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1. Introduction to Forces and Particles

History credits the idea that ordinary matter is not infinitely divisible, but is made
up of atoms, to the ancient Greek philosopher Democritus (460-370 BC). But even at the
turn of the 20th century atoms were not universally accepted, though the concept was
gaining support. Boltzmann (1844-1906) was perhaps one of the first physicists to take
atoms really seriously but it was not until a very influential paper by Einstein in 1905,
on Brownian motion, that the general consensus swung in favour of atoms. Nowadays
the concept is not questioned, we can even see individual atoms in electron microscopes.
Atoms are very small — typically about 1071%m in size.

The modern view is that atoms themselves have substructure, consisting of a small
atomic “nucleus” surrounded by a cloud of electrons. A naive, but instructive, way of
visualising atoms is to think of them as being like a small solar system, with the nucleus
replacing the Sun and the electrons replacing the planets. Consider for example an atom of
the monatomic gas Helium, *He, which consists of a nucleus, made up of two protons and
two neutrons, with two electrons buzzing around it so that the total electric charge is zero.
The nucleus is tiny, 3.4 x 107 m across, and in fact, just like the solar system, an atom
is mostly empty space. For helium (consisting of a nucleus with two electrons orbiting
around it) the ratio of the size of the nucleus to the size of the atom (3.1 x 10711 m) is the
dimensionless number 3.4 x 10715/3.1 x 107! = 1.1 x 10~*. Compare these numbers to
the size of the Sun, 7.0 x 10® m, and the distance between the Sun and Venus (the second
planet) which is 1.1 x 10! m, giving a ratio 7.0 x 108/1.1 x 10! = 6.4 x 1073, There is
more empty space in an atom than there is in empty space!

From the above picture you might suspect, and indeed it is true, that atoms themselves
are not indivisible, they can be broken up into smaller pieces. But the smaller pieces
would not be called “atoms” according to the modern usage, they are the electrons and
the nucleus. It takes about 6.5 x 1072! J of energy to pull the two electrons completely
out of a Helium atom (this is called the ionisation energy of Helium). This is such a small
number that a Joule is not really a useful unit in which to measure energies at these small
scales. Instead we use electron-Volts, denoted by eV, where 1 eV is the energy acquired
by one electron falling through a potential difference of 1 Volt. The conversion factor is
leV =1.6021765 x 10719 J. ! The ionisation energy of Helium is 24.6 ¢V in these units.

1 Particle physicists also use multiples of electron-Volts: 1 keV =102 eV is one thousand electron-Volts or a kilo
electron-Volt; 1 MeV=10°% eV is one million electron-Volts or a mega electron-Volt; 1 GeV=10° eV is one billion

electron-Volts or a giga electron-Volt.



But even that is not the end of the story. In 1932 two physicists working in Cambridge,
John Cockroft and Ernest Walton, showed that the nucleus itself could be sub-divided.
They broke up not a Helium nucleus but a nucleus of the element Lithium, specifically “Li
containing 3 protons and 4 neutrons. They achieved this by bombarding the nucleus with
high energy (0.2 ~ 0.5 MeV) protons.? Occasionally one of the protons is absorbed by
the nucleus which then splits into two nuclei of *He, releasing 17 MeV of energy which is
equally shared between the two emerging *He-particles. Symbolically this nuclear reaction
is written as

Li+p — 2 ‘He,

where p denotes the proton.
The production of 17 MeV of energy in this reaction can be understood through
Einstein’s equation
E = mc®. (1)

(Because of this equation particle physicists often quote masses in units of MeV/c? rather
than in kilogrammes.) Protons, neutrons and 4He nuclei have masses

m, = 1.6726 x 1072 kg = 938.27 MeV/c?
my, = 1.6749 x 1077 kg = 939.57 MeV/c?
m age = 6.6465 x 10727 kg = 3728.41 MeV/c?%,

The mass of a "Li nucleus is 11.6501 x 10727 kg = 6535.21 MeV/c?. Add to this the mass
of the incoming proton and the result is more than twice the mass of a *He nucleus

m v 4+ my — 2m age = 6535.21 + 938.27 — 2(3728.41) = 16.7 MeV/c?. (2)

The Cockroft-Walton experiment can be understood in the following way. A "Li nucleus
consists of 3 protons and 4 neutrons. While an incoming proton with 0.2 MeV of energy
does not have enough energy to overcome the Coulomb repulsive barrier classically and
enter the nucleus, it can nevertheless get close enough to tunnel through the potential
barrier and enter the nucleus by virtue of quantum mechanical tunnelling. Once the proton
is inside the Lithium nucleus has 4 protons and 4 neutrons and is unstable, decaying to
two “He nuclei. The mass difference is expressed as energy via Einstein’s equation (1).
Indeed Cockroft and Walton’s experiment was a milestone, not only because they were the
first to split the nucleus, but also because it was the first direct experimental verification
of Einstein’s formula.

It takes a lot of energy to break a Helium nucleus into its constituents (i.e. 2 protons
and 2 neutrons) 28.3 MeV in fact. A Helium nucleus *Het™ (the plus signs denote the
electric charge — a fully ionised Helium nucleus has two units of positive electric charge)
is very stable and difficult to break up. For this reason it is a common product in nuclear
reactions and is even given its own symbol, & — in nuclear physics a *He™™" nucleus is
usually called an a-particle. An ionised Hydrogen nucleus, ' H¥, is, of course, a proton.

2 I 1951 Cockroft and Walton received the Nobel prize for physics for their work. Ernest Walton was born in
Dungarvan, County Waterford, and taught in Trinity College, Dublin for many years.
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The value of 28.3 MeV is called the binding energy of the protons and neutrons in
an « particle, and it is related to the masses of its 4 constituent particles again through
Einstein’s equation. There is an energy difference of

E= (ma —2(m, + mn)>c2 = 3728.4 MeV — 2(939.6 + 938.3) MeV = —27.4 MeV.

This is very close to the binding energy. It is negative because the a-particle is more stable
than a situation with 2 free protons and 2 free neutrons. Binding energies of the order
of MeV are so large that they manifest themselves as mass differences through Einstein’s
equation (1).

