
MP466: Particle Physics — Problem Sheet

Brian Dolan

(1) An α-particle, a 4He nucleus consisting of two protons and two neutrons, has mass
6.644656× 10−27 kg. An α-particle is less massive than the combined mass of two protons
and two neutrons and the energy equivalent of the difference is the binding energy of the
α-particle. Calculate the binding energy of an α-particle, given mp = 1.672622× 10−27 kg
and mn = 1.674927 × 10−27 kg.

(2) A particle of mass M decays to two daughter particles of masses m1 and m2. Use
conservation of relativistic 3-momentum to show that the speeds v1 and v2 of the emerging
particles, in the rest frame of M , are related by
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where γ(v1) and γ(v2) are the Lorentz γ-factors of the emerging particles.
Combine this expression with conservation of energy to show that
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Use this to show that the kinetic energy of m1 in the rest frame of M is
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and hence that the maximum kinetic energy, T = E −mec
2, of the electron in β-decay is
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Thus T is slightly less than the figure (mn−mp −me)c
2 quoted in the lectures. How much

less?

(3) In a two body collision two incoming particles a and b are anihilated and produce
two outgoing particles c and d, with masses mc and md, a + b → c + d. In the centre of
mass frame the total incoming energy of a and b is E. Use relativistic kinematics to show
that c and d emerge with energies
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and that each has relativistic 3-momentum P with magnitude squared, P 2 = P.P , given
by
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Show that the velocity of particle c is given by
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(4) Show, using conservation of momentum, that an isolated electron moving through
space cannot spontaneously emit a photon with non-zero energy. (Use the fact that the
4-momentum P

˜
of a particle of mass m satisfies P

˜
.P
˜

= −m2c2 — a particle who’s 4-
momentum satisfies this condition is said to be on its mass-shell.

When there is another particle present the situation is different. Due to the uncertainty
principle a particle can be off its mass shell and live for a short time as a ‘virtual’ particle,
provided the time τ is small enough that
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is the virtual particle’s 4-momentum.
Two electrons scatter off each other by exchanging a single photon
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If the 4-momenta of the incoming electrons are P
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Assuming that the electrons are all on mass-shell show that the photon cannot have
a light-like 4-momentum. i.e. the photon is off its mass-shell. Using the uncertainty
principle calculate the maximum distance that this ‘virtual’ photon can travel in terms of
Q
˜
.Q
˜
.
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for a particle with relativistic 3-momentum p and energy E.

(6) Two particles c and d emerge from a 2-body collision process

a+ b→ c+ d

where the total energy is E = Ea + Eb = Ec + Ed in the centre of mass frame, with Ea

and Eb the individual energies of the incident particles and Ec and Ed the energies of the
emerging particles. If the final velocities are non-relativistic show that

dE

dpf
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where vc and vd are the final velocities in the centre of mass frame.
Show that the answer is the same when the velocities are relativistic.

(7) There is a resonance in the cross-section for pion-nucleon scattering at E0 =
776 MeV with a width of Γ = 0.149 MeV . Calculate the mass and life-time of the
associated particle (this particle is called the ρ-meson, which decays predominantly to two
pions).

(8) Two particle of mass m1 and m2 collide elastically, with speeds v1 and v2 respec-
tively, in the centre of mass frame. Show that the speeds of the two particles are unchanged
in the collision and that the differential cross-section given in the lectures can be written
in terms of the particles’ energies, E1 and E2, as
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(9) Determine which of the following reactions are allowed by conservation laws and
which are forbidden:

π0 → e+ + e−

π− → µ− + νµ

e− + p→ n+ νe

µ+ → e+ + e− + e+

µ− → e+ + e− + νµ

K0 + n→ Λ + π0

K− + π0 → Λ + π−

Ξ0 → Λ + π0

(in each case explain your reasoning clearly and in detail).



(10) A 2×2 complex matrix has, in general, 4 complex (i.e. 8 real) components. If the
matrix is unitary so U−1 = U† with † denoting Hermitian conjugation, i.e. complex con-
jugation followed by transpose, how many free components does U have? What constraint
does this put on det(U)?

(11) In terms of the 2 × 2 Pauli matrices
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a rotation through an angle θ about an axis pointing in the direction n, with n.n = 1, can
be represented by

U(θ,n) = e−iθ(σ.n)/2.

Derive the following forms for rotations through an angle θ about the directions indi-
cated below:
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In each case show that U(θ)U(θ′) = U(θ + θ′), U†U = 1 and U(2π) = −
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(12) Draw quark flow diagrams for the following processes and decide whether or not
they are suppressed by the OZI rules:

ρ+ → π+ + π0

K∗+ → K0 + π+

K∗+ → K0 + π+ + π0

φ→ K+ +K−

φ→ π+ + π0 + π−

J/ψ → D0 +D
0

J/ψ → π+ + π0 + π−.

