qx to represent
position in the x-direction. The summation can be rewritten using a variation of
the Poisson sum rule. The Poisson sum formula is generally written as

∞
∑

m=−∞
exp

(

− i2πtm
a

)

= a

∞
∑

n=−∞
δ(t− na) (2.2)

However, because the sin function is odd we can also write this as

∞
∑

m=−∞
cos

(

i2πtm

a

)

= a
∞
∑

n=−∞
δ(t− na). (2.3)

Substituting (2.3) into (2.1b) gives

∞
∑

n=−∞
sin(k̄qx − nωt) = sin k̄qx

∞
∑

n=−∞
cosnωt = T sin k̄qx

∞
∑

n=−∞
δ(t− nT ), (2.4)
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where a = T = 2π/ω is the period. The total expression for the propagating ~E

field is given by

~E(qx, t) = E0T sin k̄qx

∞
∑

n=−∞
δ(t− nT )~ex . (2.5)

Writing it in this way shows that the propagating electric wave packet may also
be interpreted as a standing sinusoidal wave that is switched on stroboscopically.
Of course it is unreasonable to assume that a wave-packet made up of an infinite
number of harmonics could ever be experimentally reproduced. However sum-
mations over a large number of harmonics very nearly produce this stroboscopic
effect.

We are now in a position to write out the equations of motion [16]. The New-
tonian equation of motion for a charged particle is given by

m~̈q = Q( ~E + ~̇q × ~B) , (2.6)

with ~q = qx~ex + qy~ey + qz~ez and Q is the charge of the particle. Using (2.1a) and
(2.5) we can write for the components of ~q:

mq̈x = QB0q̇y +QE0T sin k̄qx

∞
∑

n=−∞
δ(t− nT ) , (2.7a)

mq̈y = −QB0q̇x , (2.7b)

mq̈z = 0. (2.7c)

The motion of the particle in the qz-direction is one of constant velocity. Integra-
tion of (2.7b) gives

mq̇y = −QB0qx + c , (2.8)

where c is a constant that can be set to zero by appropriate choice of the x-axis.
By substituting this into (2.7a) we get

q̈x + ω2
0qx =

QE0T

m
sin k̄qx

∞
∑

n=−∞
δ(t− nT ), (2.9)
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with ω0 = QB0/m. This is the equation of motion for the delta kicked harmonic
oscillator. It describes the motion of a particle in a harmonic potential that is
periodically kicked by an impulsive force. This force is proportional, in this case,
to sin k̄qx. The resulting dynamics are easier to compute once we have found the
corresponding Hamiltonian.

The Hamiltonian of a charged particle in an unspecified electromagnetic field
is given by [17]

H(~q, ~p, t) =
1

2m

(

~p−Q~A(~q, t)
)2

+Qφ(~q, t) , (2.10)

where ~p and ~q are the momentum and position vectors of the particles. Here
again the parameter Q represents the charge of the particle and ~A and φ are the
vector and scalar potentials respectively. These potentials are related to the ~E

and ~B fields through

~B = ∇× ~A ,

~E = −∇φ− ∂ ~A

∂t
. (2.11)

The correct values for the ~E (2.5), and ~B (2.1a), fields are obtained by setting

~A = B0qx~ey , (2.12a)

φ(~q, t) =
E0T

k̄
cos k̄qx

∞
∑

n=−∞
δ(t− nT ) . (2.12b)

Substitution of these into the the general Hamiltonian,(2.10), gives

H(~q, ~p, t) =
1

2m

(

p2
x + (py −QB0qx)

2 + p2
z

)

+
QE0T

k̄
cos k̄qx

∞
∑

n=−∞
δ(t−nT ) . (2.13)

We can see now that the Hamiltonian is invariant under translations in the qy and
qz directions. This means that both pz and py are constants of motion. The origins
of each component may be adjusted so as to only leave terms px and qx in the
Hamiltonian. Setting pz and py to zero means the the Hamiltonian can now be
written in terms of x only
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H =
p2
x

2m
+
mω2

0q
2
x

2
+
QE0T

k̄
cos k̄qx

∞
∑

n=−∞
δ(t− nT ) . (2.14)

Introducing the canonical transformation px = p
√
mω0 and qx = q/

√
mω0 and

setting k̄ = k
√
mω0 we can write this as

H(q, p, t) = H0 + H1 =
ω0

2

(

p2 + q2
)

+ µ̄ cos kq
∞
∑

n=−∞
δ(t− nT ) , (2.15)

where µ̄ = QE0T√
mωk

. The first part, H0, is just the Hamiltonian of a free harmonic
oscillator with a frequency of ω0. The period of such an oscillator is thus T0 =

2π/ω0. The frequency of the kicking pulse is given by ω = 2π/T . We define the
frequency ratio as 1/R = ω0/ω = ω0T/2π.

We now show that the classical equations of motion for such a Hamiltonian
are quite simple. We first deal with Hamilton’s equations over the infinitesimal
time when the delta kicking function is applied. We are allowed to ignore the
time independent part of the Hamiltonian because of the infinitesimal nature of
the delta kick. We write Hamilton’s equations of motion for the kick as

dp

dt
= −dH

dq
= −q + kµ̄ sin(kq)

∞
∑

n=−∞
δ(t− nT ) , (2.16a)

dq

dt
=
dH
dp

= p . (2.16b)

We now integrate these over the nth delta function kick:

∫ p+n

p−n

dp =

∫ nT+ε

nT−ε

[

−q + µ sin(kq)
∞
∑

n=−∞
δ(t− nT )

]

dt , (2.17a)

∫ q+n

q−n

dq =

∫ nT+ε

nT−ε
pdt , (2.17b)

where µ = kµ̄ and q−n ,p−n refer to the values of q, p an infinitesimal time before the
kick and q+

n ,p+
n refer to the values of q, p an infinitesimal time after the kick. The

right hand side of (2.17) then becomes

∫ p+n

p−n

dp = −2q−n ε+ µ sin(kq−n ) , (2.18a)

∫ q+n

q−n

dq = 2p−n ε , (2.18b)
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as the integral over the delta function picks out the value of µ sin(kq) at the time
nT . All the other terms now vanish as ε → 0 and we have a simple mapping for
the kick:

p+
n = p−n + µ sin(kq−n ) , (2.19a)

q+
n = q−n (2.19b)

The particle undergoes no change in position but has it’s momentum changed by
a finite amount. However, the jump in the particle’s momentum does depends
sinusoidally on its position.

We now concentrate on the time-independent part of the Hamiltonian. We
write out Hamilton’s equations of motion for the time independent part:

dp

dt
= −dH0

dq
= −ω0q , (2.20a)

dq

dt
=
dH0

dp
= ω0p . (2.20b)

Substituting the second into the first we get

q̈ + ω2
0q = 0 . (2.21)

The most general solution for such an equation is

q(t) = a cosω0t+ b sinω0t . (2.22)

Using (2.20b) we can also write

p(t) = −a sinω0t + b cosω0t . (2.23)

Setting t = 0 we see the initial conditions q(0) = a and p(0) = b. In this derivation
we are going to assume that we first apply the kick and then let the oscillator
evolve till just before the next kick. This means that we shall set the position and
momentum at the time just after the kick to q+

n = q(0) = a and p+
n = p(0) = b.

Since, it takes a time t = T to evolve the system from just after a kick to just
before the next one can write for the free evolution between delta functions
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q−n+1 = q+
n cos(ω0T ) + p+

n sin(ω0T ) , (2.24a)

p−n+1 = −q+
n sin(ω0T ) + p+

n cos(ω0T ) . (2.24b)

Substituting (2.19) into (2.24) we get

q−n+1 = q−n cos(ω0T ) + p−n sin(ω0T ) + µ sin(kq−n ) sin(ω0T ) ,

p−n+1 = p−n cos(ω0T ) − q−n sin(ω0T ) + µ sin(kq−n ) cos(ω0T ) . (2.25)

This is the general map for the delta kicked harmonic oscillator. It says that a
particle that has a phase space coordinate (q−n , p

−
n ) just before a kick will have

the coordinates (q−n+1, p
−
n+1) just before for the next kick. Once it is understood

that we are referencing the time from just before each kick we can drop the ′−′

superscript on the coordinates to give,

qn+1 = qn cos(θ) + pn sin(θ) + µ sin(kqn) sin(θ) ,

pn+1 = pn cos(θ) − qn sin(θ) + µ sin(kqn) cos(θ) . (2.26)

where θ = ω0T . Given an initial condition (q0, p0) we can easily calculate the
exact coordinates of a particle at discrete times by repeatedly iterating this map.
However, the general behaviour of (2.26) is perhaps easier understood through
the separate mappings (2.19), (2.24) and a phase space diagram, Figure (2.1). The
particle first receives discrete kick to it’s momentum the magnitude of which
varies sinusoidally with it’s position. This is described by equations (2.19). After
this the particle is free to oscillate as a normal harmonic oscillator until it receives
it’s next kick. The harmonic oscillation is described by equations (2.24) and is
seen to be a clockwise rotation in the phase plane.

2.2.1 The system in action-angle coordinates

The harmonic oscillator is particularly easy to write in the Action-Angle (AA)
coordinates of Hamilton-Jacobi theory, see [17,20]. We define the free part of the
Hamiltonian as H0, which, because of its time independence we may set equal to
a constant energy E. That is

H0 =
ω0

2

(

p2 + q2
)

= E . (2.27)
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Figure 2.1. Diagram showing the motion of a particle initially at (q0, p0) = (1.5, 2.1). In

this example µ = 2π and 1/R = 1/4, giving θ = ω0T = π/2 . Points are given a kick

to their momentum and then rotated clockwise through π/2 where upon the process is

repeated. The size of the kick depends sinusoidally on the particle’s position

The action J is defined to be

J =
1

2π

∮

pdq , (2.28)

and solving for p(E, q) we have

J =
1

2π

∮
(

2E

ω0
− q2

)
1
2

dq . (2.29)

The substitution q =
√

2E/ω0 sin θ reduces the integral to

J =
E

ω0π

∫ 2π

0

cos2 θdθ . (2.30)

The integral of cos2 θ over a complete cycle is π so we have

H0 = E = ω0J . (2.31)

So in our system the energy is exactly the action times the natural frequency of
the oscillator. Hamilton’s equations now give
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θ̇ =
∂H0

∂J
= ω0 . (2.32)

and therefore

θ = θ0 + ω0t , (2.33)

where θ0 is the initial condition. Thus we have derived exactly the same picture
as before. The action is represented by the constant vector 1

2
(p2 + q2). The angle

represents the rotation of that vector around the phase plane with time. In our
system the period for one rotation is given by T0 = 2π/ω0. We can finally write
out q and p in terms of the action angle variables

q =
√

2J sin θ ,

p =
√

2J cos θ . (2.34)

These ideas will be useful in the next section when we attempt to introduce a
modified Poincaré Birkhoff theorem for the kicked system with an irrational fre-
quency ratio.

2.3 General properties of the Classical System

The kicked harmonic oscillator is quite distinct from other widely studied kicked
systems. The integrable part of this system, that is, the simple harmonic oscil-
lator has the curious property that the frequency of oscillation remains constant
regardless of the oscillation amplitude. This degeneracy of frequency prevents
direct application of the theory of perturbed integrable systems otherwise known
as the KAM theorem. An introduction to some of these ideas is supplied in the
texts [17,19,20]. While this degeneracy allows for some unusual dynamics un-
der certain exact conditions it does not necessarily imply that the dynamical be-
haviour of the KHO system is always different from other kicked systems.

The second distinguishing factor is the presence of two distinct time-scales in
the system’s Hamiltonian (2.14). Namely T0 = 2π/ω0, which is the natural period
of the simple harmonic oscillator and T = 2π/ω, the period of time between
kicks. It is the ratio between these times or frequencies that we use to classify the
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system. We designate the frequency ratio 1/R = ω0/ω = ω0T/2π. This means
that the parameter θ = ω0T completely control the frequency ratio 1/R e.g. θ =

π/2 =⇒ 1/R = 1/4. This frequency ratio is by far the best way to classify and
order the system. We can break down the system’s behaviour into two categories,
(1) 1/R being rational and (2) 1/R being irrational.

We first present a general discussion on the properties of the irrational case.
We introduce a modified Poincaré Birkoff theorem that helps explain the be-
haviour of the system as we change the kicking strength µ. We examine the struc-
ture of the Poincaré surface of section for a specific irrational case,R = 2/(

√
5+1)

and describe the eventual break up of the largest isolating orbits. We predict that
for the most part the system with irrational frequency ratio should behave in a
similar way to that of a KAM system. To conclude this section we then discuss
how to effectively estimate the average rate of energy growth of the system once
it is completely chaotic.

We shall also discuss some of the properties of the system for certain integer
values of R, that is when the kicking frequency is resonant with the natural fre-
quency of the system. One of the most interesting properties of these cases is the
presence of a stochastic web that spans all of the the classical phase space. The
values of R for which this crystalline structure appears can be seen to be related
to the tessellation of the phase plane, where the values ofR = 3, 6 represent filling
(tiling) the plane with triangles and hexagons and R = 4 with squares [9,10,18].
A nice review of these particular cases can also be found in [16]. We will con-
centrate specifically on the R = 4 case and introduce some new analysis that
explains the instantaneous ordering of the phase plane into lattices of elliptical
and hyperbolic return points. Since the diffusional properties of this system with
rational frequency ratio are somewhat unusual we leave the discussion of this to
section 2.4.

2.3.1 Irrational frequency ratios

The harmonic oscillator is a degenerate system. This means that all particles, re-
gardless of their initial conditions have exactly the same frequency of rotation
about the phase space. It implies that if we were to take the Poincare surface
of section at time intervals of some rational multiple of the natural frequency ω0

then all points on the phase plane would be periodic. It is for this reason that the
harmonic oscillator is called a non-KAM system. The KAM theorem says that un-
der small perturbations to the integrable Hamiltonian nearly all non-degenerate
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orbits of the integrable system survive. Since the orbits of the non perturbed sys-
tem are degenerate the theorem is said not to apply. In more mathematical terms
we say that for the KAM theorem to be applicable the non-perturbed Hamilto-
nian must obey the non-degeneracy condition, that is

∣

∣

∣

∣

∂2H0(J)

∂Jk∂Jl

∣

∣

∣

∣

6= 0, (2.35)

where the Hamiltonian is written in action-angle coordinates (2.31). See [17,19,
20] for more details. Clearly this is not true of our one dimensional system where,
using (2.32)

∂2H0(J)

∂J2
=
∂ω0

∂J
= 0. (2.36)

The KAM theorem, therefore, does not apply to the kicked oscillator. However,
what happens if we were to look at the Poincaré surface of section at time inter-
vals of some irrational multiple of the natural frequency ω0? With the exception
of the origin all points are now quasi-periodic. They will eventually return to
a point infinitesimally close to some previous position but never exactly. These
orbits now resemble the invariant tori which the KAM theorem says are stable
(non chaotic) under small perturbation. Fig (2.2) shows that this is appears to be
true. We are not saying that the KAM theorem applies in this case. We are only
pointing out that when viewing the Poincaré surface of section on the correct
time-scale we have what appear to be invariant non-resonant tori.

We can present a modified Poincaré Birkhoff theorem which describes the
break up of all non-resonant tori under perturbation and the general descent
into chaos. The modification is necessary because in the non-perturbed irrational
system all particles regardless of their initial condition (action) have the same
frequency of oscillation (2.36) and the Poincaré Birkhoff theorem given in most
text books uses the fact that neighboring trajectories of the system have differ-
ent frequencies of oscillation. However, with a slight modification we can apply
essentially the same argument as that supplied in [19]. The mapping M0 of the
oscillator for simple harmonic motion (no perturbation) over time T can be writ-
ten in action angle coordinates.

Jn+1 = Jn, (2.37)

θn+1 = θn + T mod 2π. (2.38)



2.3: General properties of the Classical System 28

(a) µ = 0 (b) µ = 0.01

(c) µ = 0.1 (d) µ = 0.5

(e) µ = 1 (f) µ = 2

Figure 2.2. Graphs showing Poincaré surface of sections with 1/R = (
√

5 + 1)/2 for

various values of the kicking strength µ. We have set k = 1 in these calculations.
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In this case T is an irrational multiple of 2π. In terms of the Poincaré surface
of section where we plot points (Jn, θn) this means that no two values of θn will
ever be the same. However, since the values of θn will densely fill the circle of
radius J , different values of θn may become arbitrarily close. We now imagine
the mapping under infinitesimal kicking strength µ. We call the perturbed map
Mµ and can be written as:

Jn+1 = Jn + µg(Jn, θn), (2.39)

θn+1 = θn + T + µh(Jn, θn) mod 2π. (2.40)

where we have ignored the precise form of the kick. We have chosen µ to be so
small that repeated iteration of the map effectively leaves JN = J0. The situation
for the θ variable is somewhat different. Since with no perturbation and for some
N , θN can be made infinitesimally close to θ0 we can conceivably imagine a sit-
uation with infinitesimal µ where the µh(Jn, θn)’s can be made to make up that
difference exactly.

The remainder of the argument is very similar to the one presented in [19].
We have a curve J = Ĵ(θ) on which all points return onto themselves under
operation of MN

µ . Assuming that the functions g and h are continuous we can
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Figure 2.4. Diagram showing the formation of elliptic and hyperbolic stable points due

to the Poincaré Birkhoff theorem

say that there exists a curve J = Ĵ+ for which all values of θ on that circle are
rotated, say, anti-clockwise by MN

µ and some curve J = Ĵ− for which all points
are mapped clockwise.∗ Lets say we increase the value of µ to ε = µ + η. The
exact periodicity of θn on the original torus Ĵ(θ) is now lost. However, suppose
that η is sufficiently small so that a larger loop with always clockwise rotation
and smaller loop with always anti-clockwise rotation still exist †. This means that
somewhere in between these curves lies another continuous loop Ĵε(θ) on which
the value of θ returns exactly to itself upon operation of MN

ε . See Figure 2.3.
Therefore the curve Ĵε(θ) can only be altered in the radial direction under the

map MN
ε . Using the fact that the mapping must be area preserving we can now

say that the curve Ĵ ′
ε(θ) gotten by applying MN

ε to all points on Ĵε(θ) must also
intersect Ĵε(θ). See Figure 2.4 and compare it with Figure 2.2(e). From Figure
2.4 we see that the two curves can generally said to intersect an even number of
times. The intersections are fixed points of either an elliptic or hyperbolic nature
as can also be seen in figure.

It is debatable if what we have done here is acceptable. However, all argu-
ments seem to be solid as long as we have continuity in the perturbing functions

∗It is not important to our analysis which is which.
†They need not be exactly the same curves
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g and h. It can be assumed that there exists certain conditions where the pertur-
bation must push a particle into an exactly periodic orbit. Then it must follow
from the continuity of g and h that there exists tori, inside and outside the pe-
riodic orbit, on which points are moved clockwise or counter-clockwise upon
operation of the same perturbed map. All other arguments are exactly the same
as the usual Poincaré Birkhoff Theorem.

As a consequence of the modified theorem we should see the break up of cer-
tain orbits as the perturbation pushes neighboring orbits into into exact period-
icity. If an orbit becomes exactly periodic then neighboring orbits will be nearly
periodic and will turn into tori around these periodic points. As the perturbation
is increased further these neighboring orbits may become exactly periodic and
the orbit that was periodic is now forming the tori around this exactly periodic
point.

We can show these effects with a numerical calculation. In Figure 2.5 we pick
a point on the phase space and evolve for up to n = 128 for separate values of
µ. We plot the 128 values of q on the y-axis against the different µ values on the
x-axis. The exactly periodic points can be seen in the diamond shape pattern.
Every line crossing represents an exact resonance of some degree. We see that as
µ increases the dynamics of the particle can become chaotic over certain ranges .
Eventually for large µ the particles dynamics will go completely chaotic.

Chaos results from the hetro-clinic tangles between the stable and unstable
manifolds of the hyperbolic fixed point. This process is explained in detail in
the text [19]. Eventually with large µ all tori will have broken apart to leave the
whole phase plane chaotic. It is only with the break up of all the invariant tori
that we can expect to see complete diffusion of particles in the phase plane.

The average rate of diffusion D in this model is understood to be the mean
rate of energy growth of a large ensemble over a long time. The energy of a
particle as a function of n is given by

En =
q2
n + p2

n

2
(2.41)

and the rate of linear energy growth or diffusion over a time 0 to n is defined as

D(µ) =
〈En〉
n

(2.42)

Where the average is calculated over a large ensemble of randomly distributed
particles or points on the phase space. To calculateD numerically we evolve over
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(a) Initial value (q, p) = (5, 0) evolved over 128 discrete time
steps for different µ.

(b) On closer inspection additional resonances can be seen.

Figure 2.5. q -v- µwithR = 2/(
√

5+1). Every line crossing represents an exact resonance

of some degree. The orbit eventually becomes chaotic with large µ. We have set k = 1 in

these calculations
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a certain amount of time (the longer the better) and then fit a slope to the energy
curve (2.41). It can be easily seen that any change in energy is as a result of the
discrete kick given to the momentum term, see (2.19). This is because there is
no change in energy associated with a simple rotation in the phase plane. The
change in energy of one particle is thus given by

∆E = En+1 − En =
1

2

(

p2
n+1 − p2

n

)

=
1

2

(

2pnµ sin(kqn) + µ2 sin2(kqn)
)

. (2.43)

If we assume that the ensemble is evenly distributed along the q axis we may
integrate qn from 0 to 2π/k, the period of the sin function, to get the average
energy growth of the ensemble over one kick. That is,

〈∆E〉 =
k

2π

∫ 2π/k

0

1

2

(

2pnµ sin(kqn) + µ2 sin2(kqn)
)

dqn =
µ2

4
. (2.44)

In the event of large µ and therefore completely chaotic dynamics where there are
no isolating non-resonant tori we may say that this estimation is always roughly
correct. Putting this into (2.42) we have

D(µ) =
〈En〉
n

=
n 〈∆E〉

n
=
µ2

4
. (2.45)

The rate of this diffusion as a function of the perturbing parameter µ is calculated
numerically and compared with the theoretical prediction in Figure 2.6. The re-
sults are, as predicted, in good agreement for large values of µ.

This concludes this section on the dynamics of the kicked oscillator with ir-
rational frequency ratios. We have suggested that dynamics of this non-KAM
system with irrational frequency ratios behaves in many respect like those of a
KAM system. We see in the Poincaré surface of section, virtually impenetrable
tori or barriers inside which the dynamics of the particle must remain. We also
have the chaotic instability that follows from the break up of these invariant tori
like in a KAM system. So we have the curious situation that the harmonic os-
cillator which is said to be a non-KAM system behaves very like a KAM system
when the kicking frequency is incommensurate with the natural frequency of the
oscillator.

2.3.2 Rational frequency ratio, 1/R=1/4

It has already been mentioned that setting θ = ω0T = π/2 sets the frequency ratio
1/R to 1/4. Substituting θ = π/2 into (2.26) sets all cos terms to zero and all sin
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the phase plane window q, p ∈ [−6π, 6π] setting k = 1 and then evolving for 400 discrete

time steps at different µ.

terms to unity. This leaves the simple map

qn+1 = pn + µ sin(kqn),

pn+1 = −qn. (2.46)

This mapping which we will refer to as Qµ displays some very interesting proper-
ties including the aforementioned stochastic web. It also displays some strange
diffusional properties at certain values of the kick strength µ. We begin by re-
ferring again to equation (2.36) which says that the harmonic oscillator is not a
system to which the KAM theorem can be applied. The surface of section picture
for the kicked oscillator with µ = 0 and θ = π/2, see Figure 2.7(a), shows that all
points on the phase plane will, after four iterations of the map Q0, return to their
original coordinates exactly. What happens after 4 iterations of Qµ with µ 6= 0 ?
The map Q2

µ is calculated by twice iterating (2.46) to give

qn+2 = pn+1 + µ sin(kqn+1) = −qn + µ sin(kpn + kµ sin(kqn)),

pn+2 = −qn+1 = −pn − µ sin(kqn). (2.47)

The map Q4
µ may then be calculated by twice iterating (2.47). We have
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qn+4 = −qn+2 + µ sin(kpn+2 + kµ sin(kqn+2)),

pn+4 = −pn+2 − µ sin(kqn+2). (2.48)

which after substituting (2.47) into (2.48) gives

qn+4 = qn − µ sin(kpn + kµ sin(kqn)) (2.49)

+µ sin(−kpn − kµ sin(kqn) + kµ sin(−kqn + kµ sin(kpn + kµ sin(kqn))))

pn+4 = pn + µ sin(kqn)

−µ sin(−kqn + kµ sin(kpn + kµ sin(kqn))).

We can now clearly see that if µ 6= 0 exact periodicity, that is,

qn+4 = qn,

pn+4 = pn, (2.50)

always occurs if both kqn and kpn are integer multiples of π. This can also be
written as:

qn =
mqπ

k
(2.51)

pn =
mpπ

k
mq, mp = ... − 2, −1, 0, 1, 2 ...

The introduction of the perturbation knocks the vast majority of orbits out of
exact periodicity. However, we also see that, no matter how large we make µ,
points obeying (2.51) will always be exact return points of Q4

µ.
We now attempt some linear stability analysis on Q4

µ for small values of µ.
First note that in the immediate vicinity of x = mπ we may use the following
Taylor expansion to approximate sin x

sin x ≈ (−1)m
[

(x−mπ) − (x−mπ)3

3!
+

(x−mπ)5

5!
− ....

]

(2.52)

When µ is extremely small we can approximate (2.49) with the expression
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qn+4 = qn − 2µ sin(kpn),

pn+4 = pn + 2µ sin(kqn), (2.53)

as all other expressions inside the outermost sin functions are very small because
µ is small and | sinx| is also small when x near mπ. Using expression (2.52) we
may approximate further around the points (qn, pn) = (mqπ/k,mpπ/k). We can
write to the first order

qn+4 = qn − 2µ(−1)mp(kpn −mpπ),

pn+4 = pn + 2µ(−1)mq(kqn −mqπ). (2.54)

From this we may find the Jacobian J to first order

J =

(

∂qn+4

∂qn

∂qn+4

∂pn

∂pn+4

∂qn

∂pn+4

∂pn

)

=

(

1 −2kµ(−1)mp

2kµ(−1)mq 1

)

(2.55)

It is the eigenvalues of the Jacobian J that determine whether a point is stable
or unstable [8]. Complex conjugate eigenvalues on the unit circle λ1,2 = e±iσ

correspond to elliptic and therefore stable orbits. Real reciprocal eigenvalues
λ2 = λ−1

1 correspond to hyperbolic periodic orbit and therefore the existence of
unstable manifolds. The eigenvalues of the Jacobian are given by

|J − λI| = 0. (2.56)

which gives for the characteristic equation

λ2 − 2λ+ (1 + 4k2µ2(−1)mq+mp) = 0. (2.57)

The solutions to this equation are

λ = 1 ± kµ
√

−(−1)mq+mp. (2.58)

Remembering that µ is small we can say the following:
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• Ifmq+mp is even then the eigenvalues λ1,2 are complex λ1,2 = 1±ikµ ≈ e±ikµ

and (q, p) = (mqπ/k,mpπ/k) is a stable periodic point.

• If mq + mp is odd then the eigenvalues λ1 = 1 + kµ and λ2 = 1 − kµ are
approximately reciprocal and are real. Therefore (q, p) = (mqπ/k,mpπ/k) is
a unstable periodic point.

This describes a lattice with alternating stable and unstable points. Around
the stable points are elliptical orbits encircling an ever greater area. Examining
Figure 2.7 we see that at some point these orbits must end as they will eventually
run into the unstable manifolds predicted above. In the same way as in the irra-
tionally kicked system these hyperbolic fixed points and the manifolds that are
connected to them generate the hetro-clinic tangles that are the cause of chaos.
The chaos thus exists even for extremely small kick strengths. The hetro-clinic
tangles inter-twine to form a chaotic net or web like structure that acts as a frac-
tal like separatrix between points orbiting different elliptical stable points. This is
the so called stochastic web and we see it must extend to infinity in all directions
of the phase plane.

As µ gets larger the stochastic nature of the web becomes apparent. The web
will eventually increase in size until nearly all of the non-resonant or orbiting tori
have been destroyed. At nearly all values of the kicking strength above about
µ ≈ 4 the phase space Poincaré surface of section seems to be completely chaotic.
The quick analysis for the rate of diffusion for an ensemble of particles for the ir-
rationally kicked oscillator would also seem to be in order here. See section 2.3.1.
The value of D obtained before D(µ) = µ2

4
, is not bad for a first order estimate.

However, we shall see in the next section that there is a periodic fluctuation about
this central function D(µ) and that this periodic fluctuation is supplemented by
a large delta like spike for certain values of the kick strength.

2.4 Diffusion properties of the 1/R=1/4 system

This section attempts to explain the phenomena of anomalous diffusion that oc-
curs for certain values of kicking strength in the resonant system with frequency
ratio of 1/4. We begin with a brief review of some classical results dealing with
this particular setup and then examine the specific mechanisms that lead to these
phenomena. This will hopefully give a more complete picture of the nature of
the classical anomalous diffusion.
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(a) µ = 0 (b) µ = 0.1

(c) µ = 1 (d) µ = 2.2

(e) µ = 3 (f) µ = 4

Figure 2.7. Graphs showing Poincaré surface of sections with 1/R = 1/4 for various

values of the kicking strength µ. We have set k = 1 in these calculations
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Figure 2.8. D -v- µ for the rational frequency ratio 1/R = 1/4. The numerical calcula-

tion was performed by taking 600 randomly distributed particles in the phase plane and

evolving for 400 discrete time steps at different µ. We have set k = 1 in this calculation.