But it doesn’t end there. There are further indications that protons and neutrons
themselves are not fundamental, but are made up of smaller constituents. The first hint
of this is the fact that neutrons in free space are unstable and are subject to radioactive
decay to a proton and an electron on a time scale of about 15 mins. If n denotes a neutron
and e an electron, this process is shown by the following formula:?

n— p-+e.
This is termed [-decay in nuclear physics, since the electrons that are produced were
originally called S-rays. If there is a given number of neutrons in a sample at time ¢t = 0,
Ny say, then the number that is left at time ¢ will be
N(t) = Noe /™

where 7,, = 886 s ~ 15 mins is called the lifetime of the neutron.*

The mass of an electron is m, = 9.109 x 1073 kg = 0.511 MeV/c?, so

(M, — (my +me))c® = 939.6 MeV — (938.3 +0.5) MeV = 0.8 MeV.

3 Since the mass of a neutron is greater than the mass of a proton and an electron combined this process is allowed
by conservation of energy.

4 There are two important points to note here. Firstly, as we will see later, it is not correct to think of a neutron as
a bound state of an electron and a proton. A neutron is really made up of three smaller particles called quarks. What
happens in B-decay is that one of the quarks in a neutron changes its identity and turns into a different kind of quark,
thus turning the neutron into a proton, and at the same time emits an electron. Secondly many atomic nuclei, such
as *He for example, contain neutrons and yet are stable. Although neutrons are unstable in free space they are often
stable inside atomic nuclei. This is because nuclei contain protons and protons are fermions, obeying the Pauli exclusion
principle in quantum mechanics. The exclusion Principle states that no two fermions can be in the same quantum state
at the same time. Now the two protons inside the Helium nucleus occupy quantum states with a definite energy and
there is no room left in these states for a third proton. If one of the neutrons tried to S-decay into a proton that proton
would have to occupy the next energy level above the two that are occupied and there is not enough energy available to
do this — the neutron is destined to remain a neutron. The Pauli exclusion principle ensures that the Helium nucleus
is stable, but there is no such restriction on a neutron in free space. For more complicated nuclei the stability under

B-decay depends on the specific energy levels for the protons in that nucleus. Some nuclei are stable and others are not.
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and this excess energy might be expected to manifest itself as kinetic energy of the daughter
particles, the proton and electron. Since the proton is much more massive than the electron
conservation of momentum tells us that, in the neutron’s rest frame, the proton will be
produced almost at rest, with only a small recoil velocity, while the electron will shoot
off with an excess energy of nearly 0.8 MeV over and above its rest mass energy, mec? =

0.5 MeV. If this is the case the total energy of the electron will be
E = y(0)mec® = 0.5 y(v) MeV = (0.5 + 0.8) MeV = 1.3 MeV,
where v(v) = 1/4/1 — v2/c? is the Lorentz v-factor for the electron. Thus
v(v) =1.3/0.5 = 2.6 = v=0.92c,

and the electron would be moving off at 92% of the speed of light.

However this is not what is observed. If we measure the energies of the electrons
emerging from a large number of neutron decays we find a spread of energies well below
0.8 MeV with 0.8 MeV being the maximum energy, but certainly not the only energy.
The experiments show that the relative number of electrons with a given energy looks
something like this:®
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Electron Energy (MeV)

When this type of curve was first measured people were rather perplexed as to what

2 In practice it is difficult to do these measurements for free neutrons, they are more easily done for neutrons bound
in unstable nuclei such as Tritium, an isotope of Hydrogen with two neutrons, H. This changes the energy scale along

the horizontal axis and the cut-off is no longer at 0.8 MeV', but the principle is the same.
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was happening and a number of interpretations was put forward, including the possibility
that energy might not be conserved in the, then newly developed, theory of quantum
mechanics. The correct explanation of the continuous [-spectrum was given by Pauli in
1930 when he suggested that there might be missing energy that was not being observed
because it was being carried away by a ghostly neutral particle, subsequently christened a
neutrino and given the symbol v.5 The total energy is always 0.8 MeV but we are only
seeing that part of it carried by the electron. Actually with modern definitions it is the
anti-particle of the neutrino, denoted by , that is produced in S-decay and the decay of
a neutron is written as
n — p+ +e 4.

(It was predicted in 1931, by Paul Dirac, that all particles should come with Doppelgéngers
called anti-particles which have exactly the same mass as the particle but opposite electric
charge, a prediction that nowadays has ample experimental confirmation.) The electric
charge is indicated here as the superscript on p* and e™, in units in which the charge on
the proton is +1. Since the charge on the neutron is zero, as its name implies, conservation
of charge demands that v also carry zero charge. Neutrinos were first observed directly,
rather than being inferred because of missing energy, in 1956 by Reines and Cowan.

As already mentioned, the neutron is not fundamental. Like the proton it is made up
of three constituents called “quarks”.” Protons and neutrons are made up of two different
kinds of quark, rather prosaically called an up quark and a down quark, and denoted by u
and d respectively. A u-quark has electric charge +2/3 and a d-quark has charge —1/3, in
units in which the charge on an electron is —1. A proton is made of two u-quarks and one
d-quark, giving a configuration uud with a total charge of +1, and a neutron is made of
one u-quark and two d-quarks, giving a configuration udd with a total charge of 0. To date
nobody has ever observed a quark in isolation, the observed charges on free particles are
always integer multiples of the charge on a proton, and quarks appear to be permanently
locked up inside other particles — a phenomenon termed confinement. The reason for this
is not fully understood even today.

In the quark model of protons and neutrons, S-decay of a neutron is due to a d-quark
in the neutron decaying to a u-quark (d-quarks are heavier than u-quarks, so this process
is compatible with conservation of energy since mgc? > m,c?), thus turning the neutron
into a proton. The fundamental reaction is

d — ute +1.

There is no evidence to date that quarks themselves are composite particles, all current
experiments are compatible with quarks, and electrons, being fundamental particles with
no observable substructure.

6 The unobserved particle must be electrically neutral because of conservation of charge, the neutron is electrically
neutral so the sum of the electric charges of all the decay products must be zero. Because the neutrino is electrically
neutral and almost massless it is not easy to detect.

7 The name comes from the book Finnegans Wake by James Joyce. Murray Gell-Mann, who came up with the idea
of quarks at the same time as another physicist George Zweig in 1964, happened to be reading Finnegans Wake at the
time and came across the phrase “Three quarks for muster Mark”, which Joyce used in his book supposedly to imitate

the cry of a seagull.