In the last two decays the J/ψ (affectionately called the ‘gypsy’) is a cc̄ meson with mass
3.1 Gev/c2. Given that the charmed D-mesons have mass 1.9 GeV/c2 do you expect the
sixth decay above to happen?

(13) Two particles X0(1193) and Y −(1321) are produced in the strong interaction
processes

K− + p→ X0 + π0, K− + p→ K+ + Y −



respectively. Examine the baryon number and strangeness quantum numbers in each case
and, using these, determine the quark content of the X and Y .

(14) A B±-meson has a lifetime of 1.7× 10−12s and a mass of 5279MeV/c2. How far
can a very energetic meson with E = 500GeV ) travel before it decays?

(15) Show that the virtual photon
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in the electron-positron annihilation process, e+ + e− → µ+ + µ−, is time-like when the
leptons are all on-shell.

(16) If an electron and a positron collide with total centre of mass energy > mπc
2, is

the process e+ +e− → π0 possible? If the electron-positron pair have enough energy, could
they produce a neutral vector meson in a process such as e+ + e− → ω or e+ + e− → φ?

Are the reverse processes π0 → e+ + e−, φ → e+ + e− and ω → e+ + e− allowed?
By thinking in terms of virtual photon production can you decide which of these three
processes has the smallest amplitude?

What about π0 → µ+ + µ−, φ → µ+ + µ− and ω → µ+ + µ− or π0 → τ+ + τ−,
φ→ τ+ + τ− and ω → τ+ + τ−?

(17) The neutral kaon system is in some ways analogous to neutrinos in that the parti-
cles that are produced in interactions are the K0 and the K̄0 whereas the mass eigenstates
are KL and KS . Important differences however are that, unlike neutrinos, the kaons decay
to lighter particles (pions) and the kaons themselves have masses ≈ 500 MeV/c2 and so
are not relativistic for energies significantly less than 500 MeV (the calculation of K0-K̄0

mixing in the lectures was done in the rest frame of the kaons).
Given that
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calculate the mixing angle. From the mass difference

∆m = 3.5 × 10−6 eV

calculate ∆m2 = |m2
KL

−m2
KS

|.



Calculate the oscillation length of a non-relativistic kaon moving with speed 0.1c.

(18) Show that the observation of the process ν̄µ + e− → ν̄µ + e− provides evidence
for neutral currents but the observation of the process ν̄e + e− → ν̄e + e− does not.

One type of neutrino detector consists of a large tank of heavy water, that is water
in which some of the hydrogen nuclei consist of an isotope called deuterium, denoted by
D =2H, which is a bound state of a proton and a neutron with atomic mass 2. Electron
neutrinos can be detected by virtue of the fact that they can change the neutron in the
heavy hydrogen into a proton, via inverse β-decay,

νe + n→ e− + p ⇔ νe +D+ → e− + 2p, (1)!

thus breaking a deuterium ion, D+, into two protons. Sometimes though the neutrinos
simply scatter off the heavy hydrogen without changing their identity,

ν + n→ ν + n ⇔ ν +D → ν +D. (2)

Show that only electron neutrinos can participate in the former process but all three
flavours of neutrino can participate in the latter. These processes can be used to detect
oscillations in neutrinos from the Sun. Nuclear reactions in the Sun produce only νe

neutrinos and the number of neutrinos produced at any given energy can be calculated,
knowing the physical conditions prevailing in the centre of the Sun. The flux of νe detected
at the Earth, using (1), is about a half of the expected value. However the total flux
detected using (2) is exactly the same as the calculated flux of νe. This is interpreted as
evidence for the fact that some of the electron neutrinos produced in the centre of the Sun
transform into other flavours on their way to the Earth.

(19) Show that the total centre of mass energy, E, in inverse β-decay,

νe + n → e− + p,

is related to the energy of the incoming neutrino, Eν , by
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where mn is the mass of the neutron.

(20) Using the expression derived in the lectures for the differential cross-section for
inverse β-decay when the incoming neutrino energy Eν >> mnc

2,
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calculate the total cross-section.



(21) Charged pions produced in the upper atmosphere by cosmic rays decay to muons

π+ → µ± + νµ

and the muons subsequently decay to electrons or positrons

µ± → e± + νe + νµ

(the distinction between neutrinos and anti-neutrinos is ignored here).
If both neutrinos and anti-neutrinos are detected at ground level, the flux of neutrinos

from pions produced by cosmic rays should then consist of twice as many muon neutrinos
as electron neutrinos. Observationally the ratio is one, and this is interpreted as being due
to muon neutrinos oscillating to another type of neutrino which is not νe, probably to ντ .

Given the mass difference of the oscillation ∆m2 = 2 × 10−3 eV 2/c4 calculate the
oscillation length of a 500 MeV muon neutrino. What do you think the mixing angle
might be?