The process of diffusion has been treated thoroughly for the kicked rotor or
standard map [21–23]. A similar analysis to that in [21] can be applied to the
kicked harmonic oscillator [15,24,25] with similar results. The rate of diffusion as
a function of kick strength µ with was calculated to be

D =
1

4
µ2[1 − 2J2

1 (µk) − 2J2 + 2J2
2 (µk) + 2J2

3 (µk)] . (2.59)

An alternative analysis is provided in [26] and gives

D =
1

4
µ2[1 − 2J0(µk) − 2J2

0 (µk)] . (2.60)

In Figure 2.8 we compare these functions with the numerically calculated values
of the diffusion coefficient. Setting k = 1 we get these values by evolving 600
hundred randomly distributed classical points in the range q, p ∈ [−6π, 6π] over
400 time steps, fitting a line to its energy diffusion curve, and getting the slope
for different values of µ. The results show that while being an extremely good
fit for most kicking strengths neither analysis accounts for the sharp spikes that
occur when the kicking strengths µ are just above a multiple of 2π. It is clear
that some other process is working in conjunction with this average diffusion to
create these large fluctuations in the rate of energy growth.
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Figure 2.9. Examples of exact periodic points that exist when µ = π and k = 1

The large spikes in the numerical diffusion curves may be explained through
the existence of stable accelerator islands. These islands are also called ballistic
islands or modes. The troughs in the oscillating pattern in Figure 2.8 also have
a stable structure associated with them and we shall refer to them as periodic or
quasi-periodic islands. Both these types structures exist because at certain reso-
nant values of the kicking strength both the kick and the rotation can be made to
either cancel each other out or reinforce each other. We shall refer to the whole
phenomenon as anomalous diffusion or classical resonance.

The processes forming these structures may best be discussed with the aid of
a few specific examples. Let us first examine the system with a kicking strength
equal to π and for simplicity we shall also set k = 1 for the remainder of the
chapter. We start with a particle situated at (π/2,−π/2) on the q − p phase plane.
We will assume that we first kick the particle and then apply the rotation that
corresponds to the free evolution of the SHO. For the kick we may apply the map
(2.19) which moves the particle up to the point (π/2, π/2). For the free evolution
(rotation) we use (2.24) with θ = π/2, which brings the point back to where it
started at (π/2,−π/2), see Fig. 2.9(a). This is an example of what we will call a
period 1 return point. Indeed we will see that a region of stability exists around
such points whereby each operation of the map returns a points to somewhere in
the same region.
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(a) Example of a period 1 periodic
point and the surrounding ellipti-
cal orbits.

(b) Examples of period 4 periodic
points and the surrounding ellipti-
cal orbits.

Figure 2.10. The exact periodic points are surrounded by stable elliptical orbits. We set

µ = π and k = 1 to generate this diagram.

Consider now the point (π/2, π/2), using Qπ, that is (2.26) with µ = π, we
calculate its trajectory through four successive mappings

(π/2, π/2) → (3π/2,−π/2) → (−3π/2,−3π/2) → (−π/2, 3π/2) → (π/2, π/2) .

(2.61)

These are exact period 4 return points. They are the center points of special stable
regions of the phase plane. If a particle has initial conditions such that it lies
somewhere in these regions it will return to that same region after 4 iterations of
the map, see Fig. 2.9(b). The islands of stability can clearly be seen in the phase
portraits in Figure 2.10. It is obvious from this simple analysis that particles on
these particular points do not gain energy over time. It is however not so obvious
what determines the stability of the neighboring region. We briefly discuss this
stability issue in the next section.

We now turn our attention to the aforementioned accelerator islands or modes.
These cannot be seen using a Poincaré surface of section like in Fig.2.10 for the
simple reason that particles initially existing on these islands never return to the
same region. In fact a particle on one of these islands will be passed from one
island to another and, depending on the initial conditions, will result in a rapid
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(b) Diagram showing the energy of
the particle on an accelerator mode

Figure 2.11. Motion and energy of particle on an accelerator island. Note that the energy

initially decreases but eventually increases.

increase or decrease in a particle’s energy under consecutive mappings. How-
ever, particles that initially lose energy will eventually reach a minimum energy
level and then have its energy increase with each mapping. We again use a spe-
cific example to illustrate these processes. Setting µ = 2π, k = 1 and starting
with a particle at initial position (3π/2, 10π/2) we plot the trajectory of the par-
ticle under the mapping and show the energy of the particle as calculated from
E = (q2 + p2)/2 as a function of time or kick number n, see Fig. 2.11. For now it
is only important to notice that over long enough times particles on these types
of islands will increase in energy and move farther from the origin.

As mentioned already it is difficult to see any signatures of these structures in
the phase portrait because of their diffusive nature. To get an idea of their shape
and size we first try the simple technique of plotting on the phase plane the initial
positions of particles that after a certain amount of time have been displaced by
over a certain amount. Fig. 2.12 gives a good illustration of the shape, size and
overall position of these islands near the origin. The distance the particle should
have moved from it’s initial location depends on a number of factors such as the
kicking strength and the number of kicks and is therefore somewhat arbitrary.
Note that to generate these these figures we chose µ ≈ 6.38 > 2π. The reason for
this will be discussed in section 2.4.2.
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(a) The accelerator modes are dis-
tributed in a lattice over all phase
space.

(b) The blue curve shows how a
particle initially on an accelerator
mode will quickly gain in energy.

Figure 2.12. Rough shape and position of some accelerator modes generated by setting

µ ≈ 6.38,k = 1 and evolving a selection of randomly distributed points for a fixed time.

The initial configuration of particles that have gained, after the fixed time, an energy

greater than some large value are plotted in the figure.

2.4.1 Structure of the quasi-periodic islands

We noted earlier that both the quasi-periodic and accelerator islands exist be-
cause of an unusual resonance between the kicking and free evolution within
the system. In this section we deal, in more detail, with the exact structure of
the quasi-periodic modes. This is best done by examining the map Qµ (2.46),
repeated here,

qn+1 = pn + µ sin(qn)

pn+1 = −qn. (2.62)

where for simplicity we have set k = 1. Resonance then occurs when µ is some
factor of the period of the sinusoidal function, which in this particular case is
2π. These quasi-periodic modes or islands are shown in Figure 2.10 when µ ≈
π. However, we will show these particular stable points, and their surrounding
elliptical orbits exist for values of µ that are well lower than this. Examining the
map (2.62), it is easy to see that a period one fixed point exists at (q, p) = (0, 0)

for all values of µ. By looking at the phase portraits in Figure (2.7) we notice
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that somewhere around the value of µ ≈ 2 two new elliptic period 1 fixed points
appear. The nature of the the motion that leads to these new points is exactly the
same as we demonstrated in Figure 2.10. That is, around these points, the jump
in momentum and free evolution or rotation cancel each other. We cast this in a
new light by examining the map (2.62). We can see that the second line means
that any period one solution must exist on the p = −q line. Substituting this into
the first line gives the implicit formula for the fixed point position coordinate
which we call sq.

2sq = µ sin(sq) (2.63)

The trivial solution at sq = 0 can easily be seen. Since the sinc function can’t have
values greater than unity we see that other solutions only exist for µ ≥ 2. We
can also see that as µ → π the coordinates of the elliptic stable points (sq, sp) →
(π/2,−π/2) and (−π/2, π/2) which is what we demonstrated numerically in the
previous section.

We next deal with the question of the stability of these ’periodic’ islands. We
use the period one point at (sq, sp) = (π/2,−π/2) in the second quadrant as a
typical example. We first perform a coordinate transformation by letting

q = sq + δq ,

p = sp + δp . (2.64)

Substituting this into (2.62) gives

δqn+1 + sq = δpn + sp + µ sin(δqn + sq) ,

δpn+1 + sp = −δqn − sq . (2.65)

If we put in the exact values of (sq, sp) we may write this as

δqn+1 = δpn − π + (µ) cos(δqn) ,

δpn+1 = −δqn . (2.66)

We can now perform some new analysis similar to that of section 2.3.1. We can
see the brief transition to chaos as we move µ through π. Figure 2.13 shows this
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(a) δq -v- µ. The plot contains
the first 80 values of δqn plotted
against the kick strength µ.

(b) Here we examine the bifurca-
tion at µ ≈ π in more detail

Figure 2.13. Transition to chaos. We start with initial point (δq0δp0) = (0.3, 0) and plot

the δqn for the first 80 iterations for different values of µ. Note the break up of the orbit

just after µ = π.

strange bifurcation. Here we iterate forward 80 times from the starting position
(δq0, δp0) = (.3, 0) and repeat for different values of the µ. This bifurcation can
also be viewed by looking at the phase space structure just before and after µ = π.
We plot these in Figure 2.14.

Interestingly, if we let µ = π + ∆ and Taylor expand the cos term above,
ignoring higher order terms, we may approximate the map (2.66) as

δqn+1 = δpn −
π

2
(δqn)

2 + ∆ ,

δpn+1 = −δqn . (2.67)

Since each new δp is gotten only from the previous δq we can write the whole
map as a simple nonlinear recurrence relation:

δqn+1 = −π
2
δq2
n − δqn−1 + ∆ . (2.68)

Most of the structures and chaotic effects of the full map are still apparent in
this simpler map. It serves to emphasise the fact that the most complex structures
observed in chaos often have extremely simple relationships as their building
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(a) µ = π − .02 (b) µ = π + .02

Figure 2.14. Detailed Poincaré surface of section of the quasi-periodic islands for the

map Qµ, see (2.62)

blocks. It is here we leave the discussion of these stable elliptical islands. We just
mention that the same type of structures emerge again at µ = 3π, 5π, etc. through
the same simple process. We also point out that we have only dealt with modes
of period 1. The period 4 modes mentioned at the top of this section are formed
in essentially the same way and therefore have an identical structure.

2.4.2 Structure in the accelerator modes

As we have mentioned the anomalous spikes seen in the diffusion curve for Qµ,
see Figure 2.8, for specific ranges of µ can be explained by the existence of stable
ballistic or accelerator structures in the phase plane. We showed in section 2.4
that these islands appear because at the specific values of the kick strength µ the
rotation and kicking operations of Qµ act in such a way as to reinforce each other
and rapidly change the energy of a particle on one of the islands.

The broad topic of anomalous diffusion and the accelerator modes is treated
in the review [28]. This review touches on aspects of anomalous diffusion in the
KHO but from the perspective of the Kicked Harper Model (KHM) and it’s asso-
ciated mapping, sometimes called the Web Map (WM). For more details on this
system the reader should consult the texts [9,10]. The web map is often written
as

un+1 = vn ,

vn+1 = −un −K sin vn , (2.69)
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where K is used to represent the kick strength. However, it can be mapped di-
rectly to Qµ, (2.46), by setting our parameter k = 1 and using the simple transfor-
mations

v = q ,

u = −p ,

µ = −K .

Using the WM, analysis on the self similarity of the phase space structure near
the ballistic islands has been done using fractional kinetics in [27] and reviewed
in [10]. A ’magic’ value of the kick strength µ = 6.349972, where the stickiness of
the modes is a maximum, is calculated. The terms stickiness and self similarity
refer to the fractal nature of the boundary that seem to trap unstable orbits within
them for unusually long times.

In this section we present our own analysis that allows us to calculate the ex-
act positions of the accelerator islands and perform linear stability analysis on
them. As mentioned already it is not as easy to see any structure in the acceler-
ator modes using the mapping (2.46), so instead we derive a new map from the
reference frame of a particle on an accelerator island. We first perform the KHO
mapping twice, see (2.47)

pn+2 = −pn − µ sin(qn) ,

qn+2 = −qn + µ sin(pn + µ sin(qn)) . (2.70)

We now pick a starting point that we know to be on the center of an accelerator
island, namely (qn, pn) = (5π/2, 7π/2) (it doesn’t matter which one). Substituting
these values into (2.70) and setting µ = 2π, k = 1 we get

pn+2 = −7π/2 − 2π sin(5π/2) = −11π/2 ,

qn+2 = −5π/2 + µ sin(7π/2 + 2π sin(5π/2)) = −9π/2 . (2.71)

Notice that the new values of q and p are the negative of the old values minus 2π.
This means of course that if we were to add 2π to each one and rotate π around
the origin we would be back where we had started. Performing this addition and
rotation on the map (2.70) gives
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pn+2 = pn + µ sin(qn) − 2π ,

qn+2 = qn − µ sin(pn + µ sin(qn)) − 2π . (2.72)

or

pn+2 = pn + µ sin(qn) − 2π ,

qn+2 = qn − µ sin(pn+2) − 2π . (2.73)

The next step is to make a coordinate transformation so that we put what we call
the center of the island at the origin. We make the substitution like before using
the coordinates given above (sq, sp) = (5π/2, 7π/2). We set

q = sq + δq ,

p = sp + δp , (2.74)

and substitute this into (2.73) to get

δpn+2 = δpn + µ sin(δqn + 5π/2) − 2π ,

δqn+2 = δqn − µ sin(δpn+2 + 7π/2) − 2π . (2.75)

We may finally write out in the simple form

δpn+2 = δpn + µ cos(δqn) − 2π ,

δqn+2 = δqn + µ cos(δpn+2) − 2π . (2.76)

This mapping will now track points that are initially on the accelerator island
at (sq, sp) = (5π/2, 7π/2) and perform the correct transformation so that they
appear near the origin. We could have derived a general map for all the different
modes but that would be unnecessary for our purposes. We can now use our
new map to examine the structure and stability properties of these accelerator
modes. Some Poincaré surfaces of section of these accelerator modes can be seen
in Fig. 2.15. What is striking from these pictures is the complete lack of a stable
accelerator mode when µ < 2π. Even if µ = 2π the island is not very large and
could not be regarded as stable. It is however when µ > 2π that we actually see
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(a) µ = 2π − 0.01 (b) µ = 2π

(c) µ = 2π + 0.01 (d) µ = 2π + 0.05

(e) µ = 2π + 0.1 (f) µ = 2π + 0.2

Figure 2.15. Graphs showing structure of a ballistic island for various values of the kick-

ing strength µ. These graphs are generated by operating on a group of randomly dis-

tributed points in the phase plane window δq, δp ∈ [−0.5, 0.5] with (2.76). We can see

here the stable elliptical structure that was invisible to us in Figure 2.12.
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(a) µ = 2π + 0.1, value of l given by
cos−1(2π/µ)) ≈ 0.1772

(b) General motion of particles in a
ballistic island

Figure 2.16. Diagrams detailing the motion of particles in the vicinity of the accelerator

or ballistic islands

the real structure of the mode. We see the existence of two main islands that grow
as we initially move away from exact resonance. Analysis of individual points in
these islands show that they remain on the same island through each operation.
It is important to remember however, that in creating the map (2.73), we used
two iterations of the kicked harmonic oscillator map and therefore in reality a
particle will move back and forth between the 2 distinct stable structures as it
moves from accelerator mode to accelerator mode.

We can analyse this further by plotting the ’velocity’ vectors of each point
along with the Poincaré surface of section. See Figure 2.16(a). This clearly shows
the existence of four return points. The two elliptic points already mentioned
and two hyperbolic points. Using (2.76) and setting the conditions for exact pe-
riodicity, δpn+2 = δpn and δqn+2 = δqn, we may write the periodic points of the
new map as

δ̄q = ±l = ± cos−1

(

2π

µ

)

(2.77)

and

δ̄p = ±l = ± cos−1

(

2π

µ

)

. (2.78)
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For either of these to have real values we know that the argument of the cos−1

function must be ≤ |1| . This explains why we see no sign of this anomalous
diffusion until µ ≥ 2π, see Figures 2.15(a) and 2.15(b). Refering forward again to
Figures 2.16(a) we see that the corners of the red rectangle in each figure repre-
sent the exact location of the return points. Figure 2.16(b) represents the typical
flow of particles inside one of these accelerator islands. Of course, this flow repre-
sents the motion of particles over two seperate operations of the kicked harmonic
oscillator map in addition to a shift and a rotation.

We can perform some linear stability analysis on the mapping (2.76). We first
find the Jacobian :

J =

(

dδqn+2

dδqn

dδqn+2

dδpn

dδpn+2

dδqn

dδpn+2

dδpn

)

=

(

∂δqn+2

∂δqn
+ ∂δqn+2

∂δpn+2

∂δpn+2

∂δqn

∂δqn+2

∂δpn+2

∂δpn+2

∂δpn

∂δpn+2

∂δqn

∂δpn+2

∂δpn

)

. (2.79)

This gives

J =

(

1 + µ2 sin(δ̄p) sin(δ̄q) −µ sin(δ̄p)

−µ sin(δ̄q) 1

)

. (2.80)

when we evaluate this at the maps fixed points. If we make the substitution
p̄ = µ sin(δ̄p) and q̄ = µ sin(δ̄q) we may write J as

J =

(

1 + q̄p̄ −p̄
−q̄ 1

)

. (2.81)

As before, it is the eigenvalues of the Jacobian J that determine wether a point
is stable or unstable [8]. Complex conjugate eigenvalues on the unit circle λ1,2 =

e±iσ correspond to elliptic and therefore stable orbits. Real reciprocal eigenvalues
λ2 = λ−1

1 correspond to hyperbolic periodic orbit and therfore the existence of
unstable manifolds. The eigenvalues of the Jacobian are given by

|J − λI| = 0. (2.82)

This works out to give

λ2 − λ(q̄p̄+ 2) + 1 = 0, (2.83)
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whose exact eigenvalues are

λ1,2 =
1

2

(

2 + q̄p̄±
√

4q̄p̄+ q̄2p̄2
)

(2.84)

The eigenvalues are always real if q̄ and p̄ have the same sign and complex if
the signs of q̄ and p̄ are different and their absolute values are less than 2. The
condition for the existence of the elliptic points is then

|q̄| = |p̄| = µ sin(δ̄q) = µ sin(cos−1(2π/µ)) < 2. (2.85)

We are now in a position to write out the general stability condition for the
accelerator modes. Remebering that the periodic points only occur when µ ≥ 2π

and noting that sin(cos−1(2π/µ) =
√

µ2 − (2π)2/µ we can say that the island has
stable return points when µ is in the range 2π < µ <

√

(2π)2 + 4.
If we recognise that the procedure used to derive the map (2.76) can also be

used to derive maps for the accelerator islands with µ ≥ 2nπ we can write down
the generic stability condition for different n as

2nπ < µ <
√

(2nπ)2 + 4. (2.86)

This compares nicely the stability condition for accelerator modes in the stan-
dard map or kicked rotor [22,23]. In that model the stability condition is 2nπ <

µ <
√

(2nπ)2 + 16. Indeed (2.86) easily explains why the anomalous diffusion
peaks in Figure 2.8 become thinner as we increse the value of µ or n. We can
numerically check our value for n = 1 by picking starting points (δq, δp) =

(±l + 0.0000001,∓l+ 0.0000001), where l = cos−1
(

2π
µ

)

and evolve the map (2.76)
over 128 discrete timesteps. The points should remain stable and bounded until
we approach this special value of µ. This is exactly what we see in Figure 2.17.

We shall end our analysis of the classical system here. We are now in a posi-
tion to see the importance of a detailed study of the classical diffusion, especially
in the case dealing with accelerator modes. In the chapter 5 our most effective
method for examining how these classical resonant effects manifest themselves
in the quantum dynamcis is to place a coherent state on one of the modes. How-
ever as we’ve just seen we must be very careful about what kicking strength µ

we use and the exact placement of the state if we want to observe anomalous
diffusion over long time scales.
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(a) µ -v- δq, low resolution (b) µ -v- δq, high resolution

Figure 2.17. Plot of µ -v- δq over first 128 time steps. The initial starting values (δq, δp) are

(± cos−1(2π/µ)+0.0000001,∓ cos−1(2π/µ)+0.0000001). The line in the graph represents

where our analysis predicts the elliptical stable point to become unstable. The numerical

calculation shows that our analysis appears to be correct.

2.5 Conclusion

This concludes this chapter on the classical delta kicked harmonic oscillator. We
have analysed the general behaviour of the system for two particular situations
namely irrational frequency ratios and the rational frequency ratio 1/4. The main
goal of this chapter was to provide solid analysis on the classical system so that
we could reliably compare it against quantum simulations later on. In particular
we concentrated on the diffusion characteristics of the system.

We tried to give a simple explanation for the diffusion charateristics of the
irrational system including the break up of the binding tori under large pertu-
bation. This is essential for later on when we attempt to quantify the quantum
mechanical suprression of the energy growth rates or diffusion.

In the system with rational frequency ratio 1/4 we first tried to explain the
general behaviour of the system under infinitesimal perturbation. We then con-
centrated on the actual dynamic processes that give rise to the sharp anomalous
spikes in the energy growth rates. In particular we showed that the structures
appear because of resonance between kicking frequency and the strength of the
kick. We performed some stablity analysis on the accelerator modes and showed
that the ranges of stability follow the same pattern as those of the kicked rotor
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(KR). This analysis is essential later on when we try to study the quantum me-
chanical behaviour around these types of structures.
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Chapter 3

The Quantum System

3.1 Introduction

In the last chapter we dealt with various aspects of the classical systems dynam-
ics using both analytical and numerical techniques. This chapter however, is
concerned with what can be said about the quantum system through analytical
analysis alone. Subsequent chapters deal with the numerical procedures used to
analyse the problems and of course the results of that analysis.

The problem of quantum chaos in the delta kicked harmonic oscillator was
first studied in [1]. The paper concentrated in particular on cases where the clas-
sical phase space displayed a crystalline structure and the stochastic web. That
is when the frequency ratio was 1/3, 1/4 and 1/6.

The paper pointed to the translational invariance of the Rth power of the
system’s evolution operator when the frequency ratio in the problem is 1/R =

1/3, 1/4, 1/6. This aspect of the problem was built upon by Borgonovi and Re-
buzzini to show the existence of a quantum resonance condition that manifested
itself in the quadratic energy growth of an evolving quantum state [2]. Other
purely quantum properties of the system have also been demonstrated. In par-
ticular in the ability of the quantum system, under certain parameters, to tunnel
between classical separatrices much like the quantum kicked rotor (KR) [3].

As we have mentioned the symmetrical Kicked Harper Model (KHM) can be
exactly related to the kicked harmonic oscillator (KHO) with R = 4 [4]. Signifi-
cant progress toward analysing the eigensolutions to generalised kicked Harper
models has been made, see [5–7] and the references therein. In particular it has
been proved in the latter paper that, in the symmetric case where the KHM and
KHO are identical, the spectrum of the Floquet operator is continuous.

56
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The situation for the system when the frequency ratio is irrational has also at-
tracted some attention. In particular it has been shown by Frasca that the system,
like the KR can be mapped onto a tight-binding model [8–10]. The importance
of this result means that the phenomena known as dynamical localisation (the
quantum suppression of diffusion) may also exist in this model. This chapter
proceeds as follows. We first define what is called the fractional Fourier trans-
form. We show that, up to a phase, it is identical to the evolution operator of the
harmonic oscillator in the position basis. From here it is a simple task to calcu-
late the Floquet operator for the system over one time period. This analysis is
essential to understanding the numerical procedures outlined in chapter 4.

The remainder of the chapter deals with the quasi-energies and stationary
states of the kicked system. We first deal with the tight-binding approximation of
the system with irrational frequency ratios and the consequences for the system’s
behaviour. The original analysis is due to Frasca [8] and has been analysed in
more detail by Engel [10]. We review most of this work and also place our own
upper bound on the validity of the approximation.

Next we deal with the analysis due to Borgonovi and Rebuzzini dealing with
translational invariance when R = 3, 4, 6 [2]. The results have also been re-
derived by Engel [10]. We repeat how the condition for quantum resonance is
arrived at and its relation to one and two parameter translation groups. We do
not include the argument that predicts quadratic energy growth when the reso-
nance condition is fulfilled and linear energy growth when it is not. Instead our
own work concentrates on the specific structure of the systems stationary states
when R = 4. In particular we note the discretised and extended nature of such
states in the position basis when the same resonance condition is fulfilled.

As a consequence of these results and of some of the surprising numerical
results on quantum resonance documented in chapter 5, the remainder of the
chapter deals specifically with analysing eigenstates of the Fourier transform.
These are also called self Fourier functions (SFF’s). In particular we deal with
the Dirac comb function, superpositions of displaced number (Fock) states and
a hybrid function that is strikingly similar to some of the numerically calculated
stationary states of the kicked system. From these we try to construct an alterna-
tive basis in which the resonance phenomena demonstrated in chapter 5 can be
explained.
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3.2 The Fractional Order Fourier Transform and its

relationship with the SHO

The Fourier transform relationship between a wavefunction in the position repre-
sentation and the momentum representation is derived in nearly all introductory
textbooks to quantum mechanics, and we give it here in the form found in [11]:

ψ(q′) ≡ 〈q′|ψ〉 =

∫ ∞

−∞
〈q′|p′〉〈p′|ψ〉dp′ =

1√
2π~

∫ ∞

−∞
exp

(

ip′q′

~

)

φ(p′)dp′ , (3.1)

and similarly

φ(p′) ≡ 〈p′|ψ〉 =

∫ ∞

−∞
〈p′|q′〉〈q′|ψ〉dp′ =

1√
2π~

∫ ∞

−∞
exp

(

− ip
′q′

~

)

ψ(q′)dq′ , (3.2)

where we have used the completeness of the momentum and position bases and
the transformation function

〈p′|q′〉 =
1√
2π~

exp

(

− ip
′q′

~

)

= 〈q′|p′〉∗ . (3.3)

These relationships are well known and they form the back bone to what
is called the split-step method, see appendix B, for numerically approximating
the time evolution of certain quantum systems. The symmetry between q and p

representations however also hints at a more general relationship between these
operations and the simple harmonic oscillator (SHO). The relationship was made
explicit in 1980 by Namias with the introduction of the Fractional Fourier Trans-
form of which the ordinary Fourier transforms of (3.1) and (3.2) are just a special
case.

It is well known that the Hermite-Gauss (HG) polynomials, (A.33), as well as
being the energy eigenfunctions of the SHO Hamiltonian, are also eigenfunctions
of the Fourier transform. Eigenfunctions of this type are often called Self Fourier
Functions (SFF’s). The Fourier eigenvalue equation, for a function un(q′), is given
by

F−π
2
un(q

′) = e−in
π
2 un(q

′) , . (3.4)

where
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F−π
2
un(q

′) =
1√
2π~

∫ ∞

−∞
exp

(

− ip
′q′

~

)

un(q
′)dq′ . (3.5)

Namias defines the Fractional Fourier Transform in terms of the same Hermite-
Gauss functions. That is

F−θ〈q′|n〉 = e−inθ〈q′|n〉 , (3.6)

where we have written the HG functions in Dirac notation. That is un(q′) = 〈q′|n〉.
From a quantum mechanical point of view it is easily seen that this is also, up to
a constant phase, the eigenvalue equation for the evolution operator of the SHO.
Operating with the U0(T ), (A.11), on the ket |n〉 and multiplying from the left
with the bra 〈q′ | we have

〈q′ |e−i θ
2 e−iNθ|n〉 = e−i

θ
2 e−inθ〈q′|n〉 . (3.7)

In the position basis the state of the quantum system after evolving for a time T
is given by

〈q′|ψ(T )〉 = 〈q′ |U0(T )|ψ(0)〉 = e−i
θ
2

∞
∑

n=0

e−inθ〈q′|n〉〈n|ψ(0)〉 . (3.8)

Using the eigenvalue equations above this can simply be written

〈q′|ψ(t)〉 = e−i
θ
2

∞
∑

n=0

e−inθ〈q′|n〉〈n|ψ(0)〉 = e−i
θ
2F−θ〈q′|ψ(0)〉 . (3.9)

or

ψ(q′, t) = e−i
θ
2F−θψ(q′, 0) . (3.10)

Here we have written out explicitly the relationship between the Fractional Fourier
Transform and the Floquet operator of the Simple Harmonic Oscillator. This is
the same result as the one given in [12]. However it was derived in a different
way. Indeed from our perspective it hardly passes for a derivation at all. The
Fractional Fourier Transform is the evolution operator of the SHO because it is
defined as such.
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We will give details on the exact form of this operator in the next chapter. We
expand upon the definition (3.6) given above to give more details on how to ac-
tually perform such a transform numerically. We will also demonstrate that there
exists Fast Fractional Fourier Transforms (FFFT’s) analogous to the ordinary Fast
Fourier Transforms (FFT’s) introduced by [13]. We will use these algorithms to
numerically simulate the kicked quantum system very efficiently.

3.3 The Floquet operator for the kicked system

One might wonder why we bother work in the position basis at all. After all, the
simple harmonic oscillator is diagonal in the Fock (number) state basis. The rea-
son lies in the fact that the kicking potential term in the kicked system is a func-
tion of position and is therefore not diagonal in the number basis. To numerically
evolve the system like this would have to involve a matrix-vector multiplication.
This is never efficient and would place huge demands on both computer speed
and memory. However, using the results from the last section, we can write out
the Floquet operator for the kicked system in a very straight-forward way.

The state vector for the system must obey the Schrödinger equation , that is

i~
∂

∂t
|ψ(t)〉 = H|ψ(t)〉 . (3.11)

We now integrate this equation over the kicking potential from t1 = nT − ε to
t2 = nT + ε using the Hamiltonian given in (2.15),

i~

∫ |ψ(t2)〉

|ψ(t1)〉

d|ψ(t)〉
|ψ(t)〉 =

∫ t2

t1

ω0

2
(p2 + q2)dt+

∫ t2

t1

µ̄ cos kq
∞
∑

n=−∞
δ(t−nT )dt . (3.12)

We note here that the Hamiltonian H and q and p are now understood to be
operators. Performing the intergation we have

|ψ(t2)〉 = exp

(

− i

~
ω0ε(p

2 + q2)

)

exp

(

− i

~
µ̄ cos(kq)

)

|ψ(t1)〉 , (3.13)

which reduces to

|ψ(nT )+〉 = U1|ψ(nT )−〉 ≡ exp

(

− i

~
µ̄ cos(kq)

)

|ψ(nT )−〉 , (3.14)
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when ε −→ 0. Here t1 = nT− is the time just before the nth kick and t2 = nT+

is the time just after. At all other times the dynamics of the system are that of
a simple harmonic oscillator. We can thus use (3.10) to write out the unitary
operator that evolves the system from just after one kick to just before the next
kick, that is, over a time of length t = T :

|ψ((n+ 1)T )−〉 = U0|ψ(nT )+〉 = e−i
θ
2F−θ|ψ(nT )+〉 , (3.15)

with θ = ω0T . If we substitute (3.14) into (3.15) we get the unitary operation that
evolves the system from just before one kick to just before the next kick

〈q′|ψ((n+1)T )−〉 = 〈q′ |U|ψ(nT )−〉 ≡ e−i
θ
2F−θe

−iµ cos(kq′)/k~〈q′|ψ(nT )−〉 . (3.16)

The operator U is called the system’s Floquet operator. We may also write the
above relation in functional form, that is

ψ(q′, (n+ 1)T )− = e−i
θ
2F−θe

−iµ cos(kq′)/k~ψ(q′, nT )− . (3.17)

We will see in the following chapters how this result allows us to numerically
analyse the kicked quantum system in great detail. We may now approximate
the wavefunction in the position basis as numbers in an array. The state can
now be evolved in time, regardless of θ, by operations that do not include matrix
multiplications. It will allow us to accurately examine how the system evolves
over longer times than has previously been possible in the literature. This com-
putational speed up is possible because of the existence of numerical procedures
known as the Fast Fractional Fourier Transform (FFFT) and Fast Fourier Trans-
form (FFT). We will see that the procedures also have an added advantage be-
cause a matrix can be found that performs the discrete fractional Fourier Trans-
form. We can then numerically calculate the unitary matrix that approximates
U . This allows us to numerically study the system’s stationary states and quasi-
energies discussed in the next section. Some technical matters associated with
the FFT and FFFT algorithms are also outlined in chapter 4.
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3.4 Quasi-energies and Stationary States

A more complete understanding of the quantum dynamics entails finding the
eigenvectors and eigenvalues of the Floquet operator. In the particular case of
the delta kicked oscillator finding exact analytical expressions from the system’s
eigenfunctions and eigenvalues has not yet been done. However, using various
properties of the Hamiltonian we have been able to say a great deal about these
eigenvectors. We first present an important analytical result that hints at station-
ary states of of a localised nature when the the frequency ratio is irrational [8].
We then turn our attention to the the stationary states of the system with rational
frequency ratios. In particular we include most of the argument of translational
invariance first shown by Borgonovi and Rebuzzini [2] and expanded upon by
Engel [10]. The phenomena known as quantum resonance is also addressed and
we include an original Fourier type analysis on the structure of the systems sta-
tionary states at and near these resonant values of ~.