In 1932 yet another particle was identified in cosmic ray experiments, a positron, e™,
the anti-particle of the electron with the same mass as an electron but with opposite charge,
+1.

But there was more to come. To see that there must be more, think a little about a
“He nucleus. Two protons and two neutrons bound together in space only 10~'° m across
in an extremely stable configuration that takes more than 28 MeV to break it up. Protons
have the same electric charge and the repulsive electrostatic energy between two protons
a distance r apart is, in a vacuum,

62

Vir) = Ameor

Using e = 1.6 x 1071 C and r = 10715 m this works out as 2.3 x 10713J = 1.4 MeV. So
electrostatic repulsion should make *He unstable, with an excess of 1.4 MeV, instead of
which it is stable with a deficit of 28 MeV', which must be supplied to break it up. The
answer to this apparent riddle is that there must be a new force, a nuclear force, that is
stronger than electrostatic repulsion in the nucleus and which causes attraction between
the constituent particles inside a *He nucleus, thus holding it together. This force is called
the strong nuclear force. There are actually two different kinds of nuclear force — the
strong force holds stable atomic nuclei together and another force, the weak nuclear force,
tries to make them decay. It is the weak nuclear force that causes -decay. The strong
force can also be repulsive, like electromagnetism it is sometimes repulsive and sometimes
attractive. Heavy atomic atomic nuclei sometimes decay by breaking up and emitting
a-particles, a characteristic of the strong force.

In 1935 the Japanese physicist Hideki Yukawa postulated a new particle, associated
with the strong nuclear force. He reasoned in analogy with electromagnetism: just as
there is a particle associated with the electromagnetic force, the photon, there ought to
be a particle associated with the strong nuclear force. However, unlike electromagnetism
for which the photon is massless, the particle associated with the strong force should be
massive with a mass somewhere between that of an electron and a nucleon.® For this
reason this new particle was christened a Yukawa meson, the modern name for it is the
w-meson, or pion for short, and it is denoted by the Greek symbol 7.

This way of looking at forces, as being mediated by particles, is now well established
in particle physics. The electrostatic force, between two electrons say, is pictured as arising
from photon exchange like this:

Nucleon is a collective name use for protons and neutrons, the particles that constitute atomic nuclei, when it is

not important to distinguish between them.



e e
Note however that if an electron emits a photon in isolation there is an apparent

inconsistency. If the electron has initial 4-momentum P = (E/c, P) and final 4-momentum
P’ then the photon has 4-momentum Q = P — P’ and

= —2m*c® — 2m*y(v)y (V') (—c® + v.v'),

QQ=(P~P).(P~P)=PP+P.P —2P.P

where E = y(v)mc? and P = y(v)mv with v(v) = the Lorentz ~-factor for a

-1
particle of mass m moving with velocity v.? Now Q.Q is Lorentz invariant and evaluates
to the same thing in any reference frame, so let us use a reference frame in which one of

the electrons is initially at rest, with v =0 and v = 1 say, giving
Q-Q =2mc* (v —1).

If the final electron is a real physical particle it must have v/ > 1, with equality only if it
is at rest. If the final state electron is at rest then = 0 and nothing has happened (a
photon with @ = 0 is no photon at all!) but, if @ # 0, then

Q.Q >0,

so @ is space-like and this is no ordinary photon!

" Nevertheless the photon exchange depicted above can occur as a quantum mechanical
process, by virtue of the uncertainty principle. The time component of @, Q° = AE /¢, is
an energy and Heisenberg’s uncertainty relation between time and energy,

AEAt = h,

says that a particle with energy AE can be created out of nothing provided that it only
exists for a time less than
At~ h/AE.

2 In this course we use the convention that a particle with mass m, energy E and relativistic 3-momentum P in
an inertial reference frame S has 4-momentum, denoted by P, which decomposes into time-like and space-like parts as

(E/c,P) in S, and the square of the 4-momentum is P.P=—FE?/c?+P.P=—m?c.
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In particle physics such a particle is called a virtual particle, because it is not a real physical
particle, it only has a fleeting existence by virtue of the uncertainty principle and relies on
borrowed energy that must be paid back before a time At.

An analogy that may help here is with the banking system. If money is transferred
from one bank account to another it is often the case that it does not appear in the second
account until a few days after it has disappeared from the first account, even for electronic
transactions that take a microsecond. Where is the money in the interim? The answer is
that the banks can invest it and make a profit. They don’t make a lot on one transaction,
which might only make a small amount of money available for a few days, but if they have
thousands of customers then at any one time there may be many transactions pending and
the total amount of money available to invest could be quite considerable. Ultimately the
books have to balance, any individual customer must get his or her money back after a
few days, or they will start complaining. Nevertheless the banks have a permanent slush
fund available to invest because, if they have a large enough number of customers, then
statistically there will always be a significant number of transactions pending. This money
is ‘virtual’, any one transaction only releases money for a very short period of time before
it has to re-appear in the second account, but with enough virtual money around the banks
have can have significant capital for long term investment.®

Although virtual particles are not themselves real physical entities, their presence can
nevertheless have real physical effects! The photon exchanged above is a virtual photon and
it has a space-like 4-momentum Q.Q > 0, but this does not violate any of the principles
of special relativity since it is never observed as a real physical photon. The relations
P.P = —m?2c? for a massive particle and Q.Q = 0 for a massless particle are classical
relations that only hold for particles that live indefinitely, they are not always true for
quantum phenomena. Quantum particles that do not satisfy the classical constraints on
their momentum are said to be off mass shell.

Just as virtual photons mediate the electromagnetic force between charged particles
Yukawa’s pions mediate the strong force between, for example, a proton and a neutron
binding them inside atomic nuclei:'!

10 In principle banks can carry on doing this indefinitely, as long as they are sensible about it. But when they start

borrowing virtual money from each other, in order to increase their investment, the process become unsustainable, the
virtual money runs out and the banks collapse!

L The force binding protons and neutrons in atomic nuclei must of course be an attractive force. The diagram
here, showing the exchange of a pion, looks as though the proton and neutron are being repelled, but this is just a
conventional way of drawing such diagrams. These diagrams are not really physical representations in ordinary space —
in the relativistic theory of quantum fields they are actually graphical representations of terms in a mathematical series

whose evaluation gives a quantum mechanical amplitude for the processes involved in proton-neutron interactions.
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Yukawa managed to guess the mass of the pion by realising that it was very significant
that the strong force is short range, it does not appear to have any effect outside of an
atomic nucleus, that is beyond a distance of about the size of a nucleus, ~ 10715 m. This
therefore marks an important length scale for the strong force. Contrast this with the
electromagnetic force, where the Coulomb potential'?

