Angular Momentum in quantum Mechanics

In classical physics angular momentum is a vector J with a magnitude J and a di-
rection specified by three components (J,, J,, J.). Of course these are not independent,
since

JP=3I=J]+J+J2,

and angular momentum is specified by three real numbers. Vectors are added using the
usual triangle law from which

|J1 = Jo| < Iy + o] < J1+ Ja. (1)

Quantum mechanically things are different in a number of ways:
e Angular momentum is quantised. J is not a continuous variable but can take only
discrete values which are multiples of the fundamental quantum unit #. In fact

J? =G+ 1)n?

where j is either a non-negative integer, j = 0,1,2,... or a positive half-integer
. _ 135
J :§7§7§7""

e The uncertainty principle says that J,, J, and J, cannot be simultaneously specified
— there are only two degrees of freedom in quantum angular momenta. If J is
specified then we can measure only one linear combination of J,, J, or J,, not all
three independently. For example if J and J, are known for a given quantum state
then J, and J, are completely undetermined and have no physical value. Furthermore
J, is also quantised and has only 25 + 1 possible values

J, =m,h

where
mz:_.]a_j—}_]-a?]_]-aj (2)

For j = %, for example, there are 4 possible values of J,, given by m, = %, %, —%, —%,

but J, and J, are completely undetermined. Pictorially the situation looks something
like this:

m, =3/2

where J is represented by a cone whose height is determined by m..
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e Because of the above two restrictions, addition of angular momenta in quantum me-
chanics is also different to the classical case. If two angular momenta J; and Jo, are
added to give a third J then the triangle inequality (1) still holds, but J can only take
the discrete values

J=\|h =Dy —Jo|+ N, JL+ Je =Ry Jy+ o,
or equivalently
J=1j1 = gelsljr —Jol + 1, 1 + g2 — 1,51 + Jo.

If the z-components are known there are further constraints on the sum: if J; has
third component J; , and Jo has third component J; . then these do just add like the
classical case and J will have third component

J. = Jl,z + JQ,z

or m = my + mg. This requires j > |m| because of (2).

In general a particle need not be in a definite state of angular momentum, it may be in
a linear superposition of different j and m. A general state is a vector in a Hilbert space
and we can use definite states of j and m as basis vectors, denoted by |j;m >. This basis
can be chosen so that it is orthonormal with

< J; m]j'; m' >= 5jj’5mm’-
A general state is then a linear sum of basis vectors
J
U=>">" tjmlj;m >
jom=—j

where 1;,, are complex numbers. For example adding a state with definite angular mo-
mentum |[ji;m; > to a second state with definite angular momentum |jo;ms > produces
a linear superposition of states with angular momenta j between |j, — ji| and jo + j1. A
standard notation for this is

J2+1
ismy > @ljaime >= Y CET L lim > (3)
Jj=lj2—71l
where the numbers Cgl;?;mlmQ are called Clebsch-Gordon coefficients. Conservation of

angular momentum requires that only states with m = m; + msy appear in the sum on the
right-hand side, so C/7" = 0 unless m = m; + ma.

The reason for the ® symbol is that, for fixed j; and jo, there are 2j; + 1 possible
values of mq and 2j5 + 1 possible values of ms. Thus the set

{ljismi >mi = =1, —ji+1,..., 51 — L, j1}
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is a basis for a 277 + 1 dimensional vector space and
{lg2sma >yme = —ja, —ja +1,...,j2 — 1, ja}

is a basis for a 2j5 + 1 dimensional vector space. There are therefore (2j; + 1)(2j2 + 1)
possible states on the left-hand side of equation (3) so vector addition in quantum mechan-
ics is like multiplication in terms of Hilbert space dimensions.! A slightly more compact
notation, which we shall often use, is

|71, Josma, mo >= |j1;my > ®|ja;ma > .