3.4.1 Tight-binding model

In this section the argument initially put forward by Frasca is presented [8]. We
shall also include some new analysis due Engel [10]. The general idea is to map
the irrationally kicked system to a tight-binding model which we can then be
said to display Anderson type localisation properties [9,17,18]. In light of our
numerical results, see chapter 5, we also include our own simple analysis which
places a limit to the validity of the tight-binding approximation.

Beginning with relations (3.15), (3.14) and (A.3) we write out the Floquet op-
erator U = U0U1 for the KHO in the number basis,

U = exp

(

−i(N +
1

2
)θ

)

exp
(

−iµ cos(β(a† + a))/k~
)

. (3.18)

where θ = ω0T and β = k
√

~/2 and as always µ = kµ̄. The eigenvalue equation
for this operator is

e−i
θ
2 exp (−iNθ) exp

(

−iµ cos(β(a† + a))/k~
)

|Ψ〉 = e−iΩ|Ψ〉 , (3.19)

where Ω are the quasi-energies. We then define A = (µ/k~) cos(β(a† + a)) and
introduce the operator W as
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W = − tan(A/2) , (3.20)

or equivalently

e−iA =
1 + iW

1 − iW
. (3.21)

Substituting 3.21 into 3.19 and rearranging we get

(1 + iW )e−i(θ(N+1/2)−Ω)|Ψ〉 = (1 − iW )|Ψ〉 . (3.22)

We set C = (θ(N + 1/2) − Ω) and bring every thing to one side

[

e−iC − 1 + iWe−iC + iW
]

|Ψ〉 = 0 . (3.23)

Introducing | Ψ̄〉 = (1 + e−iC)|Ψ〉 we can rewrite (3.23) as

e−iC − 1

e−iC + 1
| Ψ̄〉 + iW

e−iC + 1

e−iC + 1
| Ψ̄〉 = 0 , (3.24)

and we can now write

−i tan(C/2) − i tan(A/2)| Ψ̄〉 = 0 . (3.25)

Dividing all across by −i reduces this to

(D +W )| Ψ̄〉 = 0 , (3.26)

with

W = tan[A/2] = tan[(µ cos(β(a† + a))/2~] , (3.27)

and

D = tan[C/2] = tan[(θ(N + 1/2) − Ω)/2] . (3.28)
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Expanding | Ψ̄〉 in the Fock state basis we have

(D +W )| Ψ̄〉 =

∞
∑

n=0

|n〉
[

〈n |D| Ψ̄〉 + 〈n |W | Ψ̄〉
]

=
∞
∑

n=0

〈n |D| Ψ̄〉|n〉 +
∞
∑

m,n

〈n |W |m〉〈m|Ψ̄〉|n〉 . (3.29)

Equating coefficients for each ket |n〉 we get

Dn〈n|Ψ̄〉 +
∑

n6=m
Wnm〈m|Ψ̄〉 = ε〈n|Ψ̄〉 , (3.30)

where ε = −Wnn and

Dn = tan[(θ(n + 1/2) − Ω)/2] . (3.31)

Once we have reduced the problem to the tight binding form in (3.30) we may
apply an argument first introduced by [9]. The argument has been used to ex-
plain the very obvious dynamical localisation observed in the quantum version
of the kicked rotor. We proceed with an argument similar to the ones presented
in [10,15,16].

The essential idea is that the kicked system is mapped on to a tight-binding
model that has been used to successfully to describe electronic motion in solid
state systems. The model predicts that the electronic eigenfunctions are extended
or spread out only if there is a high degree of regularity in the position of the
atoms. However if there is some disorder in the systems, what is know known as
Anderson localisation occurs [17,18]. It should however be mentioned here that
to make the connection between the kicked harmonic oscillator and the tight-
binding model requires quite a few approximations and there are many open
questions regarding its validity. We will highlight these as we go along.

Assume that the matrix W has only values w along its secondary diagonals
(we will see later that this is not really the case). In the solid state model this is
equivalent to saying that the electron only interacts with three atoms at any one
time, the one it’s directly over and two on either side. We can then write (3.30) as

w〈n+ 1|Ψ̄〉 + w〈n− 1|Ψ̄〉 +Dn〈n|Ψ̄〉 = ε〈n|Ψ̄〉 . (3.32)

This can also be written in the matrix form
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(

an+1

an

)

= Rn

(

an

an−1

)

, (3.33)

where R is the transfer matrix

Rn =

(

ε−Dn

w
−1

1 0

)

, (3.34)

and

an = w〈n|Ψ̄〉 . (3.35)

Components of a state vector at the start of a chain can be used via the matrices
Rn to obtain components of state vectors at the end of the chain. That is,

(

aN+1

aN

)

= R

(

a1

a0

)

. (3.36)

where

R = RNRN−1...R1 . (3.37)

We can see here that the components aN+1 and aN are determined by the compo-
nents a1 and a0 and the matrix R. Similarly we could write

(

an−1

an

)

= Rn

(

an

an+1

)

, (3.38)

and use the transfer matrix R to get components an−1 and an from components
an+N−1 and an+N to their right.

The matrices Rn can be classified as unimodular. A unimodular matrix is
defined as a real square matrix A with determinant det(A)==+1 [19]. We can
now apply a theorem due to Furstenberg about random unimodular matrices
Mi [20]. The theorem states that under general conditions

lim
Q−→∞

1

Q
TrMQMQ−1...M2M1 ≡ λ > 0 . (3.39)
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Figure 3.1. The transfer matrix Rn can be used to iterate vectors an both left and right.

Exponential growth in both directions is seen. We can match the values of the an in the

center by carefully selecting energies

What this means in the present context is that if we can say that the values ε−Dn

are random then the unimodular matrix R = RNRN−1...R1 has two eigenval-
ues exp(±Nλ). This implies that for almost all starting coefficients a1, a0 the
wavefunction will grow exponentially to the left and right. However it has been
shown [21–23] that the wavefunctions when iterated from both sides can be made
to match up somewhere in the center by carefully selecting the energies. See Fig-
ure 3.1.

In this particular case, with simplified off diagonal terms, the argument for
localisation depends on the randomness of the Dn term in the matrices Rn. Ex-
amining the term Dn, (3.31), we see it is a simple trigonometric function of the
Fock number n. How the function behaves as n changes depends intimately on
the parameter θ = ω0T . Thus if θ is a rational multiple of 2π then Dn is periodic,
and could not be said to contain any randomness whatsoever. However, if T is
an irrational multiple of 2π the function Dn can not display the same kind of ex-
act periodicity as in the rational case. Indeed the function never repeats exactly
as we increase n. It is conjectured that under these conditions Dn behaves as a
pseudo-random number generator [9]. We can assume Furstenberg’s theorem
applies in this case and we can claim to have explained localisation.

It must be now mentioned however that nowhere in the above discussion
did we mention the role of ~. We know that in the classical limit that the quan-
tum system should diffuse at the same rate as the classical one. Since ~ does not
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appear in Dn, it’s pseudo-randomness, or lack of, has nothing to do with con-
necting classical and quantum systems. This is not to say that this does not play
a role in the localisation of the quantum system, it only says that it cannot explain
why the quantum system should diffuse when ~ gets small and, as we will see
later, when the kicking strength µ gets large. Indeed, careful examination ofWmn,
(3.27), shows that reducing ~ and increasing µ affect the structure of the matrix
W in a very similar way. We will now show that by examining the structure of
Wmn for different values of ~ and µ that a tight-binding model only applies when
values of µ/2~ are below a critical value. We steady our argument first by using
some of Engel’s analysis [10]. Starting with (3.27)

Wmn = 〈m | tan[(µ cos(β(a† + a))/2~]|n〉 , (3.40)

and using expression (A.3) and the completeness relation in the position basis

I =

∫ ′∞

−∞
dq′| q′〉〈q′ | , (3.41)

we get

Wmn =

∫ ∫

dq′dq′′〈m|q′〉〈q′ | tan[(µ cos(kq)/2~]| q′′〉〈q′′|n〉 ,

=

∫

dq′〈m|q′〉 tan[µ cos(kq′)/2~]〈q′|n〉 , (3.42)

= Cnm
1√
π~

∫

dq′ tan

[

µ cos(kq′)

2~

]

Hm

(

q′√
~

)

Hn

(

q′√
~

)

exp

(

−q
′2

~

)

,

where the limits of iteration are ±∞, Hn represents the nth Hermite polynomial
andCnm = 1/(2n+mm!n!). We can say quite lot about this integral with little effort.
First we note that the term tan(µ cos(

√
~x)/2~) is even. This means that if the total

integrand is odd if m + n is an odd number and even otherwise. Therefore

Wnm = 0 , m + n = odd . (3.43)

Immediately this shows that this could not be a tight-binding model in the usual
sense as neighboring Fock states are not connected and that Wn,n−2 6= Wn+2,n. It
is possible however to construct an alternative model where every second Fock
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state is connected and with different transfer matrices for left and right itera-
tion. These aspects of the problem and more are discussed in detail by Engel [10]
where, as well as this, the value of the integral (3.42) for small µ/~ is calculated
to be approximately

|Wm,m+2n| ≈
µ

2~

1√
m!em

(

27e2~2

64n

)n/2

. (3.44)

The essential point in his analysis is that the absolute values of the matrix ele-
ments Wmn decay faster than exponentially with distance from the diagonal. He
then shows how a more complicated tight-binding model than the one discussed
above can then be created. However, the same qualified conclusion can be made,
that is that the quasi-eigenstates are localised if the Dn term displays pseudo-
randomness.

To show how the tight-binding analysis breaks down we turn our attention to
the case where µ/~ can take on any value. Note that | tan(nπ/2)| = ∞ and there-
fore that the integrand in (3.42) may contain delta function spikes once µ/~ > π.
Even a numerical analysis of such an integral is nontrivial. For our purposes
it suffices to say that there is nothing to suggest rapid decay in the size of the
integral |Wm,m+n| as n gets large. In this way we may place limits on the range
for which the tight-binding approximation is applicable. This conclusion squares
nicely with both the correspondence principle (the wavefunction should diffuse
with time as ~ → 0) and the numerical simulations in section 5.2.2 that show that,
while there seems to be always some suppression of the energy growth rates,
there is no complete dynamical localisation for large perturbation strengths.

3.4.2 Translational Invariance

In this subsection we outline an argument put forward by Borgonovi and Re-
buzzini [2]. The basic idea is to show that under certain conditions the Floquet
operator for the kicked harmonic oscillator commutes with a specific displace-
ment operator. If this is established we can then make some very general state-
ments about the eigenvectors of the total Floquet operator U . However, we first
introduce some simple group theory [24,25]

Theorem1: If, in a vector space E , A and B are two operators that commute with each
other, then every degenerate eigensubspace of A is globally invariant under B , and vice
versa.
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Proof: Let |ψn〉 be the eigenvectors of A with eigenvalues an. IfA and B commute
we can write

A(B|ψn〉) = BA|ψn〉 = Ban|ψn〉 = anB|ψn〉 . (3.45)

That is, B|ψn〉 is also an eigenvector of A with eigenvalue an. From here there
are two possibilities:

(1) an is non-degenerate In this case |ψn〉 and B|ψn〉 must be the same state, which
means that |ψn〉 is an eigenvector of B also:

B|ψn〉 = bn|ψn〉 . (3.46)

(2) an is degenerate

The eigenvectors of an {|ψjn〉}j=1,...,gn form an orthonormal basis of the degenerate
eigensubspace En of E . The expression A(B|ψjn〉) = anB|ψjn〉 still applies but
there is no need for |ψjn〉 and B|ψjn〉 to be parallel. The vector need only be a
superposition of eigenstates spanning the degenerate subspace En. That is,

B|ψjn〉 =

gn
∑

k=1

cknj|ψkn〉 . (3.47)

We next introduce the displacement operator:

Dr,s = exp

(

i

~
(sq − rp)

)

= exp(za† − z∗a) = D(z) , (3.48)

with z = 1/
√

2~(r + is). Recall now that the Floquet operator of our system is
given by
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U = U0U1 = exp

(−i
~
H0T

)

exp

(−i
k~
µ cos(kq)

)

. (3.49)

Operating on a ket with the displacement operator has the effect of shifting the
vector by rî + sĵ in the phase plane. We now want to see the effect the displace-
ment operator has on the Floquet operator for the kicked oscillator. We first see
it’s effect on the kicking operator U1

Ds,rU1 = exp

(

i

~
(sq − rp)

)

exp

(

− i

k~
µ cos(kq)

)

= exp

(

− i

k~
µ cos(k(q + r))

)

exp

(

i

~
(sq − rp)

)

.

So we see that the two operators commute if r is a multiple of 2π/k. The next
step is to see how the displacement operator effects the free evolution operator
for the oscillator. To do this we will need to use a well known theorem about
non-commuting operators [11].

Theorem2: If A and B are two non-commuting operators and ζ is a parameter, then, if n
is an integer,

eζABne−ζA = (eζABe−ζA)n , (3.50)

and,

eζAF (B)e−ζA = F (eζABe−ζA) . (3.51)

We are now in a position to write

D(z)U0 = exp(za† − z∗a)U0 , (3.52)

= U0U †
0 exp(za† − z∗a)U0 ,

= U0 exp(zU †
0a

†U0 − z∗U †
0aU0) ,

= U0 exp(zeiω0Ta† − z∗e−iω0Ta) ,
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where we have used (A.16) and (3.51). We can simplify the expression to

Ds,rU0 = D(z)U0 = U0D(z′) = U0Ds′,r′ , (3.53)

with

z′ = zeiθ ,

r′ = r cos θ − s sin θ ,

s′ = r sin θ + s cos θ .

with θ = ω0T . So as U0 moves through the displacement operator it, in a man-
ner of speaking, rotates it in a clockwise direction through the angle given by θ.
The new displacement operator now shifts a quantum state along a new rotated
direction. The displacement operator therefore moves through the total Floquet
operator as

Ds,rU = Ds,rU0U1

= U0Ds′,r′U1

= U0U ′
1Ds′,r′ ,

where

U ′
1 = exp

(−i
k~
µ cos(k(q + r′))

)

. (3.54)

Now, if we were to move the displacement operator through a succession of
operators UR under certain conditions we can see that the operators Ds,r and UR

commute. We can write this out explicitly

Ds1,r1UR = U0U ′
1Ds2,r2UR−1

=

[

R
∏

j=1

U0 exp

(−i
k~
µ cos(k(q + rj))

)

]

DsR,rR . (3.55)

with
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zj = zeijθ,

rj = r cos jθ − s sin jθ,

sj = r sin jθ + s cos jθ.

The conditions, explained in [2,10] are that firstly cos θ ∈ Q, that is that the
cosine of the angle of rotation θ is a rational number. Secondly, the angle θ itself
must be a rational multiple of 2π. That is, θ = 2π/R. This condition is only met
if R ∈ Rc = {1, 2, 3, 4, 6}. We can explain this answer in geometrical terms in
perhaps an easier way. The value of the term r′j in Dsj ,rj must remain a multiple
of 2π/k as we rotate it through successive fixed angles (move it through U0). This
must be so if it is to commute with the kicking operator U1. This condition can
only be met if we choose rotation angles θ = {2π, 2π/2, 2π/3, 2π/4, 2π/6}. The
last three of these situations, with k = 1, are illustrated in Figure 3.2(c) and 3.2(d)
below along with some other examples where the operators cannot be made to
commute. In the figure we represent the translation operator with a vector. It can
clearly be seen that in the 1/R = 1/4 case the condition can only be satisfied if
both the s and r component of the displacement operator are integer multiples of
2π∗. That is if

s = 2πns/k , (3.56)

r = 2πnr/k , ns, nr ∈ Z . (3.57)

We next need to examine the group properties of the displacement operators
themselves. Consider the two displacement operators Ds1,r1 andDs0,r0 . Using the
Baker Cambell Hausdorff formula [11] we can find out under what conditions
two separate displacement operators commute. Some quick analysis shows that

[Ds1,r1, Ds0,r0] = 2i sin

(

s1r0 − s0r1
2~

)

Ds1+s0,r1+r0 . (3.58)

The two operators will then only commute when the sin term vanishes. In the
particular case with R = 4 we see that this can happen in two ways. Substituting
s1 = 2πns1/k, etc. into the above equation and dividing by 2i, we have

∗It is worth mentioning here that the specific shape of the kicking potential need only be
periodic for the statements above to be true. This analysis then applies to all periodic kicking
potentials and all kick strengths.
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Figure 3.2. The condition for translational invariance is such that the r ′ component in

the displacement operator Dr′,s′ , represented by the vectors, remains a multiple of 2π/k

upon repeated operation of U0. In the above examples k = 1. Figures (c) and (d) show

situations where the translational invariance condition is upheld
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sin

(

2π2

k2~
(ns1nr0 − ns0nr1)

)

= 0 . (3.59)

The first type of solution occurs when ns1nr0 = ns0nr1 or P = ns1/nr1 =

ns0/nr0 . The condition is only satisfied when the two displacements Ds1,r1 and
Ds0,r0 are along the same direction (quadrature) in the phase plane. This corre-
sponds to a one parameter commutative group since the directions of the trans-
lations can all be specified by the parameter P [10].

Another possibility occurs because ns1, nr0 , ns0 and nr1 are all integers. If

~ =
2π

k2n′ , n′ ∈ Z , (3.60)

then the group of translation defined by the two parameters, 2πns and 2πnr, is
commutative. This symmetry has no analog in the classical system and in gener-
ally referred to as quantum resonance. It should be noted that

~ =
2πm′

k2n′ , n′, m′ ∈ Z , (3.61)

also allows for the commutation of different displacement operators. The condi-
tion for commutation between different operators is thus

n′

m′ (ns1nr0 − ns0nr1) = l , l, n′, m′ ∈ Z . (3.62)

In the texts [2,10] the authors now go on to present an argument estimating
the decay rate of the Husimi distribution at a given phase point (q, p). The decay
rate of the the distribution at one point is shown to be inversely proportional
to spread of the whole distribution. The energy of the state can then easily be
shown to be proportional to the spread of the distribution.

The results are remarkable. The rate of energy growth with no quantum res-
onance is predicted to be be linear in time or with time step n. That is,

< E >n∼ n . (3.63)

With resonant ~ the system is predicted to behave radically different over long
times. The rate of energy growth is predicted , in this case, to be quadratic. That
is,
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< E >n∼ n2 . (3.64)

It should again be stressed that these growth rates are only valid when n is large.
This makes sense because over short time-scales the quantum system and classi-
cal system have similar growth rates. The predictions are confirmed numerically
by both authors although a detailed analysis of the ~ dependence of the diffusion
curve was not given. We shall attempt this in section 5.3.2.

In my own analysis I have concentrated more on understanding what specific
consequences 1 parameter and 2 parameter translational invariance may have on
the Floquet operator’s eigenvectors. We return to the theorem stated at the start
of the section. The theorem does not say anything about the class of operators
we are dealing with and can therefore be applied to the unitary matrices U and
Dr,s.

Suppose now we have the displacement operators Dr,s and it commutes with
U4. We can say that any non-degenerate eigenstate of U 4 is still an eigenstate after
it has been displaced by Dr,s where r, s = 2nπ/k for integer n. More generally
it implies that in this case any degenerate subspace will remain invariant under
the translation Dr,s.

When the operators commute we may also apply the theorem in the opposite
direction. This means that degenerate subspaces of the operator Dr,s are also
invariant under operation of U 4. In order to see what this means we first examine
the operations of the translation operators D0,r and Ds,0 on q and p eigenkets:

D0,r| q′〉 = exp(− i

~
rp)| q′〉 = | q′ + r〉 ,

D0,r| p′〉 = exp(− i

~
rp)| p′〉 = exp(− i

~
rp′)| p′〉 , (3.65)

and

Ds,0| q′〉 = exp(
i

~
sq)| q′〉 = exp(

i

~
sq′| q′〉 ,

Ds,0| p′〉 = exp(
i

~
sq)| p′〉 = | p′ + s〉 . (3.66)

Suppose we set r to 2m′π/k, clearly every | p′〉 is still an eigenket of this transla-
tion operator and, as one, has a distinct eigenvalue depending on the value of
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p′. However, it is clear that an infinity of other kets | p′′〉 also share this same
eigenvalue. The degenerate subspace is then, by definition, the set of kets | p′′〉
where

p′ − p′′

k~
2m′π = 2n′π , (3.67)

l = p′ − p′′ = k~
n′

m′ , n′, m′ ∈ Z . (3.68)

This is just a simple kind of Fourier analysis. The result tells us that if an
operator is exactly periodic (translationally invariant) in the position basis then
it must be discrete in the momentum basis and vice versa. Theorem 1 then tells
us that if an initial state is constructed in a degenerate subspace of D0,r then it
must remain there under operation of U 4. The same argument can be applied to
positions kets using the Ds,0 operator.

The idea of quantum resonance occurs when we try to see if it is possible for
the degenerate subspaces of say D0,r to be also invariant under some other dis-
placement operator , say Ds,0. However, if a degenerate subspace of D0,r is also
to be 2π/k periodic in the momentum basis, a necessary condition for commuta-
tion with U4, then the difference between neighboring kets | p′〉 and | p′′〉 has to be
some fraction of 2π/k. That is

l = p′ − p′′ =
2πm′′

kn′′ , n′′, m′′ ∈ Z . (3.69)

Comparing (3.67) and (3.69) we again get the condition

~ =
2πm

k2n
, n,m ∈ Z , (3.70)

with m = m′m′′ and n = n′n′′. This is the same two parameter resonance condi-
tion we had before. Suppose we have a non-degenerate eigenstate of U 4, we are
saying that when quantum resonance occurs both the eigenstate and its Fourier
Transform must be periodic. This statement also implies that both the original
eigenstate and it’s Fourier transform must also be discrete. Indeed, since the 2
parameter group dependence implies that eigenstates could be translationally
invariant along more that 2 directions we can infer that when the state is viewed
from this quadrature basis it could be simultaneously periodic and discrete also.

We can speculate on what effect the one parameter group dependence has on
the non-degenerate eigenstates of U 4. Remember the operator U 4 can commute
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with any displacement operator Dr,s provided that r, s = 2mπ/k. However, the
individual displacement operators can only commute with each other provided
they act along the same phase space quadrature. This means that the eigenvector
that is translationally invariant in one direction cannot be translationally invari-
ant in the other. From the perspective of the above analysis we can say that
periodicity in one quadrature implies discretisation when represented in the per-
pendicular quadrature, that is on taking the Fourier transform. In the absence of
quantum resonance simple Fourier analysis implies that the discretisation can-
not be 2π/k periodic. In the next section we attempt to clarify this situation by
examining the stationary states of the single U operator using more established
methods of Fourier analysis.

3.5 Eigenfunctions of the Fourier transform

In section 3.2 we emphasised how the Hermite-Gauss polynomials, also called
number or Fock states, form the eigenbasis of both the simple harmonic oscillator
and the Fourier transform. Indeed we showed how this basis was used to define
the now familiar Fractional Fourier Transform. In particular we showed that the
Fourier transform, up to phase, evolved any state forward 1/4 of one natural
oscillation period of the SHO. In the kicked system we made the choice to first
kick the system and then apply the free evolution or Fourier Transform. We could
just as easily have applied the Fourier transform and then the kicking operator.
The eigenvalue equation for the first case can be written simply as

U0U1 = V1DV
†
1 , (3.71)

where V1 are the original eigenvectors and D is the diagonal matrix containing
the eigenvalues. Applying U †

0 to the left and U0 to the right we have

U1U0 = U †
0V1DV

†
1 U0 . (3.72)

We see that we the new system has the same eigenvalues as the system with
operators in reverse order and with the eigenvectors V0 = U †

0V1. In the case
where the frequency ratio is just 1/4, U †

0 is just the inverse Fourier transform.
The reason we have emphasised this is because the kicking operator U1 being
unitary and diagonal in the position basis can only adjust the phase of a state at
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a particular position q′. Therefore the probability density of the quantum state
can only be affected by the simple harmonic evolution operator U0. This allows
one to study the eigenvector properties of this model in a direct way that is not
possible in most other kicked systems because the total evolution operator, in
other kicked systems, cannnot be factored into just two operations in the same
basis. For the KHO however, eigenstates of the total Floquet operator U must
have the same probability distribution as certain eigenstates of the simple harmonic
evolution operator U0. That is, in the KHO, we can always say

|U0Ψ(q′)| = |Ψ(q′)| , (3.73)

where Ψ(q′) refers to some stationary state of the total Floquet operator U . We
can therefore gain significant information about the total kicked system by only
studying the different types of eigenfunctions of operator U0. The main aim of
this section is therefore to show how, by analysing some of the eigenfuncitons of
the free evolution operator, we may gain a new perspective on certain localisation
and resonance phenomena in the kicked system as a whole.

We begin first by analysing some eigenfunctions of the operator U0 with θ =

π/2 which as we have shown is, up to a phase, just the Fourier Transform . This
corresponds to the search of what are defined as Self Fourier Functions (SFF’s).
The best known eigenfunctions of the Fourier Transform are the Hermite Gauss
polynomials un(q′) or Fock states introduced in section A.1.1. Indeed it was from
these functions that Namias [12] defined the fractional Fourier transform. Since
superpositions of eigenfunctions with the same eigenvalue are also valid eigen-
functions we can easily see the infinity of possible functions that are valid. The
situation appears even more daunting when we consider the relatively recent
short paper by Caola [26] showing how any arbitrary function ψ(q ′) can be used
to construct a SFF. The simple result effectively says that the function

Ψ(q′) = ψ(q′) + Fψ(q′) + F2ψ(q′) + F3ψ(q′) , (3.74)

with F the Fourier transform operator, must be a SFF. The paper by Lohmann
and Mendlovic shows, among other things, that the functional structure given
above is a necessary condition for the function Ψ(q′) to be a SFF [27]. Some of the
other better known examples of SFF’s are the functions [28]
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1/ cosh(q
√

π/2),

∣

∣

∣

∣

q√
2π

∣

∣

∣

∣

−1/2

. (3.75)

However, we begin our analysis with the SFF that has become known as the Dirac
comb.

3.5.1 The Dirac Delta Comb

We first introduce the Dirac delta comb. It is also called the Dirac delta train or
the Dirac impulsion train. We define it as

〈q′|IIIl〉 = IIIl(q
′) =

∞
∑

n=−∞
δ(q′ − nl) . (3.76)

The Fourier transform of this function is another Dirac train. This means that if
a state is a Dirac train in the position basis then it will also be a Dirac train in the
momentum basis. From the active transformation perspective we can say that if
a Dirac train is a state of the harmonic oscillator in say the position basis, then
after time T0/4 it will have evolved into another Dirac train. We can show this by
using (3.2). We have

FIIIl(q′) =
1√
2π~

∫ ∞

−∞
exp

(

− iq
′p′

~

)

IIIl(q)dq
′

=
1√
2π~

∫ ∞

−∞
exp

(

− iq
′p′

~

) ∞
∑

n=−∞
δ(q′ − nl)dq′

=
1√
2π~

∞
∑

n=−∞
exp

(

− ip
′nl

~

)

, (3.77)

where F is understood to be the ordinary Fourier transform. That is with θ = π/2.
Using the by now familiar Poisson sum formula

∞
∑

n=−∞
exp

(

− i2πq
′n

a

)

= a

∞
∑

m=−∞
δ(q′ −ma) , (3.78)

with l/~ = 2π/a we have

FIIIl(q′) =

√
2π~

l
III 2π~

l
(p′) . (3.79)
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This expresses the reciprocal relationship between periodicity in the conjugate
spaces but more importantly form the active transformation point of view they
show how the delta train evolves over 1/4 of one revolution by simply setting
p′ = q′. We can clearly see that the train of delta functions becomes an exact
eigenstate of the Fourier transform and hence is an exact eigenstate of the opera-
tor U0 only when we set

l =
√

2π~ . (3.80)

This important property of the comb function can be used to construct more com-
plicated functions which also display this property. We will discuss this in section
3.5.3. Using expression 3.80 we can illuminate the process of quantum resonance
further by requiring that the comb function to have 2π/k periodic along, say ei-
ther the position or momentum basis. Since the kicking operation U1 can only
change the phase along the function we must require that the distances between
spikes when viewed in this direction are some fraction of 2π/k. That is

l =
n

m

2π

k
, n,m ∈ Z . (3.81)

Equating equations (3.80) and (3.81) give us the same quantum resonance condi-
tion that we have already worked out above using the translational invariance of
the system. That is

~ =
2πm2

k2n2
, n,m ∈ Z . (3.82)

This result tells us that states like that in (3.79) could only be used to con-
struct an eigenbasis for the system when the quantum resonance condition ap-
plies. This has consequences for the nature of the solutions when there is no
quantum resonance. The kicking operator being unitary and diagonal in the po-
sition basis can only adjust the phase of a state at a particular position q ′ and
therefore the probability density of the quantum state can only be affected by
the Fourier transform operation. This suggests again that stationary states of the
total Floquet operator U cannot be periodic in both the position and momentum
basis in the absence of quantum resonance.