2
Vir)=— 3
(1) =1 (3)
has no intrinsic length scale in it.
Yukawa argued that any particle associated with a short range force, like the strong
force, must be massive because of the uncertainty principle. If AF ~ mc? then in a time
At a massive virtual particle will travel a distance

Al = cAt = h/me,
Using the strong force length scale Al ~ 10715 m gives
m = h/cAl =~ 1.5 x 1072 kg ~ 100 MeV/c?,

intermediate between the mass of a proton m, = 938 Mev/c* and an electron m, =
0.5 MeV/c? — this is the expected mass of Yukawa’s mesons.

Note that this argument, when applied to electromagnetism, implies that Al = oo,
since the photon is massless, m, = 0. The smaller the mass the longer the range and
electromagnetism is an infinite range force.!?

When the pion was eventually observed for the first time, in cosmic rays in 1947 some
12 years after Yukawa’s initial proposal, it was found to have mass m, = 140 MeV/c2,
pretty close to Yukawa’s original estimate.

12 Particle physicists like to use units in which eg=1, because it tidies up many of the formulae. There is no physical

significance to this, it merely reflects our choice of the units in which we decide to quote electric charges. This system
of units is called the Lorentz-Heaviside system.

13 The only reason we do not tend to feel the electromagnetic force over extremely large distances is that positive
charges tend to cancel negative charges. The other inverse square force, gravity, in which there are no negative charges
and therefore no possible cancellations, indeed has a huge range — the force of gravity can be felt across astronomical,

and even cosmological, distances.



But Yukawa went even further and proposed a precise mathematical form for the
strong force. His argument went as follows. Classically the relativistic 4-momentum for a
massive particle, P = (F/c,P) where FE is the energy and P the relativistic 3-momentum
in a given inertial reference frame, satisfies

PP=—-—+PP=-m"c. (4)

Making the quantum mechanical substitutions

0 0
Eﬁlha and Pl—)—Zh%, (221,2,3>
on wave-functions 1 translates this to'4
hQ 9% 2¢2 2
2 92 — WPV = —m2cp.
A time independent solution of this equation must satisfy
1 02 m2c?
V)= ——— = 5
w r BTQ (T”lp) h2 w ( )

Notice the appearance of the intrinsic length scale ;r = h/mc in this equation — A, is
called the Compton wavelength of the particle with mass m, in analogy with the Compton
wavelength of an electron which enters the analysis of Compton scattering of a photon
hitting an electron.

A solution of (5) that vanishes as r — oo is

—RT

=—" (6)

r

where k = mc/h is the Compton wavenumber, defined as 27 times the inverse of the
Compton wavelength, \. = h/mec. Dividing A. by the speed of light gives a time-scale,
t. = % ~ 10723 s which is characteristic of the strong nuclear force.

Notice the similarity of (6) with the electrostatic potential (3), in which x = 0 since
the photon is massless. Pursuing this analogy Yukawa suggested the Yukawa potential

—KT
26

UYuk:awa (T’) = —9x

(7)

as a mathematical description of the strong force.!> The “charge” g, in this equation
is a strong force charge for the pion, analogous to the electric charge e in (3), called the

Amr

14 his equation is known as the Klein-Gordon equation, though it was first considered by Schrodinger. It is a

relativistic version of the usual Schrodinger equation of non-relativistic quantum mechanics.

15 Of course a quantum mechanical wave-function is not the same thing as a physical potential energy, nevertheless this
procedure gives the correct answer because the potential is a Green function for the appropriate differential operator,
—V? for electromagnetism and —V24k?2 for the strong force, and the Green function satisfies the same differential

equation as the wave-function.
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pion-nucleon coupling constant. Compared to the fine structure constant (using units with

e =1) a= 4765.10 ~ 1/137, 43;%(: ~ 1.14. Yukawa’s strong force is, as its name implies,
about 1.14 x 137 ~ 160 times stronger than the electromagnetic force.

As mentioned above, the pion was first observed in 1947 but before this confusion
reigned because another new particle was found in cosmic rays in 1937, with a mass very
similar to Yukawa’s estimate of the pion mass. Originally these particles were also called
mesons, because they were intermediate in mass between electrons and protons, but it
was immediately clear that they could not be Yukawa’s mesons because they travelled far
too easily through matter, they can easily penetrate many metres of rock, while Yukawa’s
mesons were expected to interact so strongly with matter, via the strong force, that they
should be stopped very quickly.'® These new particles were given the Greek symbol p and
called p-mesons, or muons for short (nowadays they would not be classified as mesons,
but are still called muons). Muons have electric charge —1 and a mass m, = 106 MeV/c?,
about 200 times the mass of an electron. Indeed a muon looks exactly like a heavy clone
of an electron — to this day it is not really understood why they should exist, though they
are probably crucial for consistency of any final mathematical model of particle physics.
Muons also have their own version of neutrinos to go with them — there are at least two
different types of neutrinos: the muon neutrino, v,, and the electron neutrino, v., together
with their respective anti-neutrinos, v, and v..

Both the muon and the pion are unstable under radioactive decay (due to the weak
nuclear force in this instance), the muon has a lifetime of about a microsecond and a
charged pion has a lifetime about 100 times less than this:

U~ — e + neutrinos, T, = 2.197 X 10755

7t  —  u* + neutrinos, Tr =2.603 x 107 % 5

(the lifetime of the pion 107% s should not be confused with the time-scale of the strong
force 10723 s, 7% decay is due to the weak nuclear force, not the strong nuclear force).
Pions carry electric charge of +1, in fact the 7™ is the anti-particle of the 7, there is
also a neutral pion 7% which is its own anti-particle; the p* is the anti-particle of the
1~ , like a heavier clone of the positron. From a modern perspective the pion is not really
fundamental, like the proton and the neutron it is made up of quarks. Unlike the proton
and the neutron it is made up of a quark and an anti-quark: the 7+ consists of a u-
quark and an anti-d-quark (denoted d), giving a total charge of +2/3 +1/3 = 1 (the d
has electric charge +1/3, opposite in sign to that of the d); the 7~ is made up of an
anti-u-quark (denoted @) and a d-quark, giving a total charge of —2/3 —1/3 = —1.