For each value of j on the right-hand side of (3) there are 2j 4+ 1 possible values of m
and j runs from |js — j1| to j2 + j1 giving, assuming jo > j; for example,

Jo+J1
> @i+ 1) ={(a+5)+ G2 — 1) 2+ 1) + (21 + 1) = (271 + D (22 + 1)

J=J2—J1

different |j;m >.
The quantum Hilbert space associated with these angular momentum states is a finite
dimensional complex vector space with dimension (2j; + 1)(2j2 + 1) and either

{lism>;j=j1 —dalslj1 —del +1,....di+jo— L1+ jom=—4,—j+1,...,5—1,j}
or

{71, d2smi,me >my = —ji,—j1+1,..., 51 — L ji,ma = —jo, —jo +1,...,ja — 1, jo}

can be used as an orthonormal basis for the space. The Clebsch-Gordon coefficients just
give a linear transformation between two different orthonormal bases.

Consider for example combining two spin-1/2 electrons, so j; = jo = 1/2. Each
electron has a spin which is a vector in a two-dimensional Hilbert space of possible spins,
its spin is some linear combination of two possible spin states, often called spin up (| T >)
and spin down (| | >) relative to some fiducial direction such as the z-axis of a Cartesian
co-ordinate system. In our notation

11 1 1

Sig>=11> d = >= ] >.

27 2 ’ T ) an 27 2 ’ \l/
There are only two possible results for the total angular momentum when the electron
spins are combined, j = % - % =0orj= % + % = 1. If both electrons are spin up,

my = mg = 1/2, the combined spin must have m = 1 and only j = 1 is allowed in the
combined state:

1 For historical reasons the ® operation is called a tensor product — a term that comes originally from the theory

Y

>=11;1> & [ T>1T>=]1T>.
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Similarly if both electrons are spin down, m; = mg = —1/2, the combined spin must have

m = —1 and again only j = 1 is allowed in the combined state:
11 1 1
15755 >= |11 = = .
55 Ty T = L-1> 1>l l>=]1l>

Obviously these two states are symmetric under interchange of the two electrons.?

If however one electron has m; = 1/2 and the other mg = —1/2, or vice versa, then
the combination has m = 0 and this could be either j = 1 or j = 0: j = 1 is the symmetric
combination

11,0 >= UT1>++iT>)

%\

and 7 = 0 the orthogonal combination

10;0 >= UT1>—4iT>)

%\

which is necessarily anti-symmetric.
These can be inverted to give

N —
N~ N

(11> =]

Y
I

SIS

(uo>+moﬂ

11>

N
N | —
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Il

N — N —
N — N —

(u0> —0;0 >),

on

from which the Clebsch-Gordon coefficients can be read off

10 1 00 1 10 1 00 _ 1
33573 (/2 33373 /2] 33753 /2 337303 V2

The total Hilbert space for the electrons’ spin is 4-dimensional and one can use either

LD LIy Ty
2727272 ’ 22727 2 ’ 2'27 272 2’27 27 2
{\1;1>,\1;0>,|1;—1>,|0;0>}

as a set of basis vectors. The decomposition into j = 1 (triplet) and j = 0 (singlet) sectors
is

or

11 >=]1T>
1
H,0>>—-;§(\Tl>-+|lT>) (4)

L-1>=]]l>

2 The total quantum state corresponding to two Fermions should of course be anti-symmetric under interchange

of the two particles. Spin is only part of the story, a complete quantum description should also include position. For
example electrons with j=1 could have a relative orbital angular momentum of /=1 making the total quantum state

antisymmetric under interchange of the two electrons.
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It is often useful to exhibit the linear transformation that the Clebsch-Gordon coeffi-
cients represent in the form of a table.

0;0 >= —= (| 11> —| 11>). (5)

j=1 ji=0
mq Mo m=1 m=0 m=-1 m=20
/2 1/2 1 0 0 0
/2 -1/2 0 1/V2 0 1/V2
—1/2  1/2 0 1/v2 0 —1/v2
—~1/2  —1/2 0 0 1 0