The comb function is also very useful from a numerical point of view. Indeed
it is this function that perhaps gives us the most obvious link between the con-
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tinuous Fourier transform (CFT) and the Discrete Fourier Transform (DFT) that
we shall speak of in detail in chapter 4. This link is explained clearly in [35].

Using these ideas a generalised DFT can be created. This has been success-
fully used to analyse the eigenvalue structure of the Kicked Harper Model (KHM).
In particular it has been shown that if ~ = 2π/N then the continuous problem can
be analysed discretely using matrices of order N [29]. In the same paper it was
also shown that the Lanczos diagonalisation procedure can be easily applied to
this model. Recently, using this generalised DFT technique the topological prop-
erties of the eigenvalues of the KHM with ~ = π have been analytically exam-
ined [30].

The KHM is very similar to the kicked oscillator with frequency ratio 1/4.
One can transform the KHO into the KHM by alternating between 2 different
kick strengths and consecutively applying the Fourier Transform and its inverse.
It would therefore be possible to use these techniques on the KHO. However,
commitments to our own lines of inquiry do not permit us to include such anal-
ysis at this time.

3.5.2 Superpositions of Displaced Number States (SDNS).

In this section, motivated largely by the structure of the numerically calculated
eigenstates in section 5.3.1, we examine types of states which we unimaginatively
call superpositions of displaced Fock or number states (SDNS). Many of proper-
ties of displaced Fock states are examined in [31–33]. However, we have been
unable to find any information in the literature on the construction and proper-
ties of superpositions.

We therefore begin our analysis by recalling the equation, A.55, for a coherent
state centered at (q, p) = (r, s) on the phase plane. We repeat it here for ease of
reference.

〈q′|α〉 =

(

1

π~

)1/4

exp

[

−q
′2

2~
+

√

2

~
αq′ − 1

2
|α|2 − 1

2
α2

]

, (3.83)

with α = (r + is)/
√

2~. We could also write this as

〈q′|α〉 =

(

1

π~

)1/4

exp

[

−q
′2

2~
+
q′

~
(r + is) − r

2~
(r + is)

]

. (3.84)

Consider now the displacement operator
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Ds,r = exp
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)

(3.85)
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(
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~
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)
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− ir
~
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)

exp

(−isr
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)

(3.86)

= exp

(

− ir
~
p

)

exp

(

is

~
q

)

exp

(

isr

2~

)

, (3.87)

acting on a number state (A.33), which we again repeat here for simplicity,

un(q
′) = 〈q′|n〉 =

(

1

(π~)1/22nn!

)1/2

exp

(−q′2
2~

)

Hn

(

q′√
~

)

. (3.88)

We can then write the whole operation as

Ds,run(q
′) = exp

(

isr

2~

)

〈q′ | exp

(

− ir
~
p

)

exp

(

is

~
q

)

|n〉 (3.89)

= exp

(

isr

2~

)

〈q′ − r | exp

(

is

~
q

)

|n〉 (3.90)

= exp

(

isr

2~

)

exp

(

is

~
(q′ − r)

)

〈q′ − r|n〉 . (3.91)

Using (3.88) and rearranging we can simplify this to

Ds,run(q
′) =

(

1

(π~)1/22nn!

)1/2

exp

(−q′2
2~

+
q′

~
(r + is) − r

2~
(r + is)

)

Hn

(

q′ − r√
~

)

.

(3.92)

Note that as expected this displaced Fock state reduces to expression (3.84) when
n = 0. These displaced states are no longer eigenstates of the operator U0 except
in the trivial case of a full revolution. This state evolves under U0 as

U0Ds,run(q
′) = Ds′,r′U0un(q

′) = e−iθ/2e−inθDs′,r′un(q
′), (3.93)

where

r′ = s sin(θ) + r cos(θ) , (3.94)

s′ = s cos(θ) − r sin(θ) . (3.95)
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We have used (3.53) and (3.54) in this calculation. This means that in terms of
phase space the displaced Fock state simply rotates around the origin and picks
up a phase of e−iθ/2e−inθ. Consider now the superposition of displaced Fock
states under the operation U0

U0S = U0 (D1 +D2 + ...+Dm)un(q
′) , (3.96)

with D1 = Ds1,r1, D2 = Ds2,r2 etc.. If we have a closed cyclic relationship between
the group Dm such that

U0D1 = D2,U0D2 = D3, ....,U0Dm = D1 . (3.97)

We see that this superposition of displaced Fock states must also be an eigen-
state of the operator U0(θ). There are n such superpositions Q1, Q2, ..., Qn for the
case with frequency ratio 1/R or θ = 2π/R. The superpositions for R = 4 are

Q1 = D1 +D2 +D3 +D4 , (3.98)

Q2 = D1 − iD2 −D3 + iD4 , (3.99)

Q3 = D1 −D2 +D3 −D4 , (3.100)

Q4 = D1 + iD2 −D3 − iD4 , (3.101)

or if we let Q = [Q1, Q2, Q3, Q4]
T and D = [D1, D2, D3, D4]

T ,

Q = F4D , (3.102)

where F4 is the 4 × 4 discrete Fourier matrix. In the general situations the coeffi-
cients that we use to make up the linear superposition can be gotten from the Fm
matrix, where

Fm = e−i2π
(j−1)(k−1)

m = e−iθ(j−1)(k−1) , (3.103)

for j, k = 0, 1, 2, ..., m − 1 and i =
√
−1. More details on the DFT are given in

section 4.4. The general eigenvalue equation is therefore given by

U0(θ)Qm = eimθQm . (3.104)
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These superpositions of Fock states are of exactly the form given in (3.74). We
have only needed however to define how the operator U0 or Fourier transform
acts on the displacement operator. Indeed, we can see without much thought
that using the fractional Fourier transform it is possible to define a much more
general expression to that of (3.74).

A general expression for the overlap between displaced Fock states can be
found, see [31–33] and the references therein. Here we give the relationship with-
out derivation

〈m,α2|n, α1〉 = (−1)(m−n)

(

n!

m!

)
1
2

(α2 − α1)
(m−n)Lm−n

n (|α2 − α1|2)

× exp(−1

2
|α1|2 −

1

2
|α2|2 + α∗

2α1) .(3.105)

However, it is remarkable fact that the superpositions of the displaced Fock
states described above are almost all orthogonal. To show this analytically is
quite tedious. Let us examine the scalar product 〈m |Q†

1Q1|n〉, we have in the
R = 4 case

〈m |Q†
1Q1|n〉 = 〈m |(D†

1 +D†
2 +D†

3 +D†
4)(D1 +D2 +D3 +D4)|n〉 . (3.106)

Expanding this out gives

〈m |Q†
1Q1|n〉 = 〈m |D†

1D1 +D†
1D2 +D†

1D3 +D†
1D4... (3.107)

+D†
2D1 +D†

2D2 +D†
2D4 +D†

2D4... (3.108)

+D†
3D1 +D†

3D2 +D†
3D3 +D†

3D4... (3.109)

+D†
4D1 +D†

4D2 +D†
4D4 +D†

4D4|n〉 . (3.110)

It is interesting that all these scalar products will sum to zero except in the
case when m− n = 4l, for integer l. This is not a great surprise but is frustrating
nonetheless because it tells us that these superpositions do not form a completely
orthonormal basis.

Despite this, we can use these types of states to perform some very simple
analysis on the whole kicked system. To this end we ask the what conditions
must be imposed on these superposition states if we are to also make them
approximate eigenstates of the total Floquet operator U? The kicking operator
U1, (3.14), can be approximated around kq = n′π using a Taylor series, that is
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U1 = exp

(

− i

~
µ̄ cos(kq)

)

= exp

(

− i

k~
µ cos(kq)

)

(3.111)

= exp

(

(−1)n
′+1 i

k~
µ

[

1 − (n′π − kq)2

2
+ ...

])

.

Now suppose we act on the state 〈q′|n〉 with the approximated kicking operator.
We have

U1〈q′|n〉 ≈ 〈q′|n〉 exp

(

− iµ

k~

)

exp

(

iµk

2~
q′2
)

. (3.112)

Clearly the first exponential is just a phase. The second exponential depends
on q′2. We could make the effect negligible however by simply reducing k. More
interesting however would be if we made the ~ term small and the µ term even
smaller. Reducing the value of the ~ decreases the width of the number state. If
µ is made even smaller the effect of the q dependence of the second term on the
phase of the coherent state is practically nothing. So if µ is significantly smaller
than ~ we can say that lower energy Fock states are approximate eigenvectors of
the quantum kicking operator. That is

U1un(q
′) = e−iΩun(q

′) , (3.113)

with quasi-energy Ω = µ/k~. As we have already said this number state is also
the an eigenvector of the SHO Hamiltonian and therefore is also an eigenvector
of the unitary operator U0 regardless of the time over which we apply it. Using
3.7 we can write out the eigenvalue equation for kick and free evolution as

Uun(q′) = U0U1〈q′|n〉 ≈ e−iθ/2e−iΩun(q
′) , (3.114)

for low energy number states. How low depends on the relationship between ~

and µ.
Suppose instead of the ordinary Fock state we apply the kicking operation on

to a superposition of these displaced states. If the same phase is to be applied to
each separate displaced Fock state we must impose the condition that r1 − r2 =

2n′π/k. That is, the r values in the displacement operators must separated by a
multiple of 2π/k. This condition is the same as that given in [2] and described in
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terms of vectors in the last section, see Figure 3.2. The allowed non trivial angles
are therefore θ = {2π/3, 2π/4, 2π/6}.

In the case of frequency ratio 1/4 the condition implies that s1 − s2 = 2n′π/k

also. This means that only displaced Fock states whose centers can be connected
by jumping a distance D = 2π/k can be part of the same superposition.

With this established we can now ask if it is possible to connect up the SDFS
structure with that of the Dirac comb structure examined in section 3.5.1. We at-
tempt this by summing up all the displaced number states connected by jumps
2π/k along the q or p axis. To do this we first look at (3.92) and set, for the mo-
ment, r = 0. If we sum over all values of s = 2mπ/k , with m = [−∞... −
2,−1, 0, 1, 2, ...∞], we have

ψn(q
′) = 〈q′|ψ〉n = C exp

(−q′2
2~

)

Hn

(

q′√
~

) ∞
∑

m=−∞
exp(i2mπq′/k~) ,(3.115)

= C exp

(−q′2
2~

)

Hn

(

q′√
~

) ∞
∑

m′=−∞
δ(q′ −m′k~) , (3.116)

where m and m′ are integers and we have used Poisson’s sum formula again in
the last equality. What we have then is in a set of discretely sampled Hermite
polynomials. The sampling rate is controlled completely by ~ and so approaches
the continuous function as ~ → 0. Since we required earlier that ~ be very small,
so as to limit the width of the Fock states, we may apply the same result at values
of r = 2nπ/k , with n = [−∞...− 2,−1, 0, 1, 2, ...∞], also. While this establishes a
general connection between the structures of the Dirac comb and the SDNS it is
by no means rigorous and there are many unanswered questions. Nevertheless,
the results above show that both constructions can under certain conditions give
similar looking functions.

We may use superpositions of displaced number states to do some simple
analysis on the stationary states responsible for anomalous diffusion or classical
resonance, see sections 2.4.1 and 2.4.2. We begin first by examining the quasi-
periodic islands. We shall choose again the simple case of a period one mode. We
noted that these 2 modes occurs around the points (π/2,−π/2) and (−π/2, π/2)

because of an exact cancellation between the rotation operator and the kick oper-
ator. We again use the technique of placing a displaced Fock state on the actual
island and let ~ get very small.
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Note that the function cos(kq), near values of mπ/2, with odd values of m, can
be expanded to first order as

cos(kq) = sin(mπ/2)(mπ/2 − kq). (3.117)

The kicking operator U1 around q = 2mπ/k may be then be approximated by

U1 = exp

(−iµ
~k

cos(kq)

)

≈ exp

(−iµ
~k

sin(mπ/2)(mπ/2 − kq)

)

. (3.118)

It is a simple task then to examine the effect of this operation on a displaced Fock
state. In the position basis we write

U1Ds,run(q
′) = C Hn

(

q′ − r√
~

)

exp

(−q′2
2~

+
q′

~
(r + i(s + µ sin(m

π

2
))

)

(3.119)

× exp
(

− r

2~
(r + i(s + µ sin(m

π

2
))
)

exp

(

iµ sin(mπ
2
)

2~
(r − mπ

k
)

)

,

where C =
(

1
(π~)1/22nn!

)1/2

. We now evaluate the effect of this operation on a
number state placed at the center of one of the quasi periodic modes. We now
replace r in (3.120) to displace the state to the position coordinates where the
classical anomalous islands would exist. We have

U1Ds,mπ
2
un(q

′) = CHn

(

q′ −mπ/2√
~

)

exp

(−q′2
2~

+
q′

~
(m

π

2
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π

2
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× exp
(

−mπ
4~

(m
π

2
+ i(s + µ sin(m

π

2
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)

exp
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i
µ|m|π

2~
1 − 2

k
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.

For simplicity we set k = 1 to get

U1Ds,mπ
2
un(q

′) = CHn

(

q′ −mπ/2√
~

)

exp

(−q′2
2~
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~
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π

2
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π

2
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exp
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−mπ
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π

2
+ i(s+ µ sin(m
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2
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exp
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−iµ|m|π
4~
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.(3.120)

We see then that applying the kicking operator just gives the number state
a kick to momentum. This kick has a magnitude given by µ. In chapter 2 we
showed how, on the period 1 and period 4 quasi-periodic islands, the rotation
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induced by the SHO evolution cancels out the kicking operation. Using (3.93) we
see that the quantum SHO operator, U0, in the R = 4 case, rotates the displaced
number states around the origin picking up a phase of e−inπ/2eiπ/4. It is easy to
see then these Fock states initially displaced to either (q, p) = (π/2,−π/2) and
(−π/2, π/2) are approximate stationary states of the system when with µ = π.
We write this out explicitly as:

U0U1D−π
2
,π
2
un(q

′) ≈ eiΩD−π
2
,π
2
un(q

′) , (3.121)

where Ω = −π2/4~ − (n+ 1/2)π/2.
In a similar manner the period 4 modes can be also be examined. The phase

picked up over the complete cycle is given by Ω = −2π2/~ − (n + 1/2)2π. We
have showed that there are only two period 1 classical resonant islands in chap-
ter 2. This means that these eigenfunctions, of the form above, centered on the
period 1 periodic islands cannot have the same eigenvalues as the period 4 reso-
nance modes if ~ is not resonant with 2π. This would seem to imply that these
approximate eigenstates of the total kicked operator are localised and continuous.
We present some examples of numerically calculated eigenstates to back up this
claim in section 5.3.1.1.

Of course the situation is different when dealing with the accelerator modes.
In keeping with our classical analysis, if we put a displaced Fock state on the
accelerator island at (q, p) = (5π/2, 7π/2). Operating twice with the full map
with µ = 2π should move the state to (−9π/2,−11π/2) picking up a phase of
exp(−i

4~
(10π2 + 14π2)) = exp(−i6π2/~). What is important to note here is the be-

haviour of the phase being picked up. In all cases except for when ~ is some frac-
tion of 2π, a different phase will be picked up upon each operation of the kick.
This poses some interesting problems when it comes to trying to numerically iso-
late and study the stationary states responsible for this anomalous diffusion. We
discuss these problems briefly in sections 5.3.1.1, 5.3.1.2 and 5.3.3.

3.5.3 Double Gaussian states

In chapter 5 we detail the results of many of the numerical simulations we have
performed. In one of the most surprising results we show that the magnitude of
~ need only be near a resonant value for a near quadratic energy growth rates
to occur 5.3.2. We have shown in the previous two sections how this quantum
resonance can imply both discrete and periodic stationary states. We have also
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showed how one can use superpositions of number states to approximate the
KHO’s stationary states around elliptical structures in classical phase space.

In this section we shall examine some functional structures that can be con-
structed by convolving and multiplying certain aperture functions with the Dirac
comb function. These functions have the property that they can be, under certain
conditions, exact self Fourier transforms (SFF’s). We will show that these func-
tions can provide an alternative link between the superpositions of displaced
number states and the Dirac comb function. We speculate that these functions
could potentially be used to describe a quantum mechanism that would explain
the oscillating quantum resonance patterns observed in our numerical calcula-
tions in section 5.3.2.1.

To this end we introduce the function first analysed thoroughly by Corco-
ran and Pasch [34]. We start by stating the well known fact that one Gaussian
will always become another Gaussian under Fourier transform but there is an
uncertainty relation between the widths in each function. That is, the Fourier
transform of a Gaussian Ga becomes another Gaussian G1/a. Explicitly

FC exp

(

− q′2

a2~

)

= D exp

(

−q
′2a

2~

)

(3.122)

where C and D are constants which are trivial to work out. Note that as in the
limit of very large or very small a we have the delta function and a constant as
the Fourier transform pair. When a = 1 we retain the exact SFF.

Consider now the function

Z = Ga(q
′) ∗ (IIIl(q

′)G1/a(q
′)) (3.123)

where III(q′) is the Dirac comb, (3.79) and ∗ represents one-dimensional con-
volution. An interesting property of this construction is that it is unimportant
whether the multiplication or convolution is computed first [34]. We have then
by the convolution theorem, [28,35]

F [Ga(q
′) ∗ [IIIl(q

′)G1/a(q
′)]] = FGa(q

′)[FIIIl(q′)G1/a(q
′)] (3.124)

= FGa(q
′)[F [IIIl(q

′)] ∗ F [G1/a(q
′)]] (3.125)

= G1/a(q
′)[III√

2π~

l

(q′) ∗Ga(q
′)] (3.126)
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which by the unusual property mentioned above is the original function Z pro-
vided that we set l =

√
2π~. See Figure 3.3(a). It is not hard to see that this type of

function could be generalised even further by using Hermite-Gauss polynomials
to replace the simple Gaussian function. In these cases however the constructed
function is only an approximate SFF. See again [34] and Figure 3.3(b).

We see that the function Z also has the property that under certain condi-
tions a = 0,∞ it becomes exactly the Dirac comb function. What’s more is that
in the cases where a is not quite 0 or ∞ this function must eventually tail off.
This is precisely the property we need to try and explain some of the oscillating
quantum resonance patterns in section 5.3.2.1. States that are very nearly infi-
nite and very nearly periodic would provide a very easy explanation for the near
quadratic energy growth found around quantum resonance. We shall also see in
section 5.3.1 that the numerically predicted eigenvectors of the system resemble
closely those shown in Figure 3.3. This is hardly conclusive proof of course but it
hints at the possibility that a related hybrid basis could provide a platform from
which one could successfully examine the system as it moves away from exact
quantum resonance.

Of course there are a number of problems with using these functions. Most
obviously they are not orthogonal in their current form. In addition to this is the
fact that the limiting parameter a → 0,∞ bears no resemblance to the quantum
resonance condition. There is also the problem that the distances between the
spikes in the Dirac Comb must be some fraction of 2π/k before and after Fourier
transformation. As we have already showed this only happens when the exact
resonance condition is fulfilled. Perhaps however, some link between the param-
eters l and a could be found that would help rectify this problem. It is quite pos-
sible of course that this problem and indeed the orthonormality problem may not
have a solution. However I believe, at the very least, that this approach is worthy
of further study.

3.6 Conclusion

This concludes the analytical study of the quantum delta kicked harmonic os-
cillator. The system as been analysed thoroughly for the situations of irrational
frequency ratio 1/R = (

√
5 + 1)/2 and the rational case of 1/R = 1/4.

A new approach to the problem, using the Fractional Fourier Transform has
been highlighted. The study of the Fractional Fourier Transform has over re-
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Figure 3.3. Figure showing exact double Gaussian SFF and approximate double Hermite-

Gauss SFF. In the (b) we used the Hermite-Gauss polynomial with n = 2. Compare these

figures to Figure 5.23

cent years grown considerably and has undoubtedly many more contributions
to make to this particular model. It was not possible however to do justice to
this, now huge, body of work and also provide the necessary analysis on the
quantum chaotic aspects of the thesis. Therefore, the approach initially taken in
this chapter was to only provide the simple connection between the SHO and the
fractional Fourier transform. This analysis will also be used in the next chapter
to explain the inner workings of our new numerical approach.

With regard to the analysis of the kicked quantum system the chapter has
concentrated mostly on what can be said about the structure of the systems sta-
tionary states. With irrational frequency ratio it was shown, using the arguments
of [8,10], how a map to a tight-binding approximation can be used to explain dy-
namical localisation under certain conditions. It was stressed however that this
approximation could only be valid when the parameter µ/~ < π. This fact will
be demonstrated numerically in chapter 5.

The analysis of the system with rational frequency ratio 1/R = 1/4 also con-
centrated on the structure of the Floquet operators stationary states. The origi-
nal analysis on the translational invariance of the problem and some of the con-
sequences were mentioned [2]. In particular we how one and two parameter
translational groups were related to quantum resonance and briefly explained
the effects this has on the rate of energy growth in the evolving system.

From this platform we then explained how translational invariance and in
particular the two parameter group also led to discretised and extended eigen-
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states in the position and momentum basis. This connection was then further
emphasised through the discussion of three different types of Self Fourier func-
tions (SFF’s). Firstly we discussed the Dirac comb SFF. This was easily shown to
be a very important basis for the system in exact quantum resonance. The analy-
sis on the Dirac comb is also essential to understanding the link between the the
kicked oscillator and much of the recent analysis on the kicked Harper model.

Next we dealt with the idea of using superpositions of displace Fock states
as an alternative basis for the system although it could not be made orthonor-
mal. We used this idea to approximate some of the systems eigenstates. This
approach was also used in the analysis of stationary states responsible for classi-
cal resonance.

Finally we dealt with the convolution of a double Hermite-Gauss structure
with the Dirac comb to construct an approximate SFF. While this analysis could
only give a qualitative explanation for the oscillating resonance patterns in sec-
tion 5.3.2 I feel that the numerically calculated stationary states are reason to
believe that this type of an analysis may eventually lead to a more satisfactory
solution.
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[23] F. Delyon, Y.-E Lévy and B. Souillard, Approach à la Borland to multidimensional localization, Phys.
Rev. Lett. 55, 618 (1985).

[24] J. F. Cornwell, Group Theory in Physics,( Academic Press Limited, California, 1997).

[25] O. Pfister, Group representation theory and quantum physics, Lecture notes, Physics Dept, University of
Virginia, (2003).

[26] M. J. Caola, Self-Fourier functions J. Phys. A: Math. Gen. 24, L1143 (1991).

[27] A. W. Lohmann and D. Mendlovic, Self-Fourier objects and other self-transform objects J. Opt. Soc. Am. A
9, 2009 (1992).

[28] R. N. Bracewell, The Fourier Transform and its applications (McGraw-Hill, USA, 1978).

[29] R. Ketzmerick, K. Kruse and T. Geisel Efficient diagonalization of kicked quantum systems, Physica
D 131, 247 (1999).

[30] I. I. Satija, Topological singularities and transport in the kicked Harper model, Phys. Rev. E 71, 05621 (2005).

[31] K. E. Cahill and R. J. Glauber, Phys. Rev. 177, 1857 (1969); K. E. Cahill and R. J. Glauber, Phys.
Rev. 177, 1883 (1969)

[32] S. M. Roy and V. Singh, Phys. Rev. D 25, 3413 (1982).

[33] F.A.M. de Oliveira, M.S. Kim, P.L. Knight and V. Bužek, Properties of displaced number states Phys.
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Chapter 4

Simulating the Quantum system on a
computer

4.1 Introduction

Computers now play a pivotal role in the study of all but the most simplistic
physical systems. Indeed we demonstrated in chapter 2 that the analytical study
of classical chaos must ultimately be tested against numerically computed ex-
amples. This computational dependence is even more evident is the study of
complicated quantum systems. The Schrödinger equation can be very difficult
to solve even in seemingly trivial situations. However, the data array structures
used by most computational languages can be used quite easily to represent fi-
nite dimensional Hilbert spaces. In this case quantum states and operators are
ideally represented as finite complex vectors and matrices.

However, the situation becomes more complicated when the Hilbert space
on which we wish work is continuous and/or infinite. In these situations some
sort of approximation and/or truncation is required. In cases where there are
few analytical results the numerical procedures behind the simulation becomes
almost as important as the mechanisms behind the actual continuous problem .

This chapters aims to first clarify the relationship between the continuous
system and its discretised approximation. The emphasis is placed in particular
in understanding the relationship between the size of our approximate Hilbert
space and the value of quantum parameter ~. This is established using the well
known connection between the continuous Fourier transform (FT) and is discrete
counterpart the Discrete Fourier Transform (DFT). A simple relationship between
~, the spatial length L of our simulation and the number of discrete sampling
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points N can then be derived. This then establishes limits on the ability of the
DFT to accurately simulate the continuous problem.

Next the Discrete Fractional Fourier Transform (DFFT) is introduced. It is
shown how the transform is defined in terms of a the discrete Harper equa-
tions [1]. The solutions to which are exactly the Hermite-Gauss polynomials in
the continuous limit [8]. We include many of the technical details behind the con-
struction and ordering of this basis, taking special care to include the quantum
parameter ~ at all times.

The remainder of the chapter is used to define the numerical procedures be-
hind what is known as the Fast Fractional Fourier Transform (FFFT). To do this
we analyse the well known Fast Fourier Transform (FFT) procedure. This can
be used to evolve our kicked system when the frequency ratio is the rational
1/R = 1/4. However it is also used to perform the digital convolutions necessary
in for the FFFT.

4.2 Arrays as state vectors

The Dirac notation provides an easy way to visualise most quantum systems. We
start off with a state |ψ〉 which may be viewed as a vector. The dimension of this
vector depends the type of system and it’s appearance, like all vectors, depends
on which direction you look at it from. One way of looking at a quantum system
is through the Fock state basis. Using the completeness relation we may expand
out the a state in the Fock state basis:

|ψ〉 =
∑

n

|n〉〈n|ψ〉 . (4.1)

Once written in this way we can write each vector as an array. By definition the
basis kets |n〉 are orthogonal. We write them in vector form as

| 0〉 =

















1

0

.

.

0

















| 1〉 =

















0

1

.

.

0

















... |n〉 =

















0

0

.

.

1

















. (4.2)

From (4.1) we can see that the state |ψ〉 can be written in the Fock state basis as
the array
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|ψ〉 =

















〈0|ψ〉
〈1|ψ〉
.

.

〈n|ψ〉

















. (4.3)

Since the Fock state basis is infinite it is necessary to truncate the basis so that
it may be stored on a computer. The situation is a little more complicated than
this when dealing with continuous position and momentum representations. In
the similar way to before, any arbitrary ket |ψ〉 may be expanded in these basis,
that is

|ψ〉 =

∫ ∞

−∞
| q′〉〈q′|ψ〉dq′ =

∫ ∞

−∞
| p′〉〈p′|ψ〉dp′ . (4.4)

On close inspection of the above equation we should notice that it is not possible
to write out the basis vectors | q′〉 or | p′〉 in the same way as we do for the Fock
basis (4.2). No matter how we truncate the limits of the integral it is impossi-
ble to store all the values of a continuous function on a computer. It is therefore
necessary to discretise the basis in a manner that allows us to still obtain highly
accurate results. We do this by first recalling the Fourier transform relationship
between wave-functions written in the position and momentum basis, (3.1) and
(3.2). We will make the jump from continuous space to discretised space by re-
quiring that a similar relationship be valid using discrete wavefunctions and the
Discrete Fourier Transform (DFT).

We define the column vector φ[k], to be the DFT of an input column vector
ψ[n] of length N , that is

φ[k] =
1√
N

N
∑

j=1

ψ[n] exp(−i2π(k − 1)(j − 1)/N) , 1 ≤ k ≤ N , (4.5)

with the inverse transform defined as

ψ[j] =
1√
N

N
∑

k=1

φ[k] exp(i2π(k − 1)(j − 1)/N) , 1 ≤ j ≤ N . (4.6)

Sometimes it will be useful to view these transformations in matrix notation. For
that purpose we define the matrix
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F−π
2
[j, k] = e−i2π

(j−1)(k−1)
N ≡ ω(j−1)(k−1) , (4.7)

for j, k = 1, 2, ..., N . We can use this to write (4.5) and (4.6) as

φ[k] =
1√
N
F−π

2
ψ[j] , (4.8)

and

ψ[j] =
1√
N
F †
−π

2
φ[k] =

1√
N
Fπ

2
φ[k] . (4.9)

Careful comparison of (3.1) with (4.5) leads to some important results. We
want to associate ψ(q′) with ψ[j] and φ(p′) with φ[k]. This means that we must find
relationships between the q′, p′ and j, k variables. To this end we must assume
that q′ and p′ have a finite range which we define to be L∗. The value for L can be
arrived at in the following way. Equating the expressions inside the exponentials
in (3.1) and (4.5) we arrive at the following equation

2π(k − 1)(j − 1)

N
=
p′q′

~
. (4.10)

There areN values of (k−1) and (j−1) to be distributed equally along the length
L. Setting (k − 1), (j − 1) = N and p′, q′ = L and rearranging we get

L =
√

2π~N . (4.11)

This is extremely important. It will allow us set up a grid system specific to any
~ we choose. If we wish to simulate a larger wavefunctions all we need to is
increase the sampling rate or number of grid points N . It should be noted that
it is customary to use N = 2s, s = 1, 2, 3... as it makes the fast Fourier transform

∗The advantage of, in chapter 2, using a canonical transform that leaves q′ and p′ symmetrical
can be seen quite easily here. If this was not the case we would have to define separate ranges
Lq , Lp for q′ and p′ respectively. The more general relationship LqLp = 2π~N could then be used
along with more complicated normalisation relations. Having Lp and Lq symmetrical is essential
for our purposes however because we wish to use the DFT as an active transformation on our
discrete position basis.
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algorithms considerably more efficient, see section 4.4. We can now define arrays
q[j] and p[k] as discrete approximations to the continuous axes q ′ and p′,

q[1, .., N ] = p[1, .., N ] =

[−L
2
,
−L
2

+ l,
−L
2

+ 2l, ...0...,
L

2
− 2l,

L

2
− l

]

, (4.12)

where l = L/N . The discrete wavefunctions ψ[j] and φ[k] are thus defined in
terms of q[j] and p[k]. For example, ψ[j] is now the value of the discrete wave-
function at the position given in the array q[j].