The number of particles is beginning to get rather large so we need a classification
scheme. All matter is divided into two basic categories: particles which “feel” the strong
force are called hadrons and particles that do not feel the strong force are called leptons.

16 The fact that a particle with a mass intermediate between an electron and a proton can travel many meters through
rock does not contradict Yukawa’s reasoning explained earlier, which only applied to virtual particles. A real physical
particle does not have to worry about time constraints on its existence imposed by the uncertainty principle, though it

may have other worries — it may not live for long if it decays radioactively.
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Hadrons are not really fundamental, they are made up of quarks, while leptons are believed
to be fundamental. Hadrons are further subdivided into baryons which are made up of three

quarks, and mesons which are made up of a quark and an anti-quark.'” The classification
looks like this:

Mesons (q7)  (n%,7°,..))
Baryons (¢qq) (n,p,...)

Leptons (CCI T V8 7N

Hadrons {
Matter

The strong nuclear force binds protons and neutrons inside atomic nuclei by exchang-
ing virtual pions between them — the pion can be said to mediate the strong force between
p and n. But the strong force also binds quarks inside protons, neutrons and pions. The
situation here is again somewhat analogous to electromagnetism. Electrons are bound in-
side atoms, and atoms are bound together to form molecules, by the electromagnetic force,
which is mediated by particles called photons. There is a much weaker force, the van der
Waals force, between molecules which holds them together to make solids and liquids —
the van der Waals force is an external residue of the internal electromagnetic forces in
atoms and molecules, which are electrically neutral overall. In a somewhat analogous way
the strong force between protons and neutrons, mediated by pions, is an external residue
of the strong force that holds quarks inside hadrons. The particles that bind quarks in
hadrons, the glue that holds hadrons together, are called gluons. It is gluons that are the
strong force version of photons and not pions — pions, it turns out, are not fundamental,
contrary to Yukawa’s original thinking. Like the photon, a gluon is massless. The fact that
the force mediated by massless gluons is not infinite in range is a poorly understood con-
sequence of the property of confinement mentioned earlier, gluons are somehow confined
inside protons and neutrons, just like quarks are.

We shall see later that there are also particles that mediate the weak force, known as
W and Z-bosons (physicists were running out of letters by the time these particles were
postulated). Unlike photons and gluons, the W and Z-bosons are massive. Very massive
in fact: the W-boson was first observed directly in 1984 and weighs in at 80.4 GeV/c? over
eighty times the mass of a proton. W-bosons carry electric charge W+ while the Z-boson
is electrically neutral, Z°.

There is also a hypothetical particle that would be associated with quantum effects
of the gravitational field, called the graviton g, but this is so far from any conceivable
experimental detection that we only mention it here to complete the picture.'®

17 Originally the distinction between hadrons and leptons was one of mass: hadron comes from the Greek 8adpooc

meaning “heavy” while lepton comes from the Greek AewTo meaning “light”. Once the particles became better under-
stood it was realised that hadrons are made up of quarks (and anti-quarks) while leptons are independent of quarks and
do not appear to have any substructure. Originally hadrons were also subdivided in to the heavier hadrons, the baryons,
baryon comes from Bapro (another Greek word for heavy), and the intermediate mass mesons, meson comes from the
Greek peoco meaning middle. It was only later, with the advent of the quark model, that baryons were classified as
having three quarks while mesons have a quark and an anti-quark. Nowadays mesons are routinely produced which are
much heavier than the lightest baryons!

18 Gravitational waves (the gravitational analogue of radio waves) were predicted by Einstein in 1915 and were
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So, as well as the matter particles above, we also have force particles:

( (holds molecules together,

binds electrons in atoms)

Electricity

Magnetism } Electromagnetism:

Forces Weak Nuclear Force: W=+, Z0 (causes f-decay, 7 decay, p decay)
(holds p and n in nuclei,

Strong Nuclear Force: & binds quarks in nucleons)

( Gravity: g (7)

Particles can be further categorised by physical properties other than their mass,
such as electric charge and intrinsic angular momentum (usually called spin). These extra
numbers are called quantum numbers of the particles because they take discrete values.
Particles whose intrinsic spin, .S, is an integral multiple of h, S = sh with s a non-negative
integer, are called bosons: examples are 7%, 70 (s = 0) and v, G, W+, Z°0 (s = 1).
Particles whose intrinsic spin is a half-integral multiple of & are called fermions: examples
are e*, u*, v, ve, p, n (s = 1/2). Fermions must obey the Pauli exclusion principle but
bosons do not — as many bosons as you like can fit into the same quantum state.

This chapter closes with a summary of all the known fundamental particles to date,
including some new ones that have not yet been mentioned: there are no less than three
copies, or families, of leptons. The muon, the mysterious heavy electron, was just the first
hint of things to come. There is yet a third copy of the electron, known as the tau-lepton,
77, and it also has its own neutrino, v,, as a partner. In addition there are also two
copies of the (u,d) pair of quarks, giving three families of quarks too. The first copy are
poetically called charm and strange quarks, (¢, s), and the second copy are given the rather
less interesting names of top and bottom, (t,b).19 So there are three families of quarks and
three of leptons, which we can group like this:

@) ) 0
() L) )

Physical properties of all of these particles are collected together in the following
table (protons, neutrons and Yukawa’s m-mesons are not included here because they are
not considered to be truly fundamental — they are made up of quarks — and the electric
charge () is quoted in units in which the charge on an electron is Q. = —1):

detected for the first time 100 years later, at the end of 2015, after a 50 year search. A short pulse of waves was detected
in laser interferometers in the US with arms 4 km long. The pulse came from two black holes, each with a mass some 30
time the mass of the Sun, losing energy through gravitational radiation and spiraling in towards each other to merge into
a single black hole in a cataclysmic event which, for a brief period lasting only 0.02 seconds, radiated more power than
all the stars in the Universe combined! To detect a graviton quantum of a gravitational wave, is simply inconceivable
with current technology.

