
Angular Momentum in quantum Mechanics

In classical physics angular momentum is a vector J with a magnitude J and a di-
rection specified by three components (Jx, Jy, Jz). Of course these are not independent,
since

J2 = J.J = J2
x + J2

y + J2
z ,

and angular momentum is specified by three real numbers. Vectors are added using the
usual triangle law from which

|J1 − J2| ≤ |J1 + J2| ≤ J1 + J2. (1)

Quantum mechanically things are different in a number of ways:
• Angular momentum is quantised. J is not a continuous variable but can take only

discrete values which are multiples of the fundamental quantum unit h̄. In fact

J2 = j(j + 1)h̄2

where j is either a non-negative integer, j = 0, 1, 2, . . . or a positive half-integer
j = 1
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2
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• The uncertainty principle says that Jx, Jy and Jz cannot be simultaneously specified
— there are only two degrees of freedom in quantum angular momenta. If J is
specified then we can measure only one linear combination of Jx, Jy or Jz, not all
three independently. For example if J and Jz are known for a given quantum state
then Jx and Jy are completely undetermined and have no physical value. Furthermore
Jz is also quantised and has only 2j + 1 possible values

Jz = mz h̄

where
mz = −j,−j + 1, . . . , j − 1, j. (2)

For j = 3
2
, for example, there are 4 possible values of Jz, given by mz = 3
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but Jx and Jy are completely undetermined. Pictorially the situation looks something
like this:

m  =1/2
z

m  =−1/2
z

m  =−3/2
z

m  =3/2
z

where J is represented by a cone whose height is determined by mz.
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• Because of the above two restrictions, addition of angular momenta in quantum me-
chanics is also different to the classical case. If two angular momenta J1 and J2, are
added to give a third J then the triangle inequality (1) still holds, but J can only take
the discrete values

J = |J1 − J2|, |J1 − J2| + h̄, . . . , J1 + J2 − h̄, J1 + J2,

or equivalently

j = |j1 − j2|, |j1 − j2| + 1, . . . , j1 + j2 − 1, j1 + j2.

If the z-components are known there are further constraints on the sum: if J1 has
third component J1,z and J2 has third component J2,z then these do just add like the
classical case and J will have third component

Jz = J1,z + J2,z

or m = m1 +m2. This requires j ≥ |m| because of (2).

In general a particle need not be in a definite state of angular momentum, it may be in
a linear superposition of different j and m. A general state is a vector in a Hilbert space
and we can use definite states of j and m as basis vectors, denoted by |j;m >. This basis
can be chosen so that it is orthonormal with

< j;m|j′;m′ >= δjj′δmm′ .

A general state is then a linear sum of basis vectors

Ψ =
∑

j

j
∑

m=−j

ψjm|j;m >

where ψjm are complex numbers. For example adding a state with definite angular mo-
mentum |j1;m1 > to a second state with definite angular momentum |j2;m2 > produces
a linear superposition of states with angular momenta j between |j2 − j1| and j2 + j1. A
standard notation for this is

|j1;m1 > ⊗|j2;m2 >=

j2+j1
∑

j=|j2−j1|

Cj;m
j1j2;m1m2

|j;m > (3)

where the numbers Cj;m
j1j2;m1m2

are called Clebsch-Gordon coefficients. Conservation of
angular momentum requires that only states with m = m1 +m2 appear in the sum on the
right-hand side, so Cj;m

j1j2;m1m2
= 0 unless m = m1 +m2.

The reason for the ⊗ symbol is that, for fixed j1 and j2, there are 2j1 + 1 possible
values of m1 and 2j2 + 1 possible values of m2. Thus the set

{|j1;m1 >;m1 = −j1,−j1 + 1, . . . , j1 − 1, j1}
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is a basis for a 2j1 + 1 dimensional vector space and

{|j2;m2 >;m2 = −j2,−j2 + 1, . . . , j2 − 1, j2}

is a basis for a 2j2 + 1 dimensional vector space. There are therefore (2j1 + 1)(2j2 + 1)
possible states on the left-hand side of equation (3) so vector addition in quantum mechan-
ics is like multiplication in terms of Hilbert space dimensions.1 A slightly more compact
notation, which we shall often use, is

|j1, j2;m1, m2 >= |j1;m1 > ⊗|j2;m2 > .