To perform the actual DFT we must first perform a shifting operation to the
arrays. To see why note that the situation where j, k = 1 should coincide with
the situation where p′, q′ = 0. This is because the argument in the exponen-
tials should be zero in both circumstances. This is important when actually per-
forming a DFT and is achieved by taking the second half of the array q[j] or p[k]
and placing it in front of the first half. This sets q[1]and p[1] to be zero. The
ranges −L/2 → L/2 − l are chosen to make sure that there is a value of exactly
0 at q[1] and p[1] †. We call this shift the fftshift and denote the shifted arrays as
qs[j], ps[k], etc.

Note that qs[j] and ps[k] are not used in the actual DFT calculation but since
ψ[j] and φ[k] are supposed to be functions of q[j] and p[k] these must be also
shifted in the same way to get the correct results. After the DFT calculation has
been performed we may apply the same shift operation to get the arrays running
from negative to positive again.

At the heart of this method lies the fact that the DFT can effectively simulate
the continuous Fourier transform provided the continuous signal is adequately
sampled. We then established the relationship between ~, the range of position
or momentum L and the number of sampling points or grid size N (4.11). What
this means numerically is that if we have a fixed space L, in which we repre-
sent our quantum state, and we decrease the value of ~, that is bring it closer to
the classical regime, we must increase the number of grid points N . Increasing
the number of sampling points N in the discretised wavefunction means that the
wavefunction now contains more information. Since L is fixed as we decrease ~

the wavefunction is allowed to contain finer detail and look more complicated.
This is, in the end, just another way of expressing Heisenberg’s uncertainty prin-
ciple. As a direct result of these factors we see that the finite memory in a CPU
means that we can only make ~ so small.

†Of course they could just as easily be defined from −L/2 + l− > L/2 but in this case the
shifting operation to put the zero in the first array position would be different.
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To illustrate the discretising procedure and the consistency of the results we
shall perform a fast Fourier transform on a discretely sampled eigenfunction of
the simple harmonic oscillator. From (A.33)) we write

u2(q
′) = 〈q′|2〉 =

(

1

(π~)1/2222!

)1/2

exp

(−q′2
2~

)

H2

(

q′√
~

)

. (4.13)

Setting ~ = 1 and writing out H2 explicitly we have

u2(q
′) =

(

1

(π)1/28

)1/2

e−
q′2

2 [4q′2 − 2] . (4.14)

we set N = 27 = 128 and use (4.11) to give L =
√

2π128 ≈ 28.46982... and
l = L/N = 0.22242.. . From (4.12) the arrays q[j] and p[j] are

q[j] = p[j] = −L/2 + j × l ≈ −14.23491 + j × 0.22242 . (4.15)

Using these reference points we can now calculate a discrete function u2(q[j])

which we plot against the q[j] array, see Figure 4.1(a). We first check that the
properties of this state are correct. To check the wavefunctions is normalised we
can perform the elementary numerical integration to get

C =

∫ ∞

−∞
dqΨ∗(q)Ψ(q) ≈ l

N
∑

j=1

ψ[j]∗ψ[j] = 1.0000000̇ , (4.16)

where the zeros continue to the sixteenth decimal place. We now take the second
half of the array and place it before the first, see Figure 4.1(b). With the vector or
array correctly shifted we can now operate on it with the DFT operation (4.5), re-
sulting in Figure 4.1(c). Finally we perform the shifting operation again to obtain
the correctly transformed wavefunction, see Figure 4.1(d). We can see that this is
so if we examine (3.4), with n = 2 to get

F−π/2u2(q
′) = e−i2

π
2 u2(q

′) = −u2(q
′) . (4.17)

Using the elementary summation to again perform the numerical integration
shows the final state to be also normalised to unity to the sixteenth decimal. In
the figure, once we had performed the transform, we changed the label on the
x-axis to p[j]. This was to emphasise the passive way of viewing the Fourier
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Transform. The transformed function can be viewed as the same state vector but
in the momentum representation. This idea now allows us to check the energy
of the discretised wavefunction. The expectation value of the energy is, in Dirac
notation

E =
ω0

2
〈ψ |p2 + q2|ψ〉, (4.18)

where |ψ〉 in the state in no particular basis. Inserting the completeness relations
for momentum and position we get

E =
ω0

2

(
∫ ∞

−∞
dp′〈ψ |p2| p′〉〈p′|ψ〉 +

∫ ∞

−∞
dq′〈ψ |q2| q′〉〈q′|ψ〉

)

=
ω0

2

(∫ ∞

−∞
dp′φ∗(p′)p′2φ(p′) +

∫ ∞

−∞
dq′ψ∗q′2ψ(q′)

)

. (4.19)

≈ ω0l

2

(

N
∑

j=1

φ∗[j]p2[j]φ[j] +

N
∑

j=1

ψ∗[j]q2[j]ψ[j]

)

≈ 2.5000000̇ ω0 , (4.20)

again with the zeros recurring till the sixteenth decimal place. This agrees with
the theoretical energy for |n〉 with ~ = 1, see (A.26).

For the specific value n = 2 the vector obtained by discretising the continuous
Hermite Gauss polynomial u2(q

′) is, to a high degree of accuracy, an eigenfunc-
tion of the DFT matrix. We can quickly show that this not always the case for
larger values of n. It is known that the probability distributions |un(q′)|2 have
a maximum roughly at the turning point of a classical particle. This becomes
more obvious at higher energies En = ~ω0(n + 1/2). As we move beyond the
classical turning point the quantum probability distribution rapidly approaches
0. The classical turning points of a particle of energy En are easily found by set-
ting En = ω0q

2/2 and therefore exist at qmax = |
√

2En/ω0| = |
√

2~(n+ 1/2)|. This
means that a grid space of at least L = 2|

√

2~(n+ 1/2)| is needed to display the
function un(q

′) correctly. However, we already a have condition for L in terms
of the size of the matrix space N and ~, (4.11). Comparing of the two conditions
gives

n =
πN

4
− 1

2
. (4.21)

Using a grid N we can, at most, accurately discretise the first n Hermite Gauss
functions. While the vectors un(q[j]) are in general extremely good approxima-
tions for the eigenvectors of the DFT we can clearly see that this is not always the
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case. In the next section we set about finding the exact set of eigensolutions for
the DFT. It is this set of solutions that are used to defined the Discrete Fractional
Fourier Transform (DFFT).

4.3 The Discrete fractional Fourier Transform

In section 3.2 we showed how, in the position basis, the Floquet operator for
the SHO and the operator called the Fractional Fourier transform were, up to a
phase, one and the same. In this section we will extend this relationship to the
discretised basis q[j] introduced above. The following discussion is based largely
on the text [1], written in particular for the signal processing field. However, we
have tried to maintain the Dirac notation and the variable ~ throughout. The
relationship between signal processing and quantum mechanics has been a pro-
ductive one for both fields. The Wigner and Husimi distributions, see section
C.1, have also many applications in signal processing.

In what follows we define the discretised Hamiltonian matrix in terms of dif-
ference equations used for differentiating discrete functions. The eigenvectors of
this matrix can are then used to define a discrete Fourier transform.

The momentum operator p is defined in the position basis as

〈q′ |p|ψ〉 =
~

i

∂

∂q
〈q′|ψ〉 =

~

i

∂

∂q′
ψ(q′) . (4.22)

Likewise the position operator in the momentum basis

〈p′ |q|ψ〉 = −~

i

∂

∂p′
〈p′|ψ〉 = −~

i

∂

∂p′
φ(p′) . (4.23)

The Hamiltonian H0, written in the position basis, is then

H0 =
ω0

2

(

p2 + q2
)

= −~2 ∂

∂q′
+ q2 . (4.24)

We have showed in section A.1.1 that the eigenfunctions of this equation are the
Hermite Gauss polynomials un(q′) with eigenvaluesEn = ~ω0(n+1/2). We define
the discrete operator pl as

〈q′ |pl|ψ〉 =
~

i

〈q′ + l/2|ψ〉 − 〈q′ − l/2|ψ〉
l

, (4.25)
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and p2
l as

〈q′ |p2
l |ψ〉 = −~2

l2
[〈q′ + l|ψ〉 − 2〈q′|ψ〉 + 〈q′ − l|ψ〉] , (4.26)

which we can write in the notation given before as

〈q[n] |p2
l |ψ〉 = −~2

l2
[〈q[n+ 1]|ψ〉 − 2〈q[n]|ψ〉 + 〈q[n− 1]|ψ〉] , (4.27)

where q[n] is given by (4.12) and (4.11).This technique forms the basis of implicit
schemes for evolving the Schrödinger equation [2]. A discrete Hamiltonian op-
eration can then be defined as

〈q[n] |H0|ψ〉 = − ~2

2l2
[

〈q[n+ 1]|ψ〉 − 2〈q[n]|ψ〉 + 〈q[n− 1]|ψ〉 + 〈q[n] |q2|ψ〉
]

. (4.28)

This Hamiltonian is then used to evolve the wavefunction forward in discrete
units of time τ using a discrete Schrödinger equation

i~

τ
〈q′|ψ(t+ τ)〉 − 〈q′|ψ(t)〉 = 〈q′ |H0|ψ(t)〉 . (4.29)

However we are only interested in the discrete form of the actual Hamiltonian.
The matrix form of H0 is tridiagonal, that is

〈q[n] |H0| q[m]〉 =
~2

2l2













2 l2

~2 q[1]2 + 2 −1 0 · · · 0 −1

−1 2 l2

~2 q[2]2 + 2 −1 · · · 0 0
...

...
... . . . ...

...
−1 0 0 · · · −1 2 l2

~2 q[n]2 + 2













.(4.30)

However, this matrix representation of the Hamiltonian does not have all the
properties we are looking for. Most importantly, when it has been fftshifted, it
does not commute with the DFT matrix and therefore does not have the same
basis eigenvectors.

Notice now that in the simple derivation above the q and p operators are not
treated the same. The p2

l operator is some sort of difference operation operating
on the discretised function. The operator approaches the continuous operator
p2 as we make l smaller. The q2 operator, however, is exactly the continuous
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operator, albeit operating on discretised function. As a solution to this we present
an argument found in [1]. Fore more details on these matters see [3–8].

We first define q2
l in terms of a difference equation in discretised momentum

space and try to work out its exact form in terms of position space. From (4.23)
and (4.26) it can be seen that the discrete operator q2

l can also be written as

〈p′ |q2
l |ψ〉 = −~2

l2
[〈p′ + l|ψ〉 − 2〈p′|ψ〉 + 〈p′ − l|ψ〉] . (4.31)

or

〈p[n] |q2
l |ψ〉 = −~2

l2
[〈p[n+ 1]|ψ〉 − 2〈p[n]|ψ〉 + 〈p[n− 1]|ψ〉] . (4.32)

An interesting comparison can be made of the discrete and continuous operators
by using the displacement operator defined in (3.48). We have

Dr,s = exp

(

i

~
(sq̂ − rp̂)

)

. (4.33)

The operator D0,s has the following effect on the bra 〈p′ |:

〈p′ |D0,s = 〈p′ | exp

(

i

~
sq̂

)

= 〈p′ − s | . (4.34)

if s = l we can write in the discrete notation

〈p[n] |D0,s = 〈p[n] | exp

(

i

~
sq̂

)

= 〈p[n− 1] | . (4.35)

Using this idea we can write (4.31) as

q2
l 〈p′|ψ〉 = −~2

l2
[

e−isq/~ + eisq/~ − 2
]

〈p′|ψ〉

= −~2

l2
[2 cos(lq/~) − 2] 〈p′|ψ〉 . (4.36)

Dividing both sides by the function 〈p′|ψ〉 we can write

q2
l = −~2

l2
[2 cos(lq/~) − 2] = q2 +O(l2/~2) . (4.37)
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Where in the last step we expanded the cosine term in a Taylor expansion. Sup-
pose that we now substitute the operator q2

l written in (4.37) for the operator q2

in (4.28), we are left with

〈q′ |H0|ψ〉 = − ~2

2l2
[〈q′ − l|ψ〉 + 2(cos(lq′/~) − 2)〈q′|ψ〉 + 〈q′ + l|ψ〉] . (4.38)

To change to the discrete notation we again set q′ = q[j] = −L/2 + (j − 1) × l

j = 1, 2....N and therefore the fftshifted array is qs[j] = [0, l, 2l, ...L/2 − l,−L/2 −
L/2 + l...− l]. Remembering that l = L/N =

√

2π~/N we can finally write

〈qs[j] |H0|ψ〉 =
∑

k

〈qs[j] |H0| qs[k]〉〈qs[k]|ψ〉 (4.39)

= −~N

4π
[〈qs[k − 1]|ψ〉 + 2(cos(2π(k − 1)/N) − 2)〈qs[k]|ψ〉 + 〈qs[k + 1]|ψ〉] .

The sum above is of course just a matrix multiplication. It is possible to write the
matrix H0[j, k] = 〈qs[j] |H0| qs[k]〉 as

H0 = −~N

4π

















2 1 0 · · · 0 1

1 2 cos( 2π
N ) − 4 1 · · · 0 0

0 1 2 cos( 2π2
N ) − 4 · · · 0 0

...
...

...
. . .

...
...

1 0 0 · · · 1 2 cos( 2π(N−1)
N ) − 4

















.(4.40)

The matrix multiplies the column vector ψ(qs) = 〈qs[k]|ψ〉 representing a state
vector written in the discretised and fftshifted position basis. This Hamiltonian
matrix H0[j, k] does commute with the DFT. It is interesting that by introducing
what many would call an inaccuracy into the Hamiltonian we somehow end up
with the correct matrix Hamiltonian. However, it makes sense from a symmetri-
cal point of view. The Harmonic oscillator is in every way symmetrical with re-
spect to the p and q representations. It is strangely logical that we should require
the same symmetry in the discretised version, even if that means introducing
another approximation.

The matrix above is sometimes called Harpers matrix and it associated eigen-
value equation (4.40) is called Harpers equation. The equation has many applica-
tions in areas of physical science. It has been associated with Block electron prob-
lems and some authors have associated it with Mathieu equations and Sturm-
Liouville problems [1]. Detailed discussions on these matters can be found in
[5–7].
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The commutation of the Harper matrix with the DFT matrix means they share
a common set of eigenvectors which we refer to as vn[j] = 〈qs[j]|n〉. Above we
found numerical evidence that at least one of these eigenvectors, when shifted
correctly, approach the discretely sampled Hermite Gauss polynomials referred
to above as un(q[j]). For studies examining the differences between these two
sets of functions as we increase the size of the vector space and, consequently,
the overall ability of the DFT to simulate the continuous transform and evolution
operator U0 of the SHO see [8] and references therein.

It is also possible to calculate the discrete matrix H0 to higher orders. Indeed
such a matrices also commute with the DFT matrix and the eigensolutions would
also be even better approximations to the Hermite Gauss polynomials un(q). We
will not discuss these matters here but a brief discussion on this matter is given
in [1].

The eigensolutions to the matrix H0 in (4.40) can found by standard numer-
ical techniques for solving tridiagonal systems. The set of eigenvectors is not
necessarily unique. In order to proceed some complicated classification and re-
ordering procedures must be carried out. For a discussion on these techniques
see [1]. With the vector V correctly ordered, that is with V = v1[q]...vN [q], one way
to define the discrete fractional Fourier transform matrix (DFrFT) is by spectral
decomposition. That is,

Fθ = V DV † . (4.41)

where D has the eigenvalues exp(i(n − 1)θ) along it’s diagonal. Using this defi-
nition of the transform we can now simulate the evolution matrix of the simple
harmonic oscillator. In our matrix notation, with θ = ω0t, we can write

〈qs[j]|ψ(t)〉 = e−i
θ
4

∑

k

〈qs[j] |F−θ| qs[k]〉〈qs[k]|ψ(0)〉 . (4.42)

Since the kicking operator matrix U1 is already diagonal in the position basis,
we can, using the fftshifted position basis qs[j], write it as the diagonal matrix

U1 = diag

[

exp

(−iµ̄ cos(qs[j])

~

)]

= diag

[

exp

(−iµ cos(qs[j])

k~

)]

, (4.43)

where we have used (3.14). The discretised and fftshifted Floquet operator for the
total kicked system with with θ = ω0t is thus given by
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U = U0U1 = e−i
θ
4F−θdiag [exp (−iµ cos(qs[j])/k~)] . (4.44)

The matrix U written in this way is easy to calculate and offers an ideal way
to numerically analyse the systems eigenvalues and eigenvectors for different
frequency ratios. However, we are as always limited by memory storage and
CPU speed in this respect. Nonetheless it is an extremely powerful tool and
can be used to search for various signatures of chaos while also checking many
of the analytical predictions. The real power of this particular technique comes
when we want to evolve a discretised vector ψ[j]. We can use the fast Fourier
transform and a technique known as the Fast Fractional Fourier transform to
accurately evolve the vector with out ever having to store a matrix. It allows the
user to examine the system for longer times and with more accuracy than have
previously been possible.

4.4 The Fast Fourier Transform

The Fast Fourier Transform (FFT) was introduced by Cooley and Tukey in 1965
[11]. The process is possibly best illustrated by actually examining the the Fourier
Transform matrix [12,13]. In the last section we defined theN×N matrix operator
F = F−π

2
as

FN = e−i2π
(j−1)(k−1)

N ≡ ω(j−1)(k−1) , (4.45)

for j, k = 1, 2, ..., N and i =
√
−1. The subscript is used for the moment to illus-

trate the size of the matrix. The matrix F2 is given by

F2 =

[

1 1

1 i2

]

, (4.46)

and the F4 matrix is given by

F4 =













1 1 1 1

1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9













, (4.47)
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which may be factorised into

F4 =













1 1

1 i

1 −1

1 −i

























1 1

1 i2

1 1

1 i2

























1

1

1

1













. (4.48)

In general we may write

F2N =

[

IN DN

IN −DN

][

FN 0N

0N FN

][

even− odd

shuffle

]

. (4.49)

where In is theN×N identity matrix and =DN is the diagonal matrix with entries
1, ω , ..., ωN . It can now be seen that

[

FN

FN

]

=













IN
2

DN
2

IN
2

−DN
2

IN
2

DN
2

IN
2

−DN
2

























FN
2

FN
2

FN
2

FN
2

























Even

Odd

Shuf

−fle













.(4.50)

In this way we can successively break down the original Fourier matrix into a
series of simple, sparse matrices. These sparse matrices thus operate individ-
ually on the input vector. These operations need not be performed as matrix-
vector multiplications but as simple reordering, multiplication and addition pro-
cedures. A cleverly written algorithm can perform a Fourier Transform on a vec-
tor in O(N log2N) operations compared to the O(N 2) operations needed when
operating with FN matrix directly.

4.5 The Fast Fractional Fourier Transform

In this section we will try to give a brief overview of an algorithm used to cal-
culate what is known as the Fast Fractional Fourier Transform (FFFT) [3,9,10].
The algorithm itself is quite complicated and the arguments presented will rely
heavily on other material. This is unavoidable, many of the techniques used here
were invented for specific use in digital signal processing which itself is a huge
subject. We begin by placing the bra 〈q′ | on the left of (4.1). This gives
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〈q′|ψ〉 =

∞
∑

n

〈q′|n〉〈n|ψ〉 (4.51)

or

ψ(q′) =

∞
∑

n

anun(q
′) (4.52)

where an = 〈n|ψ〉 and as usual the un(q′) = 〈q′|n〉 represent the Hermite Gauss
polynomials, see (A.33). Using the definition of the fractional Fourier transform
(3.6) the effect of the operator Fθ on ψ(q′) is

〈q′ |Fθ|ψ〉 =
∞
∑

n

〈n|ψ〉〈q′ |eiNθ|n〉 =
∞
∑

n

〈n|ψ〉einθ〈q′|n〉. (4.53)

or

Fθψ(q′) =

∞
∑

n

ane
inθun(q

′). (4.54)

Using the completeness relation in the position basis we can write these as

〈q′ |Fθ|ψ〉 =

∫ ∞

−∞

∞
∑

n

〈n|q′′〉〈q′′|ψ〉einθ〈q′|n〉dq′′. (4.55)

Since the Hermite Gauss polynomials are real we may write this as

Fθψ(q′) =

∫ ∞

−∞

∞
∑

n

un(q
′′)un(q

′)einθψ(q′′)dq′′. (4.56)

Using (A.33) this may be written as

Fθψ(q′) =
1√
π~

∫ ∞

−∞
ψ(q′′)e

„

−(q′2+q′′2)
2~

« ∞
∑

n

einθ

2nn!
Hn(

√
q′′

~
)Hn(

√
q′

~
)dq′′. (4.57)

where Hn are the Hermite polynomials. We now use a formula due to Mehler to
write the operation Fθ as a simpler integration, see [14,15]. The formula says that
the summation in the integration can be written as
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∞
∑

n=0

einθ

2nn!
Hn(

q′′√
~
)Hn(

q′√
~
) =

1√
1 − e2iθ

exp

[

2q′′q′eiθ − (q′′2 + q′2)e2iθ

~(1 − e2iθ)

]

. (4.58)

Substitution of this into (4.57) gives after some manipulation

Fθψ(q′) =
ei(

π
4
− θ

2)

2π~ sin θ
exp

(

− i

2~
q′2 cot θ

)

×
∫ ∞

−∞
exp

(

+
iq′′q′

~ sin θ

)

exp

(

− i

2~
q′′2 cot θ

)

ψ(q′′)dq′′. (4.59)

The inverse of this transform is given as

F−θψ(q′) =
e−i(

π
4
− θ

2)

2π~ sin θ
exp

(

+
i

2~
q′2 cot θ

)

×
∫ ∞

−∞
exp

(

− iq′′q′

~ sin θ

)

exp

(

+
i

2~
q′′2 cot θ

)

ψ(q′′)dq′′. (4.60)

It is the numerical calculation of these integrals that forms the basis of the Fast
Fractional Fourier Transform algorithm. The basic idea is that through some
clever sampling and interpolation techniques the integral can be estimated with
a digital convolution [1,3]. The convolution theorem says that the convolution of
two functions f and g can be performed with a number of Fourier transforms.
That is

f ∗ g = Fπ
2

[

F−π
2
[f ]F−π

2
[g]
]

(4.61)

The discrete integral can therefore be performed using what are known in the sig-
nal processing field as chirp convolutions and multiplications. We can perform
the convolutions using the FFT algorithm outlined in section 4.4. The whole al-
gorithm can be therefore performed in O(N logN) time.

All this means that using these algorithms we can now evolve the discrete
quantum system using (4.44) in O(N logN) time. This is significant improve-
ment on the O(N 2 logN) time needed for the split step method, see section B.1.
More importantly however is the fact that this method, like the Split step method,
allows us to evolve the system without having to store any matrices in the com-
puter memory. This will allow us to use vectors of incredible size to approximate
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the continuous quantum state. It should be noted that this method, unlike the
FFT which performs the DFT exactly, is only an estimation. However it can be
regarded as being almost exact once the vector we are operating on no significant
values outside certain range. This is not a restrictive requirement because we are
no longer required to store matrices and therefore can nearly always increase the
boundary by increasing the effective grid size N .

There are two matlab algorithms available on the web for performing the fast
fractional Fourier transform [16,17]. The first manipulates vectors with an even
number of components. The second comes as part of a digital signal processing
package and manipulates vectors with an odd number of components. A selec-
tion of web based resources can also be found at [18] and for an alternative but
comprehensive review of the fractional Fourier transform see [19].

4.6 Conclusion

The main goal of this chapter was to explain the new Fractional Fourier Trans-
form method, first demonstrated by ourselves [21], for evolving the delta kicked
harmonic oscillator. The method is significantly faster and more effective than
other techniques.

We have successfully explained the relationship between the truncated and
discretised simulation and the continuous problem. Importantly we have showed
explicitly how ~ may be controlled through the spatial range L and the effective
grid size or sampling frequency N of the simulation. A specific example demon-
strates the accuracy and consistency of this method.

We then go on to show how the DFFT is related to a type of discrete Hamil-
tonian. This section shows the exact relationship between the number basis and
our new method via Harpers equations.

The remaining sections are about trying to explain the reasons the method is
so efficient. The main reason of course is the existence of FFT algorithms. Indeed,
had we only wanted to examine the system with frequency ratio 1/R = 1/4 there
would not have been any need to go further. However, in order to generalise the
problem to all frequency ratios and to show that most of the efficiency remained
intact we also included an introduction to the FFFT algorithm we use later on.

In a chapter like this it is difficult to know how much information to include
on what are now standard Digital Signal Processing techniques (DSP). However,
there are many deep underlying connections between DSP and quantum me-



References 112

chanics that are often not highlighted. I would say this is to the detriment of both
subjects and so have tried to write out some of these DSP results in the language
of quantum mechanics. Of course there are always loose ends and therefore as
many questions as answers. However, I feel that sufficient background material
has been supplied to have a great deal of confidence in the numerical results this
technique produces.
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[6] Ç. Candon, M. A. Kutay and H. M. Ozaktas,The Discrete Fractional Fourier Transform. IEEE Int Conf
Acoustics, Speech, Signal Processing, IEEE 1713 (Piscataway, New Jersey, 1999).
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[8] L. Barker, C. Candan, T. Hakioğlu, M. A. Kutay and H. M. Ozaktas, The Discrete Harmonic oscillator,
Harpers equation and the fractional Fourier transform, J. Phys. A: Math. Gen. 33, 2209 (2000).

[9] D. H. Bailey and P. N. Swarztrauber, The fractional Fourier transform and application, SIAM Review
33 389 (1991).

[10] D. H. Bailey and P. N. Swarztrauber. A fast method for the numerical evaluation of continuous Fourier
and Laplace transforms. SIAM J. Sci. Comput. 15, 1105 (1994).

[11] J. W., Cooley, J.W. Tukey, An Algorithm for Machine computation of Complex Fourier Series, Mathematics
of Computation 19, 297 (1965).

[12] http://mathworld.wolfram.com/FourierMatrix.html.

[13] B. B. Hubbard The world according to wavelets 2nd Edition, (A K Peters, Natick, Massachusetts 1998).

[14] P. M. Morse and H. Feschbach, Methods of Theoretical Physics (McGraw-Hill,London, 1953).

[15] V. Namias, The Fractional Order Fourier Transform and its
Application to Quantum Mechanics, J. Inst. Maths Applics 25, 241 (1980).

[16] http://www.ee.bilkent.edu.tr/h̃aldun/wileybook.html.

[17] http://www.mathtools.net/files/net/dtfd.zip .



4.6: References 113

[18] Dr YangQuan Chen’s FRFT Webpages ,http://mechatronics.ece.usu.edu/foc/FRFT/.

[19] A. Bultheel, H. Martı́nez, A shattered survey of the Fractional Fourier Transform. Report TW337,
Department of Computer Science, Katholieke Universiteit Leuven, April 2002;
http://www.cs.kuleuven.ac.be/publicaties/rapporten/tw/TW337.abs.html.

[20] M. Engel, On Quantum chaos, Stochastic Webs and Localization in a Quantum Mechanical Kick system,
Ph. D Thesis(2003).

[21] G. Kells, J. Twamley and D. Heffernan, Dynamical Properties of the delta kicked harmonic oscillator,
Phys. Rev. E 70, 015203 (2004).



Chapter 5

Compilation of Numerical Results

5.1 Introduction

This chapter is a compilation of numerical results calculated using the procedure
detailed in chapter 4. It is primarily a study of quantum chaos and as such tries
to relate each simulation and calculation to the processes going on in the classical
system under the same perturbation. Ultimately it is the study of the differences
between the quantum and the classical systems.

The most powerful tool we have is the ability to numerically evolve a quan-
tum wave-packet with unprecedented accuracy and efficiency. We use this to
compare the dynamical evolution of a coherent state with that of the evolution
of a normally distributed ensemble of classical particles. Where possible we will
try to associate this evolution to a phase space representation, although this is not
always feasible. A much easier way to compare classical and quantum dynamics
is to plot the energy of the evolving state and the average energy of the classical
ensemble against time.

A by-product of the new numerical method we have introduced is the ability
to approximate the Floquet operator for the system as a large matrix. Using stan-
dard numerical diagonalisation techniques we can approximate, in the position
representation, the stationary states of the KHO for any frequency ratio. We shall
try where possible to compare the phase space representations of these eigenvec-
tors to the Poincaré surface of section generated under the same perturbation.
The diagonalisation procedure also returns the eigenvalues or quasi-energies of
the Floquet matrix. We can then apply some of the results of random matrix theory
to this data.

While the comparison between classical and quantum is paramount it is also
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necessary to acknowledge analytical results pertaining to the specific system pa-
rameters under question. The results are therefore continually presented within
the context of what was written in chapter 3.

The final factor we have taken into account in the presentation of these results
is of course other numerical studies. There is already a considerable amount
of numerical work available on the kicked harmonic oscillator. Numerical data
on the quantum system with irrational frequency ratios is quite rare although
specific examples can be found in [1,2]. A numerical study of the irrationally
kicked system can also be found in [3].

The majority of previous numerical studies concentrate on rational frequency
ratios R = 3, 4, 6 that give the crystalline structure in the classical phase plane.
The case of R = 4 has had by far the most numerical studies performed on it.
In particular see [1–5]. In the case of R = 4, the system is closely related to
the symmetric Kicked Harper Model (KHM) [6]. This means that a wealth of
numerical and analytical studies on the KHM can also be applied to the KHO.
In particular the Lanczos method for finding the systems quasi-energies can be
applied in the case with R = 4 [7]. It is for this reason that we do not include
statistical analysis on the quasi-energies in this case. We briefly discussed the
connection between the KHM and the KHO in section 3.5.1 .

Numerical work on the system with R = 3, 6 can also be found in [1,8] and
data on the quasi-crystalline cases where R is any other integer can be found
in [1–3,5,9]. As we have already explained we will not provide any numeri-
cal analysis for these frequency ratios although the numerical procedures work
equally well in all these other cases.

The structure of this chapter is therefore as follows. We concentrate initially
on the systems behaviour when the frequency ratio is the particular irrational
value 1/R = (

√
5 + 1)/2. We first provide some comparative snapshots of the

evolution of the system in the Husimi representation and the classical ensemble.
The numerical model is then used to confirm the predictions of the tight-binding
approximation, see section 3.4.1. Its invalidity for large µ and small ~ is demon-
strated.