19 The rather more poetic names truth and beauty, which were in fashion for a time, do not seem to have stuck.
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Fundamental Particles

Matter: s =1/2

LEPTONS
Q=-1 Q=0
e 0.511 MeV/c? Ve <leV/c?
p= 106 MeV/c? vy <0.19MeV/c?
7= 1777 MeV/c? Vr < 18.2MeV/c?
QUARKS
Q=2/3 Q=-1/3
u (up) 2.3 MeV/c** d (down) 4.8 MeV/c?
¢ (charm) 1.3 GeV/c? s (strange) 95 MeV/c?
t (top) 174 GeV/c? b (bottom) 4.2GeV/c?

*Since quarks have never been seen in isolation it is not possible to measure their mass directly. The values quoted here
are obtained indirectly and, especially for the lighter quarks, are rather uncertain. Note that the proton and neutron
weigh considerably more than three times the mass of the u or d quark: most of the mass of the proton and the neutron

is due to the energy of the strong force and m=E/c2.

Force particles: (s=1)

Photon ~ <2x107%eV/c2 Q=0
Gluons G Massless (7) Q=0

W+ 80.4 GeV/c? Q==+1

Weak bosons { 70 91.2 GeV/c? 0 =0

In addition to all of the particles above there is one more boson to add to the list,
called the Higgs boson, which is expected to have spin s = 0 and charge ) = 0. It is
essential for the internal consistency of our current understanding of particle physics and
a particle that appears to have some of the expected properties of the Higgs boson was
found only this year, some 48 years after its was first predicted in 1964. In 2012 the Large
Hadron Collider (LHC) at CERN (the European particle physics facility near Geneva),
running at an energy of 8 T'eV discovered the Higgs boson with a mass of 126 GeV/c2. As
a consequence the 2013 Nobel prize for physics was awarded to two of the people who did
the fundamental theoretical work that predicted its existence: Peter Higgs and Francois
Englert.
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2. Basic concepts

i) Cross-section: cross-sections are the basic quantities that are extracted from measure-
ments in real experiments. Elementary particles are so small that we cannot pick them up
and manipulate them individually. Instead beams of particles are fired at targets made up
of other types of particles and we measure the speed, direction and other physical proper-
ties, such as electric charge, of what comes out. In this way we can get information about
the nature of the interactions that occur during the collisions.

The cross-section of a target is the area presented to incoming projectiles (such as
particles fired at the target). Consider an incoming beam of particles, with n; particles
per unit volume each moving with speed v;, impinging on a target of stationary particles
where each of the target particles presents cross-sectional area o to the beam. If there is
a total of N; particles in the target and we take the geometry of the target to be a slab of
area A and thickness Ax then the probability of a beam particle hitting a target particle
is

NtO'
P=—
A

(this assumes that no target particle is hidden behind any other, which requires Ny <<
A/o: this can always be arranged by making the target very thin, i.e. taking Az small
enough).

o
® o
® -0
()
®
AX

The incident flux ®; is defined as being the number of particles in the incident beam
passing unit area perpendicular to the beam each second,

(I%' = N;v;.
We expect the number of ‘hits’ per second to be

®,AP = n;v;Nyo := Lo
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where

L= niviNt

is called the luminosity of the experiment, it has dimensions of inverse area per unit time
(m™2 s71). The number of hits per second is called the reaction rate and we denote it by
W so

W = Ninvio = Lo. (8)

The luminosity is a kinematic quantity, it contains no information about the underly-
ing dynamics of the particle collisions, it is determined purely by geometry and the speed
of the incoming particles which to a large extent are under the control of the experimen-
talists. A large luminosity means a very tightly focused beam, producing a greater chance
of collisions. Integrating £ over time gives the integrated luminosity, [ Ldt, which has
dimensions of inverse area, which is an important parameter for running a particle accel-
erator. A more tightly focused beam, with a smaller cross-sectional area, leads to a larger
luminosity. For example, the integrated luminosity of the LHC is measured in inverse
femtobarns, with 1 femtobarn = 10=° barns = 10743 m?2, a beam of light focused into
such a tiny area would have a large luminosity, and the terminology is taken over from
light (photons) to any other kind of particle beam.?°

The reaction rate W factorises into the product of £ and ¢ and the dynamics of the
underlying collisions is contained in o. Experimentally it is difficult to measure o directly,
it is W that is measured. Assuming that Ny, n; and v; are known it is usual to define the
cross-section using equation (8) as

o= (9)

Thus the total cross-section per target particle is the reaction rate divided by the lu-
minosity. The cross-section ¢ has dimensions of area and in particle physics typical
cross-sections are so small that it is conventional to measure them in units called barns
where 1 barn = 10728 m?2. Cross-sections can vary strongly with energy, but typical
centre of mass cross-sections, at around 1 GeV, are: o ~ 1072 b for strong interactions;
o ~ 1078 b = 10 nb for electromagnetic interactions and o ~ 107 b = 102 pb for weak
interactions where b denotes barn, nb denotes nanobarns (1 nb = 1079 b) and pb denotes
picobarns (1 pb = 10712 p).%1

The incoming particles scatter off the target particles at various angles and we can
learn a lot about the microscopic forces controlling the collisions by measuring these

20 A more familiar quantity with dimensions of inverse area is the fuel consumption of a car. A consumption of
10 km /litre=107 m~2 and an inverse femtobarn translates to 1037 km/litre!
21 The LHC at CERN in Geneva is the largest particle accelerator ever built. It collides protons on protons and its
first run, from 2010 to 2013, was at energy 7~8 TeV. The cross-section for proton-proton collisions was measured to be
100 millibarns or 1—10 b and the integrated luminosity over 3 years was 30 inverse femptobarns or 3x 10 inverse barns.
The total number of collisions in the first run was therefore about o f * Ldt=3x 1015, or about 30 million collisions per
second over 3 years. Of course the machine was not running all the time, there was some down-time, so the collision

rate during the time the machine was running is somewhat larger than this, at least 10® collisions per second!
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angles. We denote the reaction rate for particles scattering into the solid angle range

d$) = sin 0dfd¢o by J— (o
AW (6, ¢) = %d(l - E%d(l.