For each value of j on the right-hand side of (3) there are 2j + 1 possible values of m
and j runs from |j2 − j1| to j2 + j1 giving, assuming j2 ≥ j1 for example,

j2+j1
∑

j=j2−j1

(2j + 1) =
{

(j2 + j1) + (j2 − j1)
}

(2j1 + 1) + (2j1 + 1) = (2j1 + 1)(2j2 + 1)

different |j;m >.
The quantum Hilbert space associated with these angular momentum states is a finite

dimensional complex vector space with dimension (2j1 + 1)(2j2 + 1) and either

{|j;m >; j = |j1 − j2|, |j1 − j2| + 1, . . . , j1 + j2 − 1, j1 + j2, m = −j,−j + 1, . . . , j − 1, j}

or

{|j1, j2;m1, m2 >;m1 = −j1,−j1 + 1, . . . , j1 − 1, j1, m2 = −j2,−j2 + 1, . . . , j2 − 1, j2}

can be used as an orthonormal basis for the space. The Clebsch-Gordon coefficients just
give a linear transformation between two different orthonormal bases.

Consider for example combining two spin-1/2 electrons, so j1 = j2 = 1/2. Each
electron has a spin which is a vector in a two-dimensional Hilbert space of possible spins,
its spin is some linear combination of two possible spin states, often called spin up (| ↑ >)
and spin down (| ↓ >) relative to some fiducial direction such as the z-axis of a Cartesian
co-ordinate system. In our notation

1

2
;
1

2
>= | ↑ >, and

1

2
;−1

2
>= | ↓ > .

There are only two possible results for the total angular momentum when the electron
spins are combined, j = 1

2
− 1

2
= 0 or j = 1

2
+ 1

2
= 1. If both electrons are spin up,

m1 = m2 = 1/2, the combined spin must have m = 1 and only j = 1 is allowed in the
combined state:

1

2
,
1

2
;
1

2
,
1

2
>= |1; 1 > ⇔ | ↑ > ⊗| ↑ >= | ↑↑ > .

1 For historical reasons the ⊗ operation is called a tensor product — a term that comes originally from the theory

of elasticity in solids.
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Similarly if both electrons are spin down, m1 = m2 = −1/2, the combined spin must have
m = −1 and again only j = 1 is allowed in the combined state:

1

2
,
1

2
;−1

2
,−1

2
>= |1;−1 > ⇔ | ↓ > ⊗| ↓ >= | ↓↓ > .

Obviously these two states are symmetric under interchange of the two electrons.2

If however one electron has m1 = 1/2 and the other m2 = −1/2, or vice versa, then
the combination has m = 0 and this could be either j = 1 or j = 0: j = 1 is the symmetric
combination

|1; 0 >=
1√
2

(

| ↑↓> +| ↓↑>
)

and j = 0 the orthogonal combination

|0; 0 >=
1√
2

(

| ↑↓> −| ↓↑>
)

,

which is necessarily anti-symmetric.
These can be inverted to give

| ↑↓ > =
1

2
,
1

2
;
1

2
,−1

2
>=

1√
2

(

|1; 0 > +|0; 0 >
∣

∣),

| ↓↑ > =
1

2
,
1

2
;−1

2
,
1

2
>=

1√
2

(

|1; 0 > −|0; 0 >
)

,

from which the Clebsch-Gordon coefficients can be read off

C1;0
1

2
, 1
2
; 1
2
,− 1

2

=
1√
2
, C0;0

1

2
, 1
2
; 1
2
,− 1

2

=
1√
2
, C1;0

1

2
, 1

2
;− 1

2
, 1

2

=
1√
2
, C0;0

1

2
, 1

2
;− 1

2
, 1

2

= − 1√
2
.

The total Hilbert space for the electrons’ spin is 4-dimensional and one can use either
{(

1

2
,
1

2
;
1

2
,
1

2
>

)

,

(

1

2
,
1

2
;
1

2
,−1

2
>

)

,

(

1

2
,
1

2
;−1

2
,
1

2
>

)

,

(

1

2
,
1

2
;−1

2
,−1

2
>

)}

or
{

|1; 1 >, |1; 0 >, |1;−1 >, |0; 0 >
}

as a set of basis vectors. The decomposition into j = 1 (triplet) and j = 0 (singlet) sectors
is

|1; 1 > = | ↑↑>

|1; 0 > =
1√
2

(

| ↑↓> +| ↓↑>
)

(4)

|1;−1 > = | ↓↓>
2 The total quantum state corresponding to two Fermions should of course be anti-symmetric under interchange

of the two particles. Spin is only part of the story, a complete quantum description should also include position. For

example electrons with j=1 could have a relative orbital angular momentum of l=1 making the total quantum state

antisymmetric under interchange of the two electrons.
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and

|0; 0 >=
1√
2

(

| ↑↓> −| ↓↑>
)

. (5)

It is often useful to exhibit the linear transformation that the Clebsch-Gordon coeffi-
cients represent in the form of a table.

j = 1 j = 0
m1 m2 m = 1 m = 0 m = −1 m = 0
1/2 1/2 1 0 0 0

1/2 −1/2 0 1/
√

2 0 1/
√

2

−1/2 1/2 0 1/
√

2 0 −1/
√

2
−1/2 −1/2 0 0 1 0
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