We then analyse the mean energy of the quantum system and attempt to
quantify this quantum suppression of the energy growth. We finally calculate
the Floquet operator’s eigenvectors and eigenvalues using standard LAPACK
routines. The analysis we perform on stationary states and quasi-energies is de-
signed to show that at least some of the stationary states will become quite broad
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if µ is large and ~ is small.
With frequency ratio 1/R =1/4 we start by analysing the stationary states of

the system. We look for the discretisation associated with quantum resonance
predicted in sections 3.4.2, 3.5.2. We also concentrate specifically on the types of
stationary states that may be responsible for anomalous diffusion and classical
resonance. As we explained we do not analyse the systems quasi-energies.

The last section is a comprehensive analysis of the quantum systems diffu-
sional behaviour for different values of ~. Using our new numerical method we
perform thousands of individual simulations in an attempt to see more clearly
the effect quantum resonance has on the system. We shall also search for ev-
idence that the quantum system with certain ~ can exploit both the quantum
and classical resonance effects simultaneously to achieve super ballistic energy
growth .

5.2 Irrational frequency ratio 1/R = (
√

5 + 1)/2

In section 2.3.1 we numerically calculated the rate of energy growth or diffusion
in the classical system as a function of µ for the irrational frequency ratio 1/R =

(
√

5+1)/2. These numerical results showed a linear energy growth for all values
of µ. This agreed very well with the analytically predicted result D = µ2/4 for µ
larger than about 2, see Figure 2.6.

The quantum results are quite different. Studies into the rate of diffusion for
the quantum system have shown that there is a distinct suppression of the rate
of the diffusion which alludes to some sort of localisation mechanism present in
the quantum dynamics [1–3,10]. This is similar to the case of the kicked rotor
(KR) which displays complete localisation under certain conditions. It is gen-
erally accepted that the argument put forward by [11], linking the system with
a tight-binding model that displays Anderson localisation [12–15] is correct. In
section 3.4.1 we briefly described similar arguments first presented by [10] and
expanded upon by [3] to map the kicked harmonic oscillator to a tight-binding
model. We argued that the integral (3.42) was non-trivial once µ/~ > π, involv-
ing integrations over delta like spikes and that this placed a limit on the range
for which the tight binding approximation is accurate.

In this section we will catalog our numerical results for the irrationally kicked
quantum system. We first present some Husimi distributions to compare the
phase space distributions of a quantum state with that of an ensemble of classi-
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cal particles at various stages of their evolution. We then show how the energy-
time graph of different states for various initial states and various values ~ and µ
compares with the corresponding graph for a normally distributed classical en-
semble. We examine the diffusion curve D(µ) for different values of ~ and for
different initial conditions against the corresponding classical graphs. Note that
the classical graph should resemble that given in Figure 2.6. However in order
to fairly compare classical and quantum evolutions we must use a normally dis-
tributed classical ensemble as opposed to the evenly distributed ensemble used
in Figure 2.6.

Finally we will analyse some of the stationary states and quasi-energy statis-
tics of the systems Floquet operator for various values of µ and ~. To the best of
our knowledge no such attempt has been made before so the results are new and
cannot be compared against previous studies.

5.2.1 Evolving Husimi Distributions

We begin by comparing the evolving classical ensemble with the evolving Husimi
distribution. In Figures 5.1 and 5.2 we start with ensemble and coherent state
centered at (q, p) = (5, 0) and look at the classical and quantum distributions
at different times. The distributions are quite similar for long evolution times.
Quantum interference effects can be seen in (c) and (d) of both figures. In Figure
5.6 we plot the energy diffusion curves for these parameters. The classical and
quantum curves are remarkably similar for long times. This reflects the lack of
chaos in the classical system.

As we increase the value of µ the Poincaré surface of section for the classical
system will get more complicated. See section 2.3.1 and in particular Figure 2.2.
This finer detail means that the quantum distribution will typically not match the
classical distribution. In Figure 5.3, with ~ = 1 and µ = 0.5 this becomes more ap-
parent. However as we have already demonstrated the classical ensemble cannot
diffuse because of the effective KAM curves that restrict the motion, see section
2.3.1. In Figure 5.7 we again plot energy versus time and see that there is still a
large degree of correspondence between classical and quantum motion.

In order to see the classical ensembles energy grow we need to increase the
value of the kick strength to µ ≥ 2. At this value, as can bee seen from Figures
2.2 and 2.5, the classical motion is mostly chaotic. In Figure 5.4 we compare the
classical and quantum distributions with µ = 2 and ~ = 1. We can see that the
classical system has begun to diffuse. Visually it would seem that the quantum
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(a) (b)

(c) (d)

Figure 5.1. Phase space diagrams of (a) a normally distributed classical ensemble super-

imposed on the Husimi distribution of a coherent state centered at (q, p) = (5, 0) in the

phase plane. Subsequent diagrams show the classical ensemble and quantum state at

Phase space diagrams of a classical ensemble superimposed on the Husimi distribution

of a quantum state at times (b)n = 100, (c)200 and (d)400 In these calculations we used

~, k = 1 and µ = 0.1

(a) (b)

(c) (d)

Figure 5.2. Phase space diagrams of a classical ensemble superimposed on the Husimi

distribution of a quantum state. Diagrams show states at times (a)n = 0, (b)400, (c)800

and (d)1600. In these calculations we used ~ = 0.25, , k = 1 and µ = 0.1
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(a) (b)

(c) (d)

Figure 5.3. Phase space diagrams of a classical ensemble superimposed on the Husimi

distribution of a quantum state. Diagrams show states at times (a)n = 0, (b)100, (c)200

and (d)400. In these calculations we used ~ = 1, , k = 1 and µ = 0.5.

system does not diffuse to the same extent as the classical system. In Figure 5.8
we have plotted out the energy time curve for these values of ~ and µ for two
different initial conditions. The curve confirms that the quantum system does
not diffuse at the same rate as the classical ensemble. Indeed it could hardly be
said to diffuse at all. We speak more on this in the next subsection.

Finally, for completeness we compare the classical and quantum distributions
at various times with µ = 4 and ~ = 1, Figure 5.5. We can see that with these
parameters the quantum state appears to diffuse. This diffusion or spreading
of the wave-packet means that the quantum system quickly moves beyond the
maximum range for which we can reliably compute the Husimi and Wigner dis-
tributions. However, even if we can only show the evolution of the Husimi dis-
tribution for a short time, the diffusive nature of the quantum dynamics is quite
evident.

5.2.2 Mean energy and diffusion

In the last section we compared the Husimi distribution with the distribution
of a classical ensemble after certain amount of time. Our method of calculating
the Husimi and Wigner distributions only allowed us to view certain ranges of
the quantum state accurately, see section C.1. However, we can easily obtain the
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(a) (b)

(c) (d)

Figure 5.4. Phase space diagrams of a classical ensemble superimposed on the Husimi

distribution of a quantum state. Diagrams show states at times (a)n = 0, (b)100, (c)200

and (d)400. In these calculations we used ~ = 1, , k = 1 and µ = 2.

(a) (b)

(c) (d)

Figure 5.5. Phase space diagrams of a classical ensemble superimposed on the Husimi

distribution of a quantum state. Diagrams show states at times (a)n = 0, (b)10, (c)20 and

(d)30. In these calculations we used ~ = 1, , k = 1 and µ = 4.
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energy expectation value of the quantum state and compare it to the mean energy
of the classical ensemble. These expectation values provide a simple but effective
measure of the spread of the wavefunction.

In section 3.3 we discussed how the Floquet operator for the kicked system
could could be said to be made out of a fractional Fourier transform and a simple
diagonal operator. While in sections 4.3 and 4.5 we showed how the fractional
Fourier transform could be applied to a discrete system. Using these methods
we said we could calculate the actual Floquet matrix of our system up to a size
of about 3000 × 3000. We also said that we could effectively simulate, using the
fast fractional Fourier transform, the evolution of the quantum system using an
effective matrix size of about 106 × 106. We will give the results of many of these
calculations and simulations in this section.

However we first would like to discuss what it means to evolve classical and
quantum systems from similar initial conditions. We compare the evolution of
coherent states and a normally distributed classical ensemble by examining the
mean energy growth (diffusion) of both systems∗. Quantum mechanically we
measure the expectation value of the energy, which in Dirac notation is

E = 〈ψ |p2/2 + q2/2|ψ〉. (5.1)

Inserting the completeness relations for momentum and position we get

E =
1

2

(
∫ ∞

−∞
dp′〈ψ |p2| p′〉〈p′|ψ〉 +

∫ ∞

−∞
dq′〈ψ |q2| q′〉〈q′|ψ〉

)

=
1

2

(
∫ ∞

−∞
dp′Ψ∗(p′)p′2Ψ(p) +

∫ ∞

−∞
dq′Ψ∗(q)q′2Ψ(q′)

)

. (5.2)

These integrations can be easily carried out to a large degree of accuracy using
Simpson’s rule. In this way we may compare at a glance the diffusion of the
classical and quantum systems.

Now, starting with an initial classical ensemble and quantum coherent state at
(q, p) = (5, 0) we plot the energy of both systems as we evolve with ~ = 0.25 and
~ = 1 †. See Figure 5.6. The classical and quantum energies are very similar and

∗The RMS spread in the classical ensemble is chosen to match the RMS spread of the initial
quantum coherent state.

†Note that the value of ~ seems to change the behaviour of the classical system. This is only
as a result of the fact that we choose the width of the normally distributed ensemble to match the
width of the coherent state.
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Figure 5.6. Initial value (q, p) = (5, 0) evolved over 400 discrete steps with µ = 0.1 and

k = 1. Compare this figure with Figures 5.1 and 5.2. We used a Hilbert space of 214

dimensions to do the quantum simulation.

.

there is no sustained energy growth in either the classical or quantum systems.
Of course at this value of µ the classical system is still bounded by a multitude of
effective KAM curves, see Figure 2.2.

Increasing the value of the kick strength to µ = 0.5 the energies of quantum an
classical systems grow less similar with longer times, see Figure 5.7. As we have
already mentioned in the previous section this is because the classical trajectories
get more complicated. The classical ensemble is still bounded in the phase plane
by the effective KAM tori and, as before, there is no sustained energy growth
in either system. We had concluded as much from our analysis of the Husimi
distributions in the previous section, see Figure 5.3.

Increasing the kicking strength to µ = 2 we finally see the difference between
classical and quantum diffusion rates. The classical particles can now diffuse
radially in the phase plane because are no more bounding tori left to stop this
energy growth. However, this is not the case for the quantum state which dif-
fuses like the classical ensemble but then seems to reach a barrier of some kind.
See the Figures 5.8(a) and 5.8(b). We can check if this suppression of the energy
growth rate is due to some sort of quantum barrier, outside of which, the energy
continues to grow. To do this we can perform a similar simulation but this time
starting with an initial state centered much further from the origin. Figures 5.8(c)
and 5.8(d) show this simulation with initial state placed at (q, p) = (15, 15) in the
phase plane. We clearly see that the energy growth in the quantum system is still
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Figure 5.7. Initial value (q, p) = (5, 0) , with µ = 0.5, ~ = 1 and k = 1.We use a discretised

Hilbert space of 214 dimensions to do the quantum simulation.

significantly supressed. This points to a process that occurs throughout phase
space regardless of the initial phase coordinates of the coherent state.

We give the quantum and classical energy-time plots with (q, p) = (5, 0) and
µ = [2.5, π, 4, 6] in Figure 5.9. In all cases there is sustained energy growth in the
quantum system, however, this growth is always less than that of the classical
system.

We now have considerable numerical evidence to support the idea that the
quantum model experiences some sort of quantum suppression of it’s energy
growth. In the next section we will attempt to quantify these effects. We are
however, in a position to say with confidence that there exists a range of values
for µ, for which the classical system can diffuse and the quantum system cannot.
Above this range the quantum system experiences sustained energy growth but
at a lesser rate than that of the classical system.

This agrees with what was said in section 3.4.1. There it was explained how
the kicked oscillator with irrational frequency ratio could be mapped on to a
kind of tight binding model. However we qualified this result by saying that the
tight-binding assumption must break down once µ/~ > π. Indeed the numerical
evidence above shows delocalisation of the quantum system when the parameter
is µ/~ = 2.5. We stress that this delocalisation does not mean the tight-binding
approximation is always invalid as there is clearly some sort of process working
in the quantum system that suppresses the energy growth of the quantum state.
It is still the best explanation we have.
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(d) Initial states are centered at
(15, 15), first 400 iterations

Figure 5.8. Initial value (q, p) = (5, 0) , with µ = 2.0, ~ = 1 and k = 1. We use a

discretised Hilbert space of 215 dimensions to do the quantum simulation.
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Figure 5.9. Initial value (q, p) = (5, 0) , with µ = 2.0 ,π, 4.0, 6.0, ~ = 1 and k = 1. We use

a discretised Hilbert space of 214 dimensions to all simulations except part (d) where we

used 215 dimensions.



5.2: Irrational frequency ratio 1/R = (
√

5 + 1)/2 126

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

µ

D

D
q
 (quantum)

D
c
 (classical)

D=µ2/4

(a) (q, p) = (5, 0)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

µ

D

D
q
 (quantum)

D
c
 (classical)

D=µ2/4

(b) (q, p) = (0, 10)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

µ

D

D
q
 (quantum)

D
c
 (classical)

D=µ2/4

(c) (q, p) = (15, 15)

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

µ

D

D
q
 (quantum)

D
c
 (classical)

D=µ2/4
D ≈0.28µ2 −0.21µ −0.26

(d) Average

Figure 5.10. D -v- µ with ~ = 1/4. We use a discretised Hilbert space of 216 dimensions

in all calculations

5.2.3 Quantifying the quantum suppression

In this section we will attempt to quantify the rate at which the the quantum
energy growth is suppressed in relation to the classical system. We do this by
calculating the quantum diffusion rate Dq(µ) analogous to the classical calcula-
tion plotted in Figure 2.6. This is a considerable task not least because in order
to compare like with like we must use coherent states and normally distributed
ensembles as our initial quantum and classical states.

To this end we shall perform the calculation with three separate initial con-
ditions, that is (q, p) = (5, 0), (0, 10), (15, 15). For each of the three initial condi-
tions we then evolve the systems over 100 time steps for 40 different values of
µ. That is from µ = 0.2 to µ = 8.0. To each of these curves we fit a slope giv-
ing us the discrete function Dq(µ) = 〈ψn |E|ψn〉/n for the quantum system and
Dc(µ) =< En > /n for the classical systems. See section 2.3.1.

The results are given in Figures 5.10- 5.15. Each figure contains the results for
the three simulations and the average. The classical numerical curves generally
fit the theoretical predicted curves D = µ2/4 calculated in section 2.3.1. As ex-
pected the numerically calculated quantum curve, Dq(µ), is nearly always less
than the classical curve Dc(µ).

Using the polyfit function in matlab we can fit a second order polynomial of
the form

D(µ) = a2µ
2 + a1µ+ a0 (5.3)

to the averaged Dq data. Interestingly the coefficient in front of the quadratic
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Figure 5.11. D -v- µ with ~ = 1/2. We use a discretised Hilbert space of 216 dimensions

in all calculations
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Figure 5.12. D -v- µ with ~ = 1. We use a discretised Hilbert space of 215 dimensions in

all calculations
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Figure 5.13. D -v- µ with ~ = 2. We use a discretised Hilbert space of 214 dimensions in

all calculations
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Figure 5.14. D -v- µ with ~ = 3. We use a discretised Hilbert space of 214 dimensions in

all calculations
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Figure 5.15. D -v- µ with ~ = 4. We use a discretised Hilbert space of 214 dimensions in

all calculations
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~ < ∆D > a2 µ0

0.25 0.1634 0.2771 1.4189
0.50 0.4010 0.2979 1.5277
1.00 0.9188 0.2663 1.5488
2.00 1.4921 0.2517 1.7667
3.00 2.2076 0.3304 2.9235
4.00 2.9926 0.2895 3.3901

Table 5.1. Here we give some parameters characterising the quantum diffusion as a

function of ~.

term for all values of ~ is close to the classical value of 1/4, see Table 5.1. To get a
quantitative number on the suppression in the diffusion of the quantum state we
first average over all classical simulations. This gives us the curve < Dc(µ) >. We
now average the difference between our quantum and classical curves for each
value of ~. That is < ∆D > where

∆D =< Dc(µ) > −Dq(µ). (5.4)

See Table 5.1 for these values. We plot the relationship between < ∆D > and ~ in
Figure 5.16(a). There appears to be a linear relationship with between the values
of ~ and ∆D. We fit the straight line f(~) = 0.732~ + 0.057 to our data. We see
that the average difference between the classical and and quantum energy time
curves seem to have a linear dependence on ~. Of course this is only an aver-
age measure of a complicated process. Nonetheless it demonstrates that there is
some dynamical process in the quantum model that suppresses diffusion and is
perhaps linearly dependent on ~.

Another way of looking at this suppression is to ask at what parameter µ the
quantum and classical system will begin to diffuse. To answer we again examine
the second order polynomials fitted to the curves Dq(µ). We determine the roots
of the equations and label the RHS root µ0. The results are tabulated in Table 5.1
and plotted in Figure 5.16(b), along with the classical value of µ0 calculated in the
same way from the curve < Dc(µ) >. The suppression as a function of ~ is again
obvious but the exact relationship between ~ and the value of µ0 is not.

We have achieved our aim of, to some degree, quantifying the rate of diffusion
in the quantum system. Our analysis seems to suggest that the level of suppres-
sion may decrease linearly as ~ → 0. To say that this really is the case is another
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Figure 5.16. Suppression of Diffusion as a function of ~.

matter. Confidence in the validity of these results should be directly related to
extent and accuracy of the simulation. It will always be possible to improve on
these results.

We have examined between ~ = 0.25 to ~ = 4, using only 6 different values
in this range. We have used 3 different initial conditions in each case which is
hardly a reasonable sample size in a possible sample space of ∞2. We used 40

different values of µ and but only evolved 100 time-steps in each time.
At the same time this survey corresponds to 12, 000 iterations for each value

of ~ and therefore 72, 000 iterations overall. Considering that some of the calcula-
tions used effective grid sizes of N = 216 = 65636 we can see the power of using
the fractional Fourier transform method.

In the next section we analyse the eigenstates of the total Floquet operator U ,
see (3.17) or (3.18) with the same irrational frequency ratio. To do this however
we need to study the actual matrix operator. This will restrict the ranges of ~

which we can study even more. However, as a way of illuminating the process
of diffusion it is arguably more effective than the simple idea of evolving the
system with different initial conditions.

5.2.4 Stationary States: Irrational frequency ratio 1/R = (
√

5 +

1)/2

In this section we examine the stationary states of the irrationally kicked har-
monic oscillator and the properties of their associated quasi-energies. The main
goal is, as in the previous section, to quantify the process of diffusion. More
specifically we wish to shed light on the actual quantum process that restricts
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the energy growth as we evolve the system. We begin by examining the Husimi
distributions of some eigenstates for different values of µ and ~, using different
matrix sizes where appropriate. We will see the remarkable relationship between
these quasi-energy states and the classical phase space structure. We will also
plot the energy of each of the stationary states for different values ~ and µ. This
will prove to be useful in explaining part of the diffusive process in the quantum
regime. Finally we will analyse the quasi-energies of the system looking for sig-
natures of quantum chaos. In particular we study the quasi-energy level spacing
statistics for different parameters µ and ~.

In Figure 5.17 we superimpose the Poincaré surface of sections for different
values of µ with the Husimi distributions of some of the stationary states com-
puted with the same value of µ and ~. (As usual k is set to unity.) The most ob-
vious characteristic of these figures is the structural similarity between the quan-
tum quasi-probability distribution and the classical phase map. However, from
our point of view, the most important observation is the very obvious difference
between the distributions for µ = 0.1, 0.5, 1.5 and those for µ = 6. For the lower
values of µ, the Husimi distributions to a certain extent still resemble those of
Fock states. Even though the exact structure is disturbed slightly the ring like
pattern around the origin is still evident. However when µ = 6 there is a very
different pattern to Husimi distributions. They are broad extended structures
with significant values covering a much larger area of the phase plane. This is
important for understanding the process of diffusion in the quantum system.

We denote the eigenkets of our Floquet operator U as |ψs〉. That is

U|ψs〉 = e−iΩs|ψs〉 (5.5)

with the quasi-energies denoted by Ω. We can then easily write for the evolution
of some state Ψ

U|Ψ〉 =
∞
∑

s=0

e−iΩs |ψs〉〈ψs|Ψ〉. (5.6)

where s = 0 represents the first and lowest energy eigenstate. This is so we can
compare easily with number states. If our initial state |Ψ〉 is localised and of low
energy , i.e a coherent state, we would expect that it to be made out of a superpo-
sition of some low energy stationary states, assuming they exist. To clarify, if for
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(a) s = 0, µ = 0.1 (b) s = 29, µ = 0.1 (c) s = 69, µ = 0.1

(d) s = 9, µ = 0.5 (e) s = 19, µ = 0.5 (f) s = 59, µ = 0.5

(g) s = 1, µ = 1.5 (h) s = 14, µ = 1.5 (i) s = 71, µ = 1.5

(j) s = 0, µ = 6 (k) s = 74, µ = 6 (l) s = 149, µ = 6

Figure 5.17. Husimi Distributions of some stationary states of the kicked system U with

irrational frequency ratio. ~ = 1 and k = 1. We used a Hilbert space of 29 to generate

these figures. The integer s labels the stationary states according to energy.
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instance the value of µ is very small we expect the Floquet eigenstates to be al-
most exactly those of the unperturbed harmonic oscillator, that is |Ψs〉 ∼ |n〉 . A
coherent state, written in the eigen-representation of the Floquet operator would
be very similar to that of A.43. That is

|α〉 ≈ e−1/2|α|2
∞
∑

s=0

αs√
s
|ψs〉. (5.7)

Therefore any subsequent evolution will take place only on this low energy sub-
space of the Floquet operator and we see no diffusion regardless of our quasi-
energies.

However, when µ = 6 we see the eigenstates are no longer localised. Conse-
quently the initial coherent state must be a superposition of higher-energy Flo-
quet eigenstates. Upon each operation of the Floquet operator each stationary
state picks up a different phase and the initial interference between these ex-
tended states, which collectively makes a localised coherent state, disappears.
Energy growth becomes very likely.

In section 3.4.1 we showed that the kicked oscillator can be mapped to a tight-
binding model in the number representation. The tight binding mapping how-
ever only works for µ/~ < π and we have amassed considerable numerical ev-
idence in the last section that suggest the quantum system diffuses if µ/~ gets
large.

To get another perspective on the behaviour of the stationary states of the
Floquet matrix U as we adjust µ and ~ we examine the energies of the station-
ary states of the Floquet matrix U . We have already established that with small
values of µ the stationary states of the quantum system should resemble num-
ber states. We also noted that the stationary states seemed to be extended at
µ = 6 and showed that this was consistent with what we had already established.
However, let us assume we have, in the truncated q and p basis, a completely ex-
tended state |ψc〉. A completely extended state would on average be a constant c
in both position and momentum representations. Normalising in our truncated
numerical basis between −L/2 and L/2 we get

∫ L/2

−L/2
c2dq =

∫ L/2

−L/2
c2dp = c2L = 1 (5.8)

and therefore c = 1/
√
L. The energy of this hypothetical state is given by
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〈ψc |E|ψc〉 =
ω0

2
〈ψc |p2 + q2|ψc〉. (5.9)

Inserting the completeness relations for momentum and position we get

Ee =
ω0

2

(∫ ∞

−∞
dp′〈ψ |p2| p′〉〈p′|ψ〉 +

∫ ∞

−∞
dq′〈ψ |q2| q′〉〈q′|ψ〉

)

≈ ω0

2

1

L

(

∫ L/2

−L/2
dp′p′2 +

1

L

∫ L/2

−L/2
dq′q′2

)

(5.10)

≈ ω0

2

1

L

[

p′3

3
+
q′3

3

]L/2

−L/2
=
ω0

12
L2 (5.11)

Inserting our expression for L for the discretised basis, L =
√

2π~N , (4.11), we
could also write

Ee = ~ω0πN/6. (5.12)

In Figures 5.18 and 5.19 we plot the energy of the stationary states against s = n,
for different µ and ~ along with the line En = ~ω0(n + 1/2) and the constant
energy of a completely extended state Ee in our truncated basis. Note that the
energies Ee and En are the equal when ne = πN/6 − 1/2 ≈ πN/6.

An interesting property of the numerical model can be seen here. Note how
the higher energy Es curve always seems to have an almost mirror image in the
line Ee for all parameters. This suggests the discrete numerical system adjusts
to keep the low energy and short time simulations performed in the last section
nearly identical for different N . It is as if the higher energy eigenstates of the
matrix are there solely to take up the energy slack from the lower energy states.
All the errors introduced by discretising the system are compensated for by the
higher energy terms but with the expense that these stationary states have no
relation to classical system and indeed physical reality.

5.2.5 Quasi-Energy statistics

In this section we call upon the results of random matrix theory to perform some
simple statistical analysis on the quasi-energy levels of the kicked system with
irrational frequency ratio. Introductions to this topic can be found in [14,15]. A
more rigourous discussion on these ideas can be found in [19].
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Figure 5.18. These graphs show how the energies of the stationary states changes as we

vary ~ and µ. The larger the value of µ the closed our eigenstates come to our idealised

extended state represented by the line Ee.
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Figure 5.19. These graphs show how the energies of the stationary states changes as we

vary ~ and µ. The larger the value of µ the closed our eigenstates come to our idealised

extended state represented by the line Ee.
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The general idea behind the theory is that the statistical properties of the en-
ergy or quasi-energy levels of a system can be predicted very accuratley even
when practically none of the symmetries of the problem are known. If a classical
systems is integrable, the eigenvalues of the systems Hamiltonain or Floquet op-
erator are generally randomly distributed. Calculating the differences between
nearest eigenvalues and plotting results on a histogram generally we generally
obtain what is called a Poissonian distribution.

On the other hand, a quantum systems whose classical dynamics is known
to be chaotic displays what is called energy/quasi-energy level repulsion. This
means that the calculated energy levels tend not to be randomly distributed but
for the most part lie some distance away from other eigenvalues. Interestingly,
matrices whose elements are chosen from some random distribution, with some
reasonable physical constraints, also have eigenvalues that seem to repel each
other. The distribution pattern associated with these types of statistics is called
a Wigner distribution pattern. These distribution patterns are regarded as being
one of the most effective signature of quantum chaos.

We can readily search for this signature using the quasi-energy data com-
puted from the matrix U . The Poissonian distribution is calulated to be [19],

PP (s) = exp(−s). (5.13)

The Wigner, Gaussian Orthogonal Ensemble (GOE) distribution is given by [19],

PW (s) =
π

2
s exp

(

−π
4
s2
)

(5.14)

In our case we will find that the eigenvalues generated rarely match either of
these statistical distributions but is some kind of hybrid of them both. For this
purpose we shall use three interpolation formulas that charaterise these mixed
statistics.

The Brody interpolation formula is defined as [16,17]

Pα(s) = γ(α+ 1)sα exp(−γsα+1), (5.15)

where γ = {Γ[(α+1)/(α+2)]}α+1. The distribution is normalised by construction
and has mean spacing < s >=

∫

sP (s)ds = 1. The Poisson distribution is gotten
with α = 0 and the Wigner distribution recovered with α = 1.
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Another interpolation formula was proposed by Israilev [18]. The distribu-
tion is

Pβ(s) = A
(π

2
s
)β

exp

[

−β
4

(π

2
s
)2

−
(

2B

π
− β

2

)

π

2
s

]

, (5.16)

where the values of A and B are fixed by normalising the distribution and the
condition that the mean spacing < s > is unity. The parameter β is particulary
useful because it allows us to make a quantitative connection between quasi-
energy statistics and the extended nature of the stationary states [16]. We will
not attempt to analyse this here but this is due to the conjecture by Israilev that
the repulsion parameter β is same as the parameter βl used to measure what he
calls ’entropy localisation length’.

We will also fit an interpolation formula that is just a simple weighted sum of
both the Poisson and Wigner GOE distributions.

Pδ = δPW + (1 − δ)PP . (5.17)

It is easy to see that this simple distribution also recovers the Poisson and Wigner
distributions at δ = 0, 1 respectively.

At µ = 0.5 the effective classical KAM curves remain mostly intact and the
quasienergy spacing distribution clearly displays the expected Poisson proba-
blilty distribution even as we reduce the value of ~, see Figure 5.20.

When µ = 1.5 there are alomost no bounding KAM curves left in the classical
regime. However, as shown in the last section the energy growth in the quan-
tum system is still largely supressed. We can see that by and large a Poissonian
distribution still applies. However, as we make ~ smaller we can see that there
appears to be a slight shift towards a more Wigner like distribution and conse-
quently some kind of quasienergy level repulsion, see Figure 5.21 .

Finally we move to a higher value of µ where the classical system is com-
pletely chaotic. We see that the quantum system still displays a somewhat mixed
distribution, see Figure 5.22, for all values of ~ considered. We have included a
table of the parameters α, β and δ for the three mixed distributions, see table 5.2.
As expected the parameters α, β and δ increase with increasing µ and decrease
with increasing ~.

This concludes this section. Using the standard methods available to us we
have briefly analysed the quasi-energy level spacing statistics for the Floquet op-
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Figure 5.20. Quasi-Energy level statistics. In these figures we use µ = 0.5 and we used

a discretized Hilbert space of 3000 dimensions. If the effective KAM curves still exist in

the classical system varying ~ has little effect on the statistical distribution
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Figure 5.21. Quasi-Energy level statistics. In these figures µ = 1.5 and we used a dis-

cretised Hilbert space of 3000 dimension. As we reduce ~ the distribution becomes more

like PW .
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Figure 5.22. Quasi-Energy level statistics. In these figures µ = 4 and we used a discre-

tised Hilbert space of 3000 dimensions. Agasin, as we reduce ~ distribution becomes

more like PW .