W is called the differential cross-section. The total cross-section is the integral of the
differential cross-section over all directions,

T 27
do .
o= /0 /0 o Sin 0dOdo

(polar co-ordinates are defined here by taking the target to be at the origin and the z-axis
parallel to the incoming beam).

i1) Scattering amplitude: this is a quantum mechanical amplitude from which collision
probabilities can be calculated. Consider a single beam particle a colliding with a single
target particle b, the whole process taking place in a cube of size L and volume V = L3.
For a single particle in the beam n; = 1/V and the incident flux and the luminosity are
the same, since N; =1,

U;
@iznwi:—zﬁ.

1%
The differential reaction rate for incoming particles to scatter into the outgoing solid angle
dS is
d0(97 ¢> (% da(@, ¢)
=L —dO = ——"2dO. 1
dW(0,¢) =L 70 d v 0 d (10)

Understanding the details of scattering process requires using the theory of quantum
mechanics. Suppose first of all that b is so massive that it is not affected by the collision and
stays in the same place. Let the incoming particle a be described by a quantum mechanical
wave-function 1;(r) which is a plane wave and the collision process results in a final state
with wave-function ¢ ¢(r), then the quantum amplitude Mjy; for the scattering process can
be calculated from the potential energy, U, for the forces involved, using perturbation
theory. At lowest order in perturbation theory the amplitude is

My = / G5 (U (F)s(r)dr.
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Since ; and 1y are dimensionless we chose to normalise them so that

f Vi d3r = f w}wfd?’r = V. In the usual principles of quantum mechanics a quan-
tum mechanical amplitude My; is a complex number from which the probability of a final
state f emerging from an initial state ¢ is [My;|? (an example of the calculation of My;
for a specific process will be given later). The transition rate produced by an interaction
amplitude |My;|? is affected by the number of quantum mechanical states available to
the outgoing particles — the more quantum states that are available the more likely the
process is to occur — and the number of final states can depend on the total final state
energy E and also on the direction of the outgoing particle. We shall denote the number of
final states available to the outgoing particle by Nf(E,§,¢) (in classical physics it would
be infinite, but in quantum mechanics it is finite). The number of final states available in
the energy range dE and solid angle df) is

N, = LN gqqp - (E)dQdE
17 dEdQ —r ’
where p(E) = % is called the density of states and has dimensions of (energy)~*(radians) 2.

The transition rate is proportional to

12
dW %p(mda, (11)

where the 1/V? is introduced to cancel the normalisation i Vi d3r = i zp;‘cwfd?’r =V.
The left-hand side of (11) is a rate, a probability per unit time, and so it has dimensions
of (time)~!; while the right-hand side has dimensions of (energy)*!, since My, has di-
mensions (energy) x (volume) and p(E) dimensions of (energy)~'. The dimensions are
balanced by a factor of 1/A in the proportionality factor on the right-hand side,

1 [ My
h V2

dW p(E)dS2,

where the proportionality factor is now a pure number. A full quantum mechanical treat-
ment produces a proportionality factor of 27, giving

2 | My, [?

dW = Vo

p(E)dS. (12)

This is a central result from time-dependent perturbation theory in quantum mechanics:
the probability of a quantum mechanical transition between two energy eigenstates, when
the Hamiltonian is perturbed by a potential U, is independent of time to first order in U
and is given by (12), which is called Fermi’s Golden Rule.

To relate the cross-section o(E, 8, ¢) to My; we need to know the density of states

d>N;
PB) = oraa
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where N¢(E,0,¢) is the number of final states available to the outgoing particle with
energy E in the (0, ¢) direction, it is purely kinematical, independent of the dynamics of
the forces governing the collision. Then p(FE) can be calculated as follows. The possible
momentum states for one of the final state particles in the volume V are

27 27 27
Pfa = fhnm? Pry = fhny7 Ptz = fhnzw

where n,, n, and n, are integers. A small cube in momentum space with volume

d’py = dps.dpsydpys,. = pidpydQ
therefore contains

L\’ v
oy pfdpfdQ @ h)3pfdpfdQ de

allowed quantum states, so
dN %
f — p?«dQ
dpy (@)
is the number of final states available with momentum between py and py + dp f in the
direction defined by the solid angle cone df2. For non-relativistic energies E = 2mavf =

%TZZ,SO%:Z—Z:vﬂ So
dNy  dNy dE 1 dNy
dpf N dE dpf N Vf dE
and , )
d*Ny V. by
E) = = -t 1
PE) = TBaq = @nh)s of (13)
Now combining (10) and (12) gives the differential cross-section
do _VdW _V2m|M fil?
aQ v; dQ v, b V2
and substituting (13) the volumes cancel leaving
do 1
T Myl (14)

d_Q 47T2h4 vaz

The same formula works even if we relax the assumption that the target particle is
infinitely massive, provided we work in the centre of mass frame and interpret the symbols
correctly. We can even allow the particles to change their nature and two particles, say
c and d, emerge, which are not the same as the original particles @ and b. In this more
general situation the final energy is

E=—pj+ ;= Py

2m, 2myg 2memy
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from which
dE me + my .
= = Ve i =V
dpf Mg by d c f

where v, and vg are the final speeds of particles ¢ and d and vy is their relative velocity.
Inverting this

d 1

e (15)

dE Vf
the same formula as before. Also in the centre of mass frame we must interpret v; as the
relative incoming velocity: v; = v, + vp. The formula (14) for the cross-section for the
process a +b — ¢+ d is then valid in the centre of mass frame, with py the magnitude of
the momentum of either of the final state particles ¢ or d (they are the same in the centre
of mass frame). The angles § and ¢ are measured relative the direction of the incoming
particles,

d
0

¢
a > < eOb

C

Although this formula has been calculated using non-relativistic kinematics it is also
true, in the centre of mass frame, for collisions at relativistic velocities — although there
are subtleties with wave function normalisation due to Lorentz contraction reducing the
volume. This will not be proven here but it will be assumed when necessary.??

Equation (14) is a very important formula in particle physics. What experiments
measure is cross-sections (actually reaction rates, from which cross-sections are inferred

2

using (9)), often differential cross-sections. The factor % is purely kinematical and gives
no information about the underlying physics of the scattering process. The real meat of
the problem lies in the quantum mechanical amplitude M ;. We can obtain experimental
information about My; by measuring cross-sections and using equation (14). If we have
an underlying theory which specifies the dynamics of the interaction we can attempt to
calculate the transition amplitudes My; and compare our theoretical predictions with the
experimentally measured data to see if our theory correctly reproduces the experimentally
numbers.