~ µ α β δ

0.5 0.5 0.071 0.062 0.123
1.0 0.5 0.036 0.028 0.108
2.0 0.5 0.022 0.016 0.061

0.5 1.5 0.153 0.140 0.255
1.0 1.5 0.131 0.120 0.229
3.0 1.5 0.023 0.020 0.111

0.5 4.0 0.330 0.317 0.456
1.0 4.0 0.329 0.313 0.447
3.0 4.0 0.235 0.211 0.330

Table 5.2. Here we give some parameters of the quantum localisaton as a function of ~

and µ.
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erator of one period of the kicked harmonic oscillator with irrational frequency
ratios. We are not aware of any other published numerical data on this particular
system. Our analysis strongly suggests the existence of a mixed (extended and
localised) set of stationary states for this system as we reduce ~ and increase the
kicking strength µ. These deductions are in keeping with our earlier analysis on
the quantum dynamics and the systems stationary states.

5.3 Numerical study with freqency ratio 1/R = 1/4

In this section we attempt a numerical analysis of the kicked harmonic oscilla-
tor when when the frequency ratio is 1/R = 1/4 using the new FFT technique
given in chapter 4. The general aim, as stated at the start of this chapter will be
to compare and contrast classical and quantum systems as we vary the quantum
parameter ~. In chapter 3 we found that for 1/R = 1/4, as with the other cases
with 1/R = 1/3, 1/6, the parameter ~ has an importance beyond its mere mag-
nitude and therefore special attention to the small changes ~ may have on the
quantum dynamics.

The initial analysis will be on the general structure of the Floquet operators
stationary states. We look to reconcile the numerical results with the analysis
given in sections 3.4.2 and 3.5. Recall that as result of the translational invariance
the eigenstates should made up of periodic trains of delta functions when the
quantum resonance condition is fulfilled. We also speculated on the functional
form of some of the eigenstates in the absence of quantum resonance. The aim is
to show that these all these predictions are supported up by the numerical model.

Staying with the eigenstructure of the system we then select some examples of
eigenstates centered primarily on the classical period 1 and period 4 modes. We
show that when there is no quantum resonance the numerical model calculates
completely localised and continuous stationary states over the classical islands.
We shall also provide some examples of the effect quantum resonance has on
stationary states existing primarily on the accelerator modes. We are unable to
see these types of states in the absence of quantum resonance.

We then turn to straight forward evolution of the quantum system. We first
provide some general comparisons of the quantum and classical energy growth
to indicate the robustness of our model. However our main focus is on illumi-
nating the effect that quantum resonance has on the energy growth rates. We
plot the diffusion rates of the quantum system as a function of ~. We do this for
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several different values of µ and initial positions. We do not aim to quantify the
diffusion rates. We are more concerned with demonstrating that it is not nesses-
sary to have exact quantum resonance to see significant increases in the growth
rates. We show also that this quantum resonance also effects the tunneling char-
acteristics of the system and its abiltity to diffuse along the web structure.

We finally examine the energy growth rates of the evolving quantum system
initially placed near the classical period 1 and ballistic islands. The new FFT
numerical technique allows one us to reduce ~ to a value where we can place a
coherent state entirely within the stable classical structures. We can then note any
major differences between the energy growth rates of the classical ensemble and
the quantum state.

We are very interested in the idea that a state may tunnel from one of the
islands through the chaotic sea to another. Particulary we are interested in de-
tecting tunneling form one ballistic island to one of higher energy. Such a process
would potentially mean that the quantum system could simultaneously exploit
both the classically quadratic energy growth associated with the ballistic islands
dealt with in chapter 2 and the quadratic energy growth associated with quan-
tum resonance.

5.3.1 Stationary States: 1/R = 1/4

In this section we provide some selected examples of the types of eigenstates
numerically calulated from the numerical model given in chapter 4. We will not,
as we did in the system with irrational kicking frequency, provide any analysis
on the systems quasi-energy statistics. Considerable progress has been made in
this respect using the Lanczos diagonalisation procedure for the kicked Harper
model (KHM) [7].

We begin by displaying some simple plots of eigenstates when the quantum
resonance condition is not fulfilled. Begining with ~ = 1.5 and value of µ = 0.1

we plot a few stationary states in the position basis in Figure 5.23. We see there
seems to be some sort of periodicity to the stationary states. We draw atten-
tion now to the structural similarity between the generalised double Gaussian
functions touched upon briefly in section 3.5.3 and these numerically calculated
eigenstates. As we have already mentioned, the double Gaussian functions can
be made into Dirac impulse or comb functions under certain conditions. How-
ever, we were unable to find a functional form that made this condition match
with the quantum resonance condition at the time of writing.
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Figure 5.23. Plots showing quasi periodic behaviour of some stationary states with k = 1

and with N = 28. The resonance condition (3.61) is not fulfilled for these values of ~.

Compare thse figures with those of Figure (3.3).
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Figure 5.24. Stationary states in the position basis with ~ = π/2 and k = 1. The quantum

resonance condition (3.61) is fulfilled in these examples.

However, we can look for the delta function nature that our analysis suggests
should occur when the resonance condition is fullfilled. We do this by setting
~ = π/2 which with N = 1024 and k = 1 gives l = π/32 and L = 32π. In Figure
5.24 we have plotted 2 typical stationary states. The delta function nature of the
states is very obvious. In the figure we have also focused in on two adjacent delta
spikes and showed that they are both separated by the correct distance, see (3.67).

We give a selection of eigenfunctions for different parameters of µ, k, and res-
onant ~ in Figure 5.25 and the corresponding Husimi phase space distributions in
Figure 5.26. In particular we note the structure of the stationary states with small
µ and ~. This is because they have been averaged over. In C.1 we discuss some
of the problems that arise when computing Wigner and Husimi distributions of
wavefunction when the resonance condition is and is not fullfilled. Note that in
Figure 5.25(j) the stationary state appears to be continuous. However we must
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accept the possibility that the sampling rate of the numerical model is not small
enough to show the discrete nature of eigenfunctions.

5.3.1.1 Stationary states on periodic islands

We are also interested in the structure of the eigenstates when the classical sys-
tem displays anomalous diffusion characteristics. We argued in section 3.5.2 that
when µ = π and if ~ is small enough we should be able to place displaced Fock
states on the period one islands and they should retain their approximate shape
(k is again set to unity). We also showed how to work out the phase picked up
on one of the many period four islands. An important point here is to recognise
that in order to get the delta functions to appear in our numerical eigenvector
calculations we must set ~ must then be some fraction of 2π, this means that in
these particular situations the Fock states placed on the period 1 islands may pick
up the same phase over 4 Floquet operations as Fock states on one of the period
4 islands, see section 3.5.2. If ~ is not a multiple of π this cannot happen. We plot
some stationary states computed for different values of ~ around values of µ = π

in Figures 5.27(d) and 5.28(d) below.
In Figure 5.27 we plot Husimi distributions of some staionary states where ~

is not a fraction of 2π. We see that localised stationary states exist around period
1 islands. These states have different eigenvalues to stationary states with similar
distributions around the period 4 islands.

The situation is different when ~ is some fraction of 2π. We showed in sec-
tion 3.5.2 that the a displaced Fock state on one of these islands approximates
an eigenvalue of the system when ~ gets very small. The quaisenergy of such
a state was shown to approach Ω = −π2/4~ − (n + 1/2)π/2. Upon 4 opera-
tions of the Floquet operator the displaced Fock state would have picked up a
phase given by exp(−i(π2/~− (n+1/2)2π)). We also calculated the phase picked
up over a complete cycle by a displaced Fock state on a period 4 island to be
exp(−i(2π2/~ − (n + 1/2)2π)). It is easy to see that these phases are the same if
we set ~ = 2πm/n, where n and m are integers. We show this situation in Figures
5.28.

Although the distibutions above are only over a very limited phase space area
imposed by using small ~ they illustrate a very important point. Firstly to show
that we have numerically found what appears to be a localised eigenstate if ~

is not a fraction of 2π. However, in order to show this apparent localisation we
had to choose a value of ~ which would not display the delta function periodicity
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Figure 5.25. Probabilty distributions of some stationary states of the kicked system in

the position basis. For (a),(b),(c),(d),(e),(f) ~ = π/4, k = 1, N = 512. In (g),(h),(i) ~ =

π/16, k = 2, N = 512. In (j),(k),(l) ~ = π/32, k = 1, N = 1024.
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(a) s = 143, µ = 0.05 (b) s = 165, µ = 0.05 (c) s = 181, µ = 0.05

(d) s = 25, µ = 1 (e) s = 127, µ = 1 (f) s = 149, µ = 1

(g) s = 124, µ = 1 (h) s = 158, µ = 1 (i) s = 260, µ = 1

(j) s = 48, µ = 0.05 (k) s = 95, µ = 0.05 (l) s = 620, µ = 0.05

Figure 5.26. Husimi distributions of some stationary states of the kicked system corre-

sponding to the distributions in Figure 5.25. For (a)-(f) ~ = π/4, k = 1, N = 512. In

(g),(h),(i) ~ = π/16, k = 2, N = 512. In (j),(k),(l) ~ = π/32, k = 1, N = 1024.
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explained in sections 3.4.2 and 3.5.2. In section 5.3.2 we examine this issue further
by evolving a wavepacket placed on these classical islands.

5.3.1.2 Stationary states on accelerator modes

We now search for any sign of the elusive accelerator modes. The fact that clas-
sical particles on these islands never return to the same vicinity leads us intinc-
tively to say that there could be no stationary state existing entirely on one of
these modes. However, in section 3.5.2 we discussed how a displaced Fock state
placed at q = mπ/2 picked up a phase of exp(−iµ|m|π/4~), therefore it is con-
cievable that when ~ is some fraction of π certain states may pick up the same
phase on each Floquet operation as they are transported from island to island.
The aim of this section is therefore to provide examples of Husimi distributions
of numerically caclulated stationary states that exist mainly on the accelerator
modes.

In Figure 5.29 we plot some Husimi distributions of stationary states for µ =

2π + 0.15 and decreasing values of ~. We see that as expected the periodic nature
of the stationary states is still present. Moreover, by comparing these figures with
Figures 2.12 and 2.15 we can see that the Husimi distributions resemble the shape
of the classical modes. This is very interesting. It shows that with a resonant ~

sets of extended eigenstates centered primarily on the classical ballistic islands
exist. We suggest therefore that these eigenstates are thus the primary modes of
anomalous transport.

Upon each operation of the Floquet operator each of these states then picks
up a different phase to interfere differently to create the ballistic motion from
island to island. This leaves the possibilty that the quantum system may be able
to tunnel between different periodic and different accelerator modes. One aim
of the next section will be to search for numerical evidence of such behaviour.
With regards to the accelerator modes tunneling like this may lead to rates of
anomoulos diffusion that are greater than its classical counterpart. Indeed, as
we have already mentioned in chapter 3, with frequency ratio of 1/4, the rates
of diffusion in the quantum system are routinely greater than that of its classical
counterpart.

It is interesting that we have not found any of these striking phase space struc-
tures when ~ is not a fraction of π. However, this does not mean that anomalous
diffusion does not take place in these situations. We shall numerically demon-
strate this in the next section.
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(a) This state is very similar to
superposition of coherent states
placed on classical period 1 is-
lands.

(b) Another stationary state lo-
calised over the classical period 1

islands.

(c) This state is very similar to
superposition of coherent states
placed on classical period 4 is-
lands.

(d) Another Husimi distribution of
a stationary state localised over the
period 4 islands.

Figure 5.27. Husimi distributions of stationary states with µ = π and ~ = 0.03 super-

imposed over th classical quasi-periodic islands. In this diagram a Hilbert space of 210

was used. The eigenstates can be visually seen to be approximate superpositions of the

displaced Fock states. The quasi-energies of these states can be also shown to very close

to the ones we predicted analytically.
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(a) Husimi distribution showing
stationary state localised over both
classical period 1 and period 4 is-
lands.

(b) Another Husimi distribution
showing stationary state locaalised
over classical period 1 and period 4

islands.

(c) Distribution showing compli-
cated nature of the systems station-
ary states at the KAM boundary in
classical phase space

(d) Distribution showing a station-
ary state existing much farther out
into the classical chaotic sea. The
distribtion still has some resem-
belemce with the classical phase
map.

Figure 5.28. Husimi distributions of statonary states near periodic islands with µ = π

and ~ = π/128. In this diagram a Hilbert space of 210 was used. When ~ is a fraction

of π the stationary states which dictate the motion on classical period 1 islands are not

localised. This is because they may have the same phase as stationary states centered

primarily on the classical period 4 islands.
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(a) ~ = π/32 (b) ~ = π/32

(c) ~ = π/128 (d) ~ = π/128

(e) ~ = π/128 (f) ~ = π/512

Figure 5.29. Husimi distributions of numerically calculated stationary states near clas-

sical accelerator modes with µ = 2π + 0.15 and various resonant values of ~. In this

diagram a Hilbert space of 210 was used. Compare these figures to Figures 2.12 and 2.15
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5.3.2 Mean energy growth with 1/R = 1/4

The quantum kicked harmonic oscillator with frequency ratio 1/4 displays some
very interesting properties. Most notably is the idea of tunneling between areas
of phase space that are classically isolated [1,4,5]. Although, not as striking as this
there is also significant numerical evidence to suggest that the quantum system
is also capable of exploiting the web structure to diffuse through phase space at
a far greater rate than the classical system [2]. In the course of our calculations
we shall provide examples of such effects but shall not study them specifically.

The main aim of this section see what effect, if any, resonant values of ~ have
on our simulations. In the chapter 3 we emphasised the fact that the stationary
states of the Floquet operator at resonant frequencies ratio 1/4 should be made
up of periodic trains of delta functions when viewed from the position basis. We
showed in the last section that these properties could only be picked up in the
numerical calculations if ~ was some fraction of π. In order to see what effect
this has on the Energy - Time curves we plot the curves Dq(~) for fixed µ and a
variety of different initial conditions. Any resonance effects should quickly make
themselves known.

The rest of this section is concerned with examing the rates of diffusion of
states initially near classically periodic and ballistic islands. In particular we will
be looking for evidence of quantum tunneling between these islands. To do this
we place the quantum states initially on classical stable and unstable points of
these islands. A considerable effort was made in chapter 2 to find out where
these were exactly.

5.3.2.1 Mean energy growth and ~

In Figures 5.30 we plot some typical diffusion curves for different values of ~ and
µ for coherent states placed at different initial conditions. Linear energy growth
does not always occur in these examples. Even so, fitting a line to each diffusion
curve still serves as a useful measure of the systems energy growth over time.
As well as this it has always been customary to measure the classical systems
diffusion by finding the slope of the energy time graph. For comparitive reasons
we shall, for the most part, continue to measure diffusion rates in this way.

Figure 5.31(a) is a plot of the quantum diffusion Dq(~) for initial states cen-
tered on the classical stable point at the origin. Figure 5.31(b) is a similar plot but
with the initial quantum state placed on an unstable point on the classical web.
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Figure 5.30. < En > -v- n, for various system parameters. k = 1 in all of the above plots.
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In these examples the quantum wavefunction can spread out while the classical
distribution is essentially bounded. The graph also shows the non-trivial depen-
dence of the curve Dq on ~. There are significant jumps in the diffusion rates near
where 2π is some rational multiple of ~. The spikes in the graphs represent where
the quantum system displays quadratic energy growth with time. Numerical ev-
idence of the quantum resonances was given in [1] along with qualitive theoreti-
cal explanation. A good review of this can also be found in [3]. It should be noted
however that the theoretical explanations only holds in cases of exact resonance.
Our numerical analysis suggests that the value of ~ need only be nearly resonant
for near quadratic energy growth to occur.

In Figures 5.32 and 5.33 we use values of µ and initial parameters where the
classcal system is able to diffuse and include the values of Dc calculated from
the correctly distributed ensemble for different values ~ ‡. In all of the examples
the same resonance effect is very obvious. The numerical results suggest that
the quantum system generally diffuses more rapidly than the classical ensemble,
though not always, see Figure 5.30(c).

It is important to note that in all of the above examples identical graphs were
were also generated with Hilbert spaces of different dimensions. The resonance
effects are not specific to a particular choice N .

We finish this section by including two graphs demonstrating the smooth
transition between quadratic to linear energy growth as ~ moves between res-
onances. To this end we placed and intial state at (q, p) = (5, 0) and evolved it
over n = 200 time steps for various values of ~ and with µ = 2. A curve αnβ

is then fitted to the last 100 time steps. We plot β -v- ~ in Figure 5.34(a). The
last 100 time steps are used because the analysis of [1,3] requires that the the
quadratic and linear predictions for the systems energy growth rate for resonant
and nonresonant ~ only applies for large values of n. A similar simulation but
with the intial state centered at (q, p) = (0, 2), µ = 2 and only evolved for 100 time
steps is given in Figure 5.34(b). Only the last 50 time steps were used to fit to a
curve αnβ. We also included a great deal more vertical lines at different values of
~ = 2πn/m in these figures to emphasise the many different resonant modes that
the numerical model is capable of resolving.

The results are not altogether unexpected having already examined both situ-
ations in Figure 5.31. However they show that near quadratic energy growth can

‡Any ~ dependence displayed classical curve is due solely to the width of the initial ensemble
and has got nothing to do with the underlying dynamics.
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(a) Numerical calulation of D(~) for µ = 0.4, (q, p) = (0, 0) and k = 1. We have used 400

separate values of ~ to generate this graph. A discretised Hilbert space of dimension 212 was
used in this calculation. The plot illustrates clearly the quantum tunneling effect.
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(b) Numerical calulation of D(~) for fixed µ = 0.3, (q, p) = (0, π), and k = 1. A discretised
Hilbert space of dimension 212 was used in this calculation. The quantum system seems to
see the web structure at values of µ for which the classical web is infintesimally thin

Figure 5.31. Dependence of Dq and Dc on ~. For each specific value of ~ we evolved

the system over 400 time steps. For all of the above initial conditions there is effectively

no classical diffusion, that is Dc ≈ 0. The vertical lines in the graph represent where the

main resonant modes are expected to occur.
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(a) Numerical calulation of Dq(~) for fixed µ = 1, (q, p) = (0, π). A discretised Hilbert space
of dimension 214 was used in this calculation.
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(b) Here we show the resonance effect is still in effect for smaller ~. A discretised Hilbert
space of dimension 218 was used in this calculation.

Figure 5.32. Dependence of Dq and Dc on ~. In these examples for each specific value

of ~ we evolved the system over 200 time steps. The vertical lines in the graph represent

the main resonant modes are expected to occur
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(a) µ = 2, (q, p) = (5, 0), N = 215. System was evolved for 200 time steps.
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(b) µ = 4, (q, p) = (0, 2), N = 216. We evolved system over 100 timesteps

Figure 5.33. Dependence of Dq and Dc on ~. The Figure shows that the quantum reso-

nance effect is still very evident for values of µ where most of the phase plane is chaotic.

Compare this figure to Figure 5.34
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also occur near resonant values of ~. Suprisingly there is almost never any linear
energy growth for nonresonant ~. In section 3.5 we suggested an explanation
for this gradual resonance effect using the special double Gaussian SFF that un-
der certain conditions becomes the completeley extended Dirac comb function.
However, we were not able at this time to find the correct form of the SFF so that
this transition occured at ~ = 2πn/m.

5.3.2.2 Mean energy and ~: Period 1 islands

We now turn our attention to studying how the quantum system behaves when
the classical system is undergoing anomalous diffusion. We begin with the nu-
merically simpler problem of examing the quantum diffusion charateristics for
states on the periodic islands. We concentrate on the period 1 islands located
around ±(π/2,−π/2) in the phase plane, see section 2.4.1. In particular we shall
examine how a coherent state evolves when placed inside the stable classical
structure with µ = 3.14, π, 3.143. The center of the coherent state each will be
placed as the center of island, which is determined numerically from (2.63). The
stable points thus have phase space coordinates of (sq,−sq) with sq ≈ 1.56999, π/2,

1.57149. We evolve the system for some small values of ~ (there are 500 in this cal-
culation) over 150 time steps using a Hilbert space of 216. The results are shown
in Figure 5.35.

At these tiny values of ~ we can still see evidence that the quantum diffusion
is for the most part greater than that of a classical ensemble. Examing the plots we
see that at at about ~ = 0.0125 and ~ = 0.0190 there are increases in the quantum
diffusion rate above that of the classical rate. We examine the energy time curve
for these particular parameters after 500 and 1000 time steps in Figures 5.30(d)
and 5.30(e). We see this as clear evidence of tunneling.

However the spikes on the classical curve serve to remind us that there exists
a finite probablility at these values of ~ that a small number the particles in the
classical ensemble could be placed outside the bounding elliptical curves. The
spikes can be interptreted as a classical particle undergoing Levy-type flights.
This exposes a limitation in using a classical ensemble for studying the differ-
ences between the quantum and classical dynamics. However, there would ap-
pear to be no other reasonable way to do this. A classical Liouville probability
distribution could not be accurateley computed around these chaotic regions. It
is tempting to explain the tunneling therefore as some sort of chaos assisted phe-
nomena. However, we must remember previous results for which tunneling has
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Figure 5.34. Dependence of βq and βc on ~. The curve αnβ is fitted to the energy -v- time

graphs instead of the linear D. The parameter β is then plotted against ~. The peaks

in Figures 5.33 are seen to be as a result of quadratic or near quadratic energy growth

around quantum resonance.
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Figure 5.35. Dq, Dc -v- ~ for coherent states intially placed exactly on the classical period

1 stable islands. The quantum system can diffuse more easily than the classical emsem-

ble. The red (classical) spikes serve to remind us that there is a small but finite probability

that some particles in the classical ensemble will be placed outside the stable structure.



5.3: Numerical study with freqency ratio 1/R = 1/4 161

been displayed by the quantum system and while it being very unlikely that the
classical ensemble would diffuse, see Figure 5.31(a). Indeed, the results of section
5.3.1.1 would even seem to suggest that tunneling in these cases has more to do
with the periodic nature of the systems stationary states than stochasticity in the
classical dynamics.

As for the question of whether quantum resonance plays a significant role we
could point to the diffusion rate around ~ = 0.19 , Figure 5.35. However, it is not
really possible to say if this is due to a particular resonance ~ = 2π/n′ as the peak
is broad enough to contains a number of differnt resonances. Nonetheless it is
more evidence of tunneling between periodic islands. We examined the energy
curve around this point in Figure 5.30(e). With a Hilbert space of 219 dimensions
we can see that the energy growth continues for at least 500 timesteps. It must
be noted that at this value of ~ some of the classical ensemble has a considerable
chance of diffusing. It is therefore not possible to discount the possibility that the
classical chaos plays some role in this type of diffusion.

In conclusion, there is considerable numerical evidence presented here to sug-
gest the possibility of tunneling from between periodic islands with µ ≈ π. This
agrees with our simple analysis in section 3.5.2. We were unable to see if quan-
tum resonance significantly enhanced the tunneling rates because the values of
~ used in these simulations are very small, and consequently the resonant values
of ~ are tightly packed together. We have also been unable to reach a conclusion
on whether the tunneling is a consequence of the chaotic boundaries of the peri-
odic islands or just a consequence of the natural periodicity in the classical phase
space structure. A more detailed numerical analysis clearly required.

5.3.3 Mean energy and ~: Ballistic islands

In section 2.4.2 we discussed the exact mechanism responisible for the anoma-
lous diffusion spikes shown in Figure 2.8. We analysed the stabilty and structure
of these islands and it was made clear that the actual ballistic islands contained
2 primary stable structures. Exact expressions for the locations of these islands
and the stabilty ranges were obtained. In the last section we examined the phe-
nomena of quantum resonance and observed that significant increases in energy
growth rates when the value of ~ was near certain specific values. In an effort
to illuminate the mechanisms responible for this resonance we analysed some
promising functional structures in section 3.5.

In this section we will compare and contrast the energy growth rates of a
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quantum coherent state with a normal classical ensembles placed initially around
a ballistic modes. We are particulary interested in confirming if the quantum
system can exploit the classical and quantum mechanisms mentioned above to
achieve super-ballistic energy growth.

It is necessary to demonstrate particular care in the following analysis. As
was mentioned above the classical ballistic island is made up of 2 primary stable
structures, see section2.4.2. A particle inside one of the stable structures will jump
over an back between islands upon each mapping. The analysis clearly showed
then that somewhere between these islands lies an unstable chaotic region, the
width of which depends on µ. Inside this region however exist a whole hierar-
chical of smaller less prominent modes. It is important in the analysis ahead that
the precise placement and uncertainty of the quantum state be taken into account
when interpreting the subsequent motion or dynamics. In particular we have to
make ~ small enough so as a coherent state should exist as much as possible
inside the classical stable structure.

This is complicated even more because of the nature of ballistic motion in gen-
eral. Once on a ballistic island the quantum state will rapidly move away from
the phase-space origin. The evolving state will therefore reach the boundary, in-
side which we can acurately evolve the system, more rapidly than all of the other
simultations we have documented.

In order to achieve any meaningful results the full power of the FFT tech-
nique must be used. We shall be using truncated Hilbert spaces of up to N =

222 = 4194304 dimensions. At these sizes evolving the qunatum state forward 1

time step takes typically 13s on 3GHz Pentium 4 processor with approximately
1GigaByte of RAM.

However, these time and space restrictions mean we will can only perform a
few individual simulations with a few different initial conditions and parameters
~ and µ. The results of the simulations will be therefore be presented in terms of
individual energy - time graphs as opposed to the diffusion curves presented in
the last section. To save space we will only present results of simulations where
we have used resonant ~. We again stress that the sizes of the truncated Hilbert
spaces have been carefully chosen so that boundary conditions do not play any
significant role in the numerical results below.

We begin with simulations to check if the quantum system can see the anoma-
lous islands at kick strength for which they do not exist classically. To this end
we check for anomalous diffusion in the quantum system with µ = 2π − 0.05,
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see Figure 5.36. There is almost no difference between the classical and quan-
tum short time evolution for the smaller small values of ~ and therefore no sign
of anomalous diffusion in either system. Note however with our largest value
of ~, in Figures 5.36(d) that the quantum system experiences much more rapid
growth. This can also be seen by comparing 5.36(l) with the other final states
with smaller ~. This would not appear to be related to the anomalous islands.
Notice the rapid decay of the probability distribution on the right hand side of
Figures 5.36(i), 5.36(j) and 5.36(k).

We next examine the diffusion properties of the system with µ = 2π. This
is the value at which the classical anomalous diffusion has been shown to exist.
As before we see a significant difference in the wavefunctions behaviour for the
largest value of ~, see Figure 5.36(h). We also see that the rate of diffusion is
much greater than when µ < 2π in all cases except with ~ = 2π/20. In this case
the quantum system hardly registers the change.

The logarithm of the wavefunction in the position basis reveals what appears
to a an even more severe drop in the functions probability density on the right
hand side, see Figures 5.36(i),5.36(j) and 5.36(k). This is interesting and seems to
suggest that there is some kind of barrier preventing the quantum system dif-
fusing in this direction. Analysis shows that this edge corresponds to where a
classical particle placed on the island would be. It points to the possibility that
there may be a significant barrier to faster than classical diffusion in this particu-
lar case.

We now turn our attention to values of µ for which there exists some stability
in the structure of the ballistic islands, see Figures 5.37, 5.38 and 5.39. For each
value of µ and ~ we will run 2 simulations. One with the initial state centered
at the center of the island and one on one of the two stable points worked out in
section 2.4.2

We choose ~ = 2π/1400, 2π/800, 2π/200, 2π/20 and µ = 2π+.05, 6.349972, 2π+

0.1. The middle value of µ being the value where the classical system displays
the most self similarity [20,21]. We plot two energy - time graphs for each setting
of ~ and µ, one for each initial condition. Also included are the corresponding
plots of the wavefunctions probability distribution after 40 time steps.

We first consider the situation when µ = 2π + 0.05. The structure of the clas-
sical island for this parameter is shown in Figure 2.15. With ~ = 2π/1400 we see
that within the time limits that we can view the system the classical and quantum
diffusion curves are almost identical, see Figure 5.37(a) and 5.37(e). We can see
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that whether the initial state is placed over the center of the island or over one of
the stable points does not seem to make a difference either. However when we
increase the value of ~ we see that the quantum state placed over the center of the
island , that is on the unstable line between the two classical stable islands, has
a lesser energy growth rate than that of the classical system, see Figure 5.37(b).
Only when we increase ~ further do we see this effect when the quantum system
is placed exactly over an elliptic stable point. The two classical and the two quan-
tum diffusion curves are nearly identical when ~ = 2π/20, see 5.37(d) and 5.37(h)
This is expected as the initial distributions, relative to the size of the classical
islands, are quite broad.

We next consider the situation when µ = 6.349972. This is where Iomin and
Zaslavsky found rapid growth in the kicked Harper model [20,21]. We see some
evidence of the centered quantum system diffusing more rapidly than the clas-
sical system with ~ = 2π/1400. Comparing this with the same situation with
µ = 2π + 0.5 we have no evidence to suggest anything fundamentally different
occurring with this particular value of µ as the quantum system diffuses almost
exactly as fast. However, comparing Figures 5.37(f) and 5.38(f) we do see a dif-
ference. With µ = 2π + 0.05 the quantum energy growth seems to slow down.
However, with µ = 6.349972 this growth is appears more quadratic. We have
confirmed this with simulations over 80 time steps although we do not show
this here. It also must be said however that the situation is much different when
~ = 2π/200. Indeed, at these values the energy growth with µ = 2π+0.5 is greater
than with µ = 6.349972. This has also been checked over 80 time steps.

We also see little evidence of significant increases in the energy growth rates
when the states are placed exactly over the stable islands. In fact the energy
growth is nearly the same or higher when µ = 2π + 0.05. This is perhaps not un-
expected as the reason given for the increase in the quantum diffusion is related
to the self similarity and stickiness inside the chaotic regions. Placing a state pri-
marily around a stable elliptical fixed point is not be the best way to examine this
phenomena.

We finally examine the situation when µ = 2π+ 0.1. At this point the two sta-
ble islands that make up each accelerator mode have moved quite far apart, see
Figure 2.15 and there is a significant difference between diffusion curves placed
on a stable point and that placed on the unstable center of the island. We see
that, as expected, in both the classical and quantum cases the subsequent diffu-
sion rates are far less for initial states centered on the unstable center. We see
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however that in this case, as in the last, the quantum growth is greater than the
classical growth when ~ = 2π/1400. Moreover, unlike when µ = 6.349972, the
quantum growth is also greater that the classical growth when ~ = 2π/800. This
is hardly conclusive but it does at least suggest once again that there is really
nothing special quantum mechanically about diffusion rates at µ = 6.349972.

In all of the figures with µ ≥ 2π we have evidence of a hard boundary pre-
venting tunneling to higher energy accelerator modes. There is a very obvious
rapid drop in the probability distribution to below 101/20 on the right hand side.
In all cases this drop off seems to end at around 101/24. Since this is the wavefunc-
tion squared this means that the wavefunction beyond these edges is zero down
to the twelfth decimal. This is just above the machine precision of 101/16 that we
have been using. This is not to say that the energy growth of the quantum system
cannot grow faster than the classical ensemble under certain conditions. How-
ever, the fastest possible classical growth is found when we place the ensemble
with very small marginals inside one of the stable islands. In none of the cases
shown, and the hundreds of other simulations which we have not shown, have
we have ever seen the quantum system diffuse faster than this classical rate.

This is not conclusive proof of course. In order to fit the coherent states and
classical ensemble inside the island we have had to make ~ very small. This in
turn reduces the amount of time over which we can evolve the system before
we run into boundary effects while simultaneously making the quantum sys-
tem behave more classically. However this leaves open the possibility that, after
time, some quantum effects may begin to take over and we may get tunneling
and therefore faster than classical energy growth. In order to lend perhaps some
weight to possibility we plot in Figure 5.40 the logarithm of the wavefunction
initially on a stable island with µ = 2π+0.05 and ~ = 2π/200. We use an effective
grid size of 223 and evolve then system over 100 time-steps. Of course the wave-
function has begun to spread out and the diffusion is much less than the highest
rate of classical diffusion we have found. However, we do have the possibility
that the quantum system can reach areas of the phase space faster than that of
the classical ensemble. Indeed it is not unreasonable to assume that were we able
to evolve the quantum system for long enough and with small enough ~ so that
the quantum system can tunnel to other islands of higher energy while remain-
ing entirely on accelerator modes. However it must be stressed that there is a
significantly greater probability for the state to tunnel to modes of lesser energy.
We shall leave any further speculation until the conclusion.
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modes altogether.

5.4 Conclusion

We began this chapter by visually comparing the evolution of a quantum coher-
ent state with that of a normally distributed classical ensemble. We then em-
phasised the effect that ~ had on the simulations for the delta kicked harmonic
oscillator with irrational frequency ratio. We determined that an initial mini-
mum uncertain state would remain localised even after the a classical ensemble
had begun to diffuse throughout the phase plane. However, we saw that this did
not remain the case when we increased the value of the kicking parameter µ and
reduced ~.

The diffusional properties of the quantum system with irrational frequency
ratio were then examined and compared them with those of the classical sys-
tem. The quantum system was shown to display some localisation at values of
µ for which all effective KAM boundaries had vanished. We also showed that
this suppression is somewhat linearly dependent on ~ and has effectively van-
ished for ~ = 0.25. These numerical calculations also show that the localisation
effect also depends on the kick strength µ being small enough. The results agreed
with our additional comments on the limit of the accuracy of the tight-binding
approximation in section 3.4.1.
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The new fractional Fourier transform method was then used to calculate a
matrix representation of the Floquet operator in the position basis. We used a
brute force LAPACK method of diagonalizing these matrices to see what infor-
mation we could gather about the systems stationary states and quasi-energies.
We visually examined the Husimi distributions of the stationary states and found
remarkable structural similarity between these distributions and the classical
Poincaré surface of section.

We then used the some standard techniques to analyse the systems stationary
states and examine the extent of their extended nature. The results suggested
clearly that as we increased µ and decreased ~ the stationary states became more
extended. We also examined the systems nearest neighbour quasi-energies level
distribution and found a clear drift from the Poissonian level statistics to the
Wigner statistic associated with quantum chaos and extended states as we in-
creased µ and decreased ~. This once again suggested there was a limit to the
validity of the tight-binding approximation.

We then turned our attention to the case where the two frequencies of the sys-
tem were resonant and in particular where 1/R = 1/4. Using the same method as
in the irrational case we numerically calculated the systems stationary states. We
showed that, in the cases of quantum resonance, the eigenstates have the peri-
odic delta train structure predicted in section 3.4.2. The Husimi distributions for
these states in resonance also show that the periodicity extends in many different
quadratures in the phase plane. We also tried to show some particular exam-
ples of some stationary states that resembled superpositions of displaced Fock
states analysed briefly in section 3.5.2. We also provided examples of completely
localised states on the period 1 islands and examples where, under quantum
resonance, this broke down. These situations we’re all predicted analytically in
section 3.5.2.

We also found evidence of eigenstates existing primarily around the classical
ballistic islands that were also predicted in section 3.5.2. We were unable to find
any evidence of eigenstates on accelerator modes when ~ was not resonant with
2π. This point was also predicted in our analysis.

The diffusive behaviour of the quantum system as a function of ~ was then
examined. This was done for several initial conditions and with several different
different values of the kicking strength µ. We showed the well known tunneling
effect and established that it is profoundly affected by the value of ~. Indeed we
found that the quantum resonance effect is all round much more obvious than



5.4: Conclusion 172

had previously been shown. We have provided significant evidence suggest-
ing that the value of ~ need not fulfill the resonant condition, (3.61), exactly for
significant increases in diffusion rates to take place. This effect was observed re-
gardless of initial condition and value of µ. It was to try and explain this effect in
a more quantitive way that led us to study the Self Fourier Functions in section
3.5.

The diffusion rates of the quantum system placed initially on the classical pe-
riod 1 islands was also examined. In particular we wanted to see if the quantum
system could tunnel to other periodic islands. We established that this could
indeed happen but noticed that we were unable to see any definitive quantum
resonance effects.

We finally gave a detailed examples of the initial behaviour of the quantum
system placed around the classical accelerator modes. It was demonstrated that
under certain conditions the quantum system could diffuse faster than the clas-
sical ensemble. It was seen that the quantum system could easily tunnel to other
accelerator modes provided they had a lower energy than the main part of the
wave-packet. There is a significant barrier preventing quantum diffusion at a
faster rate than that of a classical ensemble entirely contained within the ballis-
tic islands stable structure. Despite this we did however demonstrate that there
was some evidence of tunneling to higher energy modes but that this was many
orders of magnitudes less than that of the tunneling to lower energy modes.

I believe that the overall worth of the numerical method has been effectively
demonstrated. It has confirmed, sometimes spectacularly, with all of the analyti-
cal tests we had time to compare it with. It has also, when asked to do so, agreed
with any of the other numerical examples given in the literature.

In what I feel is one of the biggest tests of the numerical setup we have shown
the exact periodicity of stationary states when 1/R = 1/4 and ~ = 2mπ/k2n. As
well as this, these states are made up of trains of delta functions as predicted
and their Husimi distributions are translationally invariant in many different di-
rections in phase space. The procedure also clearly shows the existence of the
quantum resonance and quadratic energy growth but also shows that this type
of growth can also occur for values of ~ near resonance. The final demonstration
of analysing the quantum dynamics on the accelerator modes over 40 time-steps
with ~ = 2π/1400 can only be done using an effective grid size of 222 and took
approximately 7 minutes on a Pentium4. While the split step method, see section
B.1, could possibly have performed a similar calculation it would have to have
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taken thousands of times longer to achieve the same accuracy. Indeed, using
our technique the same simulation using effective grid sizes of 223 takes about
an hour and would take weeks to accomplish using the split step method. Of
course the differences are much less pronounced when we are dealing with the
irrationally kicked system as the fast fractional Fourier transform takes up more
time that the ordinary fast Fourier transform. However, as we have seen there
is at most linear growth in the quantum system and the memory and efficiency
requirements are therefore not the same.

In conclusion, we now have a technique that hand in hand with a reasonably
fast computer can now analyse the dynamics of the kicked harmonic oscillator
several orders of magnitude more efficiently than has previously been possible.
We have tested this method and found that it has confirmed and improved upon
much of the numerical data already available as well as placing limits on some
of the available analytical results. I believe that this can become a very valuable
tool in the general study of stochasticity in non KAM quantum systems.
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Chapter 6

Conclusion and perspectives

I will conclude the manuscript with a general review of what has been achieved
in this thesis. I will highlight what I feel are its major accomplishments as well
as pointing out where there is room for further studies.

In Chapter 2 I examined the classical problem from a slightly different per-
spective. I tried to be mostly original in my analysis of the system’s general
properties. However originality can sometimes come at the expense of clarity.
With this in mind I tried to find a balance between other authors material and
my own.

There are a few contributions that I believe to be noteworthy. Firstly I feel
that that by moving to a coordinate system where the momentum and position
scales are the same is extremely useful. I also feel that it is important for this
transformation to be canonical if the solutions are to be ever related to physical
reality. Many authors find it useful to move to a dimensionless coordinate system
but the transformations used to do this are no longer canonical.

Secondly is the discussion on the behaviour of the system with irrational fre-
quency ratio. It was stressed that the KAM theorem cannot be applied in this case
yet the system for all intents and purposes behaves exactly like a KAM system.
This is an interesting contradiction and one that could be further explored.

Several attempts to apply simple stability analysis to the problem have been
made. The analysis showing the instantaneous organisation of the phase space
pattern under infinitesimal perturbation is, as far as I know, original. The stability
analysis of the ballistic modes is also original and I believe gives a result that was
previously unknown. It might be possible to find the exact stability conditions
for other structures of the map but I do not see any real need for this to be done.
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As I have repeatedly mentioned in Chapter 3, the problem of the quantum
kicked delta harmonic oscillator is deceptively difficult. I felt that in order to
be able understand the quantum manifestations of classical problems it would
be useful to try work in the same coordinates as the classical mapping. This
eventually led us to the Fractional Fourier transform method which was the basis
of the entire thesis. The derivation connecting the transform with the evolution
operator of the SHO at the start of Chapter 3 is entirely my own.

With regards to actually studying the perturbed quantum system it was felt
that like all quantum problems, the dynamics would be best understood by ex-
amining the eigensolutions. We started by giving a detailed review of the work
by Frasca and independently by Engle for irrational frequency ratios. It was
pointed out that the tight-binding approximation could only be valid under cer-
tain conditions. We later backed up this assertion with concrete numerical evi-
dence.

The work of Borgonovi and Rebuzzini, showing translational invariance for
certain rational frequency ratios and the relationship between one and two pa-
rameter translation groups and linear and quadratic energy growth, was reviewed.
The analysis of Engle was relied upon here also. Our approach to the problem
was to try to take some property of the system, e.g. the classical phase struc-
ture, quantum resonance/translational invariance, and try to find an analytical
function that was an approximate eigensolution and could be used to explain
that property. This led us to consider three separate but related functional forms,
namely the Dirac delta comb, the superpositions of Fock states and the hybrid
double Gaussian states. While we were able to give specific instances where these
functions were approximate eigenstates of the system we were unable to find any
general solution to the problem or, except in special limiting cases, show that any
of the functions could be used to form a complete basis. It was hoped that a gen-
eral function could be found that would have each of the above functional forms
as a special case. Unfortunately we were unable to establish the relationships
in the correct context and in this respect the chapter is incomplete. However, I
have established definite links between the different functions and I believe that
a more concentrated effort in this direction may provide more satisfying results.

The most important aspect of this study was the realisation that the Fast
Fourier transform and the Fast Fractional Fourier transform were precisely the
evolution operators of the free evolution of the harmonic oscillator written in the
position basis. Using this method we were able to develop a numerical algorithm
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to simulate the quantum dynamics of the kicked system with greater accuracy
and for longer times than were previously possible. This allowed allowed us to
accurately probe the kicked system with smaller values of the quantum parame-
ter ~ than other studies.

In this way the effects of certain classical structures could be seen in the ac-
tual quantum dynamics. As well as this, the simple control that we have over
the parameter ~ has also allowed us to illuminate purely quantum phenomena
in much more detail than before. Among other things, the model clearly shows
the ~ dependence of the quantum suppression of energy growth in the irrational
frequency ratio case. The model also suggests that linear energy growth in the
1/4 quantum system is more the exception than the norm and that quantum sup-
pression may even exist for certain specific values of ~.

We have given a comprehensive numerical analysis of the quantum system in
the situations that have attracted most attention in the field. Namely the system
with rational frequency ratio 1/4 and with irrational frequency ratio 2/(

√
5 + 1).

We examined the actual dynamics as well as the numerically calculated eigenso-
lutions. It could be argued that I would have been better served by concentrating
more specifically on some particular property like the quantum manifestation of
classical resonance. However, it was strongly felt that we should try to demon-
strate the applicability of the algorithm to a wide range of quantum and classical
phenomena.

The numerical explorations of this fascinating system are sparse and are scat-
tered throughout the literature. This thesis attempts to provide a fuller, self con-
tained and more detailed exploration of the system. It is comforting to know that
in specific situations where we have been able to compare our results with others
they have been of a similar nature. However, due to the power of our algorithms
we have been able to present these previous results in a broader context. While
doing this was at times tedious it will hopefully provide a useful starting point
to anyone wishing to understand the global behaviour of the quantum system.



Appendix A

The Simple Harmonic Oscillator

A.1 The Simple Harmonic Oscillator

The problem of finding the energy eigensolutions for the simple harmonic os-
cillator is included in all introductory text books on quantum mechanics. Our
analysis here follows closely that found in [1] only using the more symmetrical
Hamiltonian operator derived in chapter 2. This symmetry is essential for easily
understanding many of the properties of the KHO and the numerical methods
outlined in chapter 4. We begin with the symmetrical Hamiltonian derived in
chapter 2:

H0(q, p) =
ω0

2

(

p2 + q2
)

. (A.1)

In this case H0, p and q are understood to be operators. The next step is to intro-
duce the slightly different annihilation and creation operators

a =

√

1

2~
(q + ip) a† =

√

1

2~
(q − ip) (A.2)

or equivalently

q =

(
√

~

2

)

(a† + a) p =

(
√

~

2

)

i(a† − a) (A.3)

Using the canonical commutation relation

[q, p] = i~ (A.4)
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we can easily show that

[a, a†] =

(

1

2~

)

(−i[q, p] + i[p, q]) = 1. (A.5)

With the introduction of the the number operator

N = a†a, (A.6)

with eigenvectors and eigenvalues defined by

N |n〉 = n|n〉, (A.7)

we can write

H0 = ω0

(

p2 + q2

2

)

=
~ω0

2
(aa† + a†a) = ~ω0(N + 1/2), (A.8)

where we used (A.3), (A.5) and (A.6).
We now solve the Schrödinger equation (SE) in the usual way to find the time

evolution operator. The state vector for the system must obey the SE , that is

i~
∂

∂t
|ψ(t)〉 = H0|ψ(t)〉. (A.9)

Integrating from t = 0 to T we have

|ψ(T )〉 = U0(T )|ψ(0)〉 = exp (−iH0T/~) |ψ(0)〉, (A.10)

where U0(T ) is called the evolution operator. Substituting in our Hamiltonian for
the simple harmonic oscillator we have for the evolution operator

U0(T ) = exp

(

− iθ

2~
(p2 + q2)

)

= exp (−i(N + 1/2)θ) , (A.11)

with θ = ω0T .

We finally derive some results which will be needed later on. From (A.5) we
can derive the commutation relations
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[

a, a†a
]

= [a,N ] = a,
[

a†, a†a
]

= [a†, N ] = −a†. (A.12)

Now, by definition, an operator in the Heisenberg picture may be gotten from
one in the Schrödinger picture by virtue of the following relation

AH = U †
0AU0 (A.13)

where U0 is the time evolution operator defined above. We now note that the
equations of motion for a and a† in the Heisenberg picture are given by

daH
dt

=
1

i~
[aH ,HH ] =

1

i~
[aH , ~ω0(a

†
HaH + 1/2)] = −iω0aH (A.14)

da†H
dt

=
1

i~
[a†H ,HH ] =

1

i~
[a†H , ~(a†HaH + 1/2)] = iω0a

†
H , (A.15)

where we used the commutation relations in (A.12), valid in both the Schrödinger
and Heisenberg pictures. We have also denoted the Heisenberg picture with the
subscript H . These equations of motion may be easily solved to get

aH(t) = a(0)e−iω0t = ae−iω0t = U †
0aU0,

a†H(t) = a†(0)eiω0t = a†eiω0t = U †
0a

†U0. (A.16)

where we have used (A.13). These relations will be very useful later on.

A.1.1 Energy-eigenvalue problem

In the last section we introduced the annihilation operator a and the creation
operator a† in (A.2) and derived the commutation relations (A.12). We may sub-
stitute these relations into the eigenvalue equation (A.7) to get

N [a|n′〉] = (n′ − 1)[a|n′〉], (A.17)

N [a†|n′〉] = (n′ + 1)[a†|n′〉]. (A.18)

We now examine the scalar product



A.1: The Simple Harmonic Oscillator 181

〈n′ |N |n′〉 = 〈n′ |a†a|n′〉 = n′〈n′|n′〉. (A.19)

This is the norm of the vector a|n′〉 which is ≥ 0. This and the fact that 〈n′|n′〉 > 0

means that n′ ≥ 0, or the eigenvalues n′ are real and nonnegative. If we let n′ = 0

then we must have

a| 0〉 = 0, (A.20)

since the norm of that vector is zero by (A.19). The expressions in (A.18) show
that a|n′〉 is an eigenket of N with eigenvalue n′− 1 and that a†|n′〉 is an eigenket
of N with eigenvalue n′ + 1. This means that a|n′〉 can differ form |n′ − 1〉 by
only a constant and also that a†|n′〉 can differ form |n′ + 1〉 by a constant. We can
therefore have

a|n′〉 = cn|n′ − 1〉 (A.21)

The norm of this vector from (A.19) is

〈n |a†a|n〉 = n〈n|n〉 = |cn|2〈n− 1|n− 1〉. (A.22)

Since 〈n|n〉 and 〈n − 1|n − 1〉 are both normalized to unity we choose |cn| to be
√
n. We set the arbitrary phase to zero. We can therefore write

a|n〉 =
√
n|n− 1〉. (A.23)

A similar calculation for the creation operator a† gives

a†|n〉 =
√
n + 1|n+ 1〉. (A.24)

For convenience we now collect these results into one set:

N |n〉 = n|n〉 (A.25a)

a| 0〉 = 0 (A.25b)

a|n〉 =
√
n|n− 1〉 (A.25c)

a†|n〉 =
√
n + 1|n+ 1〉. (A.25d)
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It can easily be seen that the eigenkets |n〉 of N are also eigenkets of the Hamil-
tonian H0. Using (A.8) we can write for the energy eigenvalue equation

H0|n〉 = En|n〉 = ~ω0(n+ 1/2)|n〉. (A.26)

To see what these vectors look like in the position basis we use (A.25b) as a start-
ing point. Writing this out but in terms of q and p we have

q + ip| 0〉 = 0 (A.27)

If we take the inner product of this with eigenbra 〈q′ | of q we have

〈q′ |q + ip| 0〉 =

(

q′ + ~
d

dq′

)

u0(q
′) = 0, (A.28)

with u0(q
′) = 〈q′|0〉. Here we have used the fact that

〈q′ |V (p)|ψ〉 = V

(

~

i

∂

∂q′

)

〈q′|ψ〉 = V

(

~

i

∂

∂q′

)

ψ(q′), (A.29)

for any smooth function V . The normalised solution to (A.28) is

u0(q
′) ≡ 〈q′|0〉 =

(

1

π~

)1/4

exp

(−q′2
2~

)

. (A.30)

This is the vacuum state written in the position representation. Using (A.25d)
and (A.2) we can write

〈q′ |a†| 0〉 =
1√
2~

〈q′ |q − ip| 0〉 = 〈q′|1〉. (A.31)

Using (A.29) and (A.30) we can write

u1(q
′) ≡ 〈q′|1〉 =

1√
2~

(

q′ − ~
d

dq′

)

u0(q
′) =

(

2

~

)(

1

π~

)1/4

q′ exp

(

−q
′2

2~

)

. (A.32)

By doing this repeatedly we may generate all the eigenfunctions u0, u1, .... in the
position representation. The energy eigenfunctions of the simple harmonic oscil-
lator are then given by
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un(q
′) = 〈q′|n〉 =

(

1

(π~)1/22nn!

)1/2

exp

(−q′2
2~

)

Hn

(

q′√
~

)

. (A.33)

where Hn represent the Hermite polynomials. We will refer to un(q′) as the Hermite-
Gauss (HG) polynomials.

A.1.2 Coherent States

We define the coherent state as the eigenvector of the non-hermitian operator a.
We write down the eigenvalue problem

a|α〉 = α|α〉 (A.34)

We expand out this expression using the completeness relation for the Fock basis:

|α〉 =
∞
∑

n=0

|n〉〈n|α〉 ≡
∞
∑

n=0

cn(α)|n〉. (A.35)

where cn(α) = 〈n|α〉 is the transformation between number and coherent state
representations. Substitution of (A.35) into (A.34) gives

a|α〉 =

∞
∑

n=1

cn(α)
√
n|n− 1〉 =

∞
∑

n=0

αcn(α)|n〉, (A.36)

where we have also used (A.25c). We may shift indices to write this as

∞
∑

n=0

cn+1(α)
√
n + 1|n〉 =

∞
∑

n=0

αcn(α)|n〉. (A.37)

We now multiply both sides from the left by 〈m | to obtain

cn+1(α)
√
n+ 1 = αcn. (A.38)

Iterating forward from c0 we can therefore write

cn(α) =
αn√
n
c0. (A.39)
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Looking back to (A.35) we can therefore write out the coherent state |α〉 as a
summation of number states, that is

|α〉 = c0

∞
∑

n=0

αn√
n
|n〉. (A.40)

The value of c0 is chosen so that

〈α|α〉 = 1 = |c0|2
∞
∑

n=0

∞
∑

m=0

α∗mαn√
n!m!

〈m|n〉

= |c0|2
∞
∑

n=0

(|α|2)n
n!

= |c0|2 exp |α|2. (A.41)

We then have for the coefficients cn:

〈n|α〉 = cn(α) = exp(−1/2|α|2) α
n

√
n!
. (A.42)

The final form for the coherent state in the number basis is

|α〉 = e−1/2|α|2
∞
∑

n=0

αn√
n
|n〉. (A.43)

To write out the coherent state in the position basis we start with the defini-
tion of a in terms of position and momentum (A.2) and the eigenvalue equation
(A.34),

a|α〉 = α|α〉

=
1√
2~

[q + ip]|α〉. (A.44)

Taking the scalar product with the bra 〈q′ | we have

〈q′ |q + ip|α〉 =
√

2~α〈q′|α〉. (A.45)

We again evoke (A.29) to get

[

q′

~
+

d

dq′

]

〈q′|α〉 =

√

2

~
α〈q′|α〉. (A.46)
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This can be manipulated to get

d〈q′|α〉
〈q′|α〉 =

[

√

2

~
α− q′

~

]

dq′, (A.47)

which on integration yields

〈q′|α〉 = C exp

[

−q
′2

2~
+

√

2

~
αq′

]

, (A.48)

where C is a constant of integration. We find this constant C by requiring that
the state 〈q′|α〉 be normalised. That is,

∫ ∞

−∞
|〈q′|α〉|2dq′ = 1. (A.49)

We first calculate |〈q′|α〉|2. From (A.48) we have

|〈q′|α〉|2 = |C|2 exp

[

−q
′2

~
+

√

2

~
(α + α∗)q′

]

= |C|2 exp







−
[

√

q′

~
− (α + α∗)√

2

]2

+
(α + α∗)2

2







, (A.50)

where we complete the square in the exponent. We now use the well known
result

∫ ∞

−∞
e−(x−ζ)2dx =

√
π. (A.51)

to get

|〈q′|α〉|2 = |C|2
√
π~e1/2(α+α∗)2 = 1. (A.52)

We therefore have for the constant C,

C =

(

1

π~

)1/4

e−1/4(α+α∗)2+iθ. (A.53)
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where θ is an arbitrary real phase. We can choose the phase θ = i
4
(α2 − α∗2) so

that

C =

(

1

π~

)1/4

e−1/2(|α|2+α2). (A.54)

If we substitute this expression into (A.48) we have the final and very useful
expression for a coherent state in the position representation

〈q′|α〉 =

(

1

π~

)1/4

exp

[

−q
′2

2~
+

√

2

~
αq′ − 1

2
|α|2 − 1

2
α2

]

. (A.55)

This expression is most important. In chapter 5 we numerically compare the
classical evolution of an ensemble of particles with the quantum evolution of
a coherent state. It is also used in section 3.5.2 when we look for approximate
eigenstates of the kicked system.
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Appendix B

The Split Step Method

B.1 The Split Step Method

The Split Step Procedure is a way of accurately evolving a quantum state in a
complicated potential extremely efficiently. The key to this method is the inven-
tion of Fast Fourier Transform which allows one to jump between discrete po-
sition and momentum bases with minimum effort. As an example we consider
the evolution operator of the SHO, see (A.11), written in terms of position and
momentum operators

U0(t) = exp

(−iω0(p
2 + q2)t

2~

)

(B.1)

The difficulty with the evolution of the quantum harmonic oscillator arises
because the Hamiltonian of the system is dependent on both the position q and
the momentum p. Therefore, U0 contains terms of both the position basis and
momentum basis and is consequently diagonal in neither. However, it is well
known that changing between the position and momentum basis can be done
through Fourier Transforms. This fact is used to great advantage in the split step
method [2]. In this method the exact operator U0, applied for the small duration
∆t, can be approximated by

U ′
O(∆t) = exp

(−i∆tp2

4~

)

exp

(−i∆tq2

2~

)

exp

(−i∆tp2

4~

)

(B.2)

where we use the Fast Fourier Transform (FFT) [1], to perform the change of
basis, see section 4.4. Although this method is not exact, the error is O(∆t)3,
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and can therefore be made acceptably small by an appropriate choice of ∆t. The
number of operations needed to evolve the system from time t to time t + ∆t

is O(N logN). However, using the stability condition for the Split-Step method
[3], ∆t < l2

π
, where l is the grid spacing, we roughly estimate the number of

operations needed to accurately evolve the system over a finite time to be of
O(N2 logN).
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[3] J. A. C. Weideman and B. M. Herbst, Split-Step Methods for the Solution of the Nonlinear Schrödinger
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Appendix C

Quasi-Probability Distributions

C.1 Quasi-probability Distributions

In chapter 2 we use the idea of the phase space map to describe a systems global
behavior. It is visually the most powerful tool we have. The idea of the phase
space map stems naturally from Hamiltonian mechanics in that the two axis rep-
resent the conjugate momentum and position variables. Classically we can know
a particles position and momentum exactly and therefore at any one instant we
plot with a point the particles exact configuration. This particular way of exam-
ining a particles dynamics highlights the fundamental difference between quan-
tum and classical mechanics. The Heisenberg uncertainty principle in one of its
many forms asserts that we cannot know exactly the position and momentum of
a particle. It therefore is impossible to speak of a quantum state existing at a cer-
tain point in phase space. However it is possible to represent quantum states as
quasi-probability distribution functions that depend simultaneously on both the
position q and momentum p. These functions are extremely useful for studying
classical quantum correspondence.

There are a several reviews quasi-probability distributions in the literature.
In particular see [1,2]. We also found useful introductions to the subject in [3–
5]. However, we will concentrate solely on the numerical algorithms used to
generate reliable distributions from discrete vector arrays defined in the position
basis. We start form the definition of the Wigner function

W (q′, p′) =
1

π~

∫

dxe
−2ip′x

~ 〈q′ + x |ρ| q′ − x〉 (C.1)

where ρ = |ψ〉〈ψ |. Suppose we have a vector in our discretised position basis
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〈q[j]|ψ〉, the density matrix in the position basis is therefore

〈q′[j] |ρ| q′[k]〉 = 〈q′[j]|ψ〉〈ψ|q′[k]〉. (C.2)

On close inspection of (C.1) we see that each integration is similar to that
of a Fourier transform but with an extra factor of 2 in the exponential. Much
of the work form section 4.2 is also directly applicable here. In particular we
can simulate what was originally a continuous Fourier transform with a FFT.
Ignoring the factor of 2 for the moment we need to be clear about what vectors
we are performing the FFT ′s on. The limits on the integration over x are now
the maximum and minimum values of the vector q[j], see (4.12). This means that
some of the elements 〈q′+x |ρ| q′−x〉 fall outside the range for which ρ is defined.
We illustrate this in Figure C.1 for a simplistic 8 × 8 density matrix. These extra
values are set to zero, this is called padding in the literature.

In order to incorporate the factor of 2 into the exponential we oversample the
vectors. The vectors are indicated in the figure by arrows. If the input vector,
that for which we are trying to compute the Wigner function, is smooth then
this oversampling is performed by simple interpolation. In many instances how-
ever we are attempting to find distributions for stationary states of the Floquet
operator for the KHO with frequency ratio 1/4. We have shown that under the
right conditions the numerically calculated eigenstates are periodic trains of delta
functions. In these cases simple interpolation is erroneous. It makes sense that
the extra elements in these special cases should be set to zero.

Of course, as is always the case unless otherwise stated, the vectors on which
we operate with the FFT must be correctly fftshifted before and after operating
to give the correct results. This aspect of the algorithm is dealt with in detail in
section 4.2.

The Husimi distribution can be defined as

H(q′, p′) =
1

π~

∫

dq′
∫

dp′ exp

[

mκ(q′′ − q′)2

~
− (p′′ − p′)2

~mκ

]

W (q′, p′) (C.3)

where κ can be any arbitrary constant [2]. This is nothing more than a 2-dimensional
Gaussian smoothing using a minimum uncertainty wave-packet. In order to cal-
culate the Husimi distribution we then calculate the discrete Wigner distribution
of the harmonic oscillator ground state, which we denote as W0. The Gaussian
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Figure C.1. Schematic showing the how the Wigner function may be calculated from the

density matrix ρ. The matrix elements of the density matrix are inside the red square.

All other highlighted squares are set to 0. We obtain the correct Wigner distribution by

oversampling the highlighted squares by interpolation and then performing a FFT along

the vectors indicated by the arrows.

smoothing can be performed by getting the digital convolution of the two Wigner
distributions. The convolution can be rapidly performed using the 2-dimensional
FFT’s via the 2-dimensional convolution theorem [6,7].

W ∗W0 = Fπ
2

[

F−π
2
[W ]F−π

2
[W0]

]

. (C.4)
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