As an example of the application of the formula (14) consider an a-particle, with
charge 2e, scattering off a massive positively charged particle N such as a nucleus with
charge Ze, « + N — a + N, by exchanging a photon

22 As an exercise you can check equation (15) is also true using the fully relativistic expression E=, /p?c +m2ct+

A /p? +m2c* for the final state energy.
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Suppose the a-particle is non-relativistic and has incoming momentum q;, = hk;,
and outgoing momentum quy; = fikyyt, and incoming energy E;, = ¢, /2m,, and outgoing
energy E,u; = q2,;/2me. For simplicity further suppose that IV is so massive that its recoil
velocity under the impact can be ignored and is essentially stationary in the centre of mass
frame. Conservation of energy then imposes Fout = Fin = qout = ¢in- In formula (14) we
therefore have vi = Vf = Qin/Ma, 50 VfV; = ¢2, /Mm% = 2E;, /m, and p?f = q2,; = 2moEip,

which imply —L = = m?, giving

’U’Uf

do m2
— = —2 Myl
i = gzt Ml

It remains to calculate the quantum mechanical amplitude My; for this process. The
amplitude is

Myi = / B3 (x)U (x) ()

where U(r) = 427TZ;; is the Coulomb potential between the a-particle, with charge 2e,

and N with charge Ze, which is taken to sit at the origin. Represent the incoming and
outgoing a-particle wave-functions by plane waves (the massive particle N is essentially

being treated as classical here)

i (x) = o~ iKin-x and ¢f<x) — e ikour-x_

Then it is convenient to use Fourier transforms, where the Fourier transform of a function

f(x) is defined to be
fo = [ dof(ayet

— 00

with the inverse transform

f@) =5 [ T dk (ke

— 00

(the inverse transform can be calculated using the integral representation of the Dirac
d-function derived in the mathematical methods course, d(k) = 1 f e’**dx). Applying
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this to U(x), which is a function of three Cartesian co-ordinates, gives?

27 e?
Eokz

Uk) = /d?’x U(x)eik‘x =

(the calculation of U (k) is left as an exercise?*) and

_ 1 3 —ik.x
U) = G /d kU (ke
So
My; = / Pz i (x)U(x)hi(x) = (27103 / &’z / APk eMont X (ke Rex e inx
~ ~ 27e?
_ 3 (3) ke k) — k. —
/ BEUE)0® (Kous — kin — k) = U(Kout — Kin) Pt

Defining

q= h(kzn - kout)
to be the momentum carried by the photon, we have

_2Ze*?

M .
T €0q>

(16)

with
¢ = qfn + qgut — 2Qout-Qin = 2%'2n(1 —cosl) =4dmy Eip(1 — cos ) = 8my Eyy, sin2(9/2)

where 6 is the angle between k;, and Kkout, Kin-Kout = kinkour cos 8, that is the angle
through which the a-particle is scattered.
The cross-section is finally

do 1 Z2et
dQ 6472 2E? sin?(0/2)

Note that i has disappeared from this equation — the result is purely classical. In fact this
is the Rutherford scattering formula, describing how a-particles scatter off atomic nuclei.

23 Thereisa subtlety with the volume here. Because the photon is massless the electromagnetic force has infinite range
and we must take V— o0 to calculate the Fourier transform, so one might worry about the normalisation f | (x)|?d3x=
V. Actually V cancels out in the cross-section (14) so we can keep it finite during the calculation of the cross-section
and let V—oo at the end. Alternatively use a finite volume with wi(x):#eﬂ'ki"'x and wf(x):#eﬂ'kﬂut'x
normalised to unity, then take Mz;=V f d3z Y3 (x)U (x)9; (x) (My; has dimensions of Energy X Volume) and then
let V—o0. The final answer is the same.

24 Hint: first calculate the Fourier transform of the Yukawa potential (7), using spherical polar co-ordinates, and

then let k—0.
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i17) Spin and helicity: many fundamental particles have an intrinsic spin associated with
them. In a classical world view it looks as though fundamental particles are spinning, like
little balls. Although a truly point particle cannot be spinning in the usual sense neverthe-
less quantum mechanically particles can have intrinsic spin s, or angular momentum sh.
If a specific direction is chosen, the z-direction say, and the spin of massive particle with
intrinsic spin s is measured in this direction the result is quantised: a measurement of the
z-component of the spin can be any one of 2s + 1 possible values: —s, —s+1,...,s—1,1.
An electron, for example, has intrinsic spin 1/2 and measuring the component of the spin
in any direction can only give +1/2 or —1/2.

The intrinsic spin of a particle is an example of a quantum number that is used to
classify particles — all fundamental particles of the same type have the same intrinsic spin.
A particle, such as the electron, with half-integral spin are called fermions while particles
with integral spin are called bosons, an example of a boson is a photon which has spin 1.

There is a subtlety for massless particles, such as the photon, though: some of the
spin states are missing! A massive spin 1 particle has three possible spin states, —1,0 and
+1, but a photon only has two spin states, £1, the 0 is missing.

When a particle is moving we can use the direction of motion to define the spin state.
The helicity h of a particle moving with momentum p is defined as

h = p_s
p|

For a massive particle there are thus 2s + 1 helicity states. A photon has two helicity
states.

For photons the concept of helicity is related to the familiar notion of polarisation of
a light beam via particle-wave duality: helicity is to a particle what polarisation is to a
wave. A changing magnetic field generates an electric field (Faraday’s law of electromag-
netic induction), conversely a changing electric field also generates an electric field, and a
classical electromagnetic wave consist of self-sustaining oscillating electromagnetic fields.
Electromagnetic waves are transverse and can be polarised, a beam of light moving in the
z-direction has oscillating electric and magnetic fields in the x —y plane (hence transverse),
for example the electric field with wavenumber k£ and angular frequency w could be of the
from

E = Fycos(kz — wt)x,

where Ej is a constant. This field always points in the z-direction and oscillates in magni-
tude: it is said to be linearly polarised in the x-direction. A more compact way of writing
it is to use a complex notation and write

E = EyRe (ei(kz_”t)f(> )
Another possibility is

E = EyRe (ei<kz—wt>(§< + iy))
= Ey(cos(kz — wt)x F sin(kz — wt)y),
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which corresponds a rotating electric field of constant magnitude in the x — y plane. If we
visualise the x — y plane with the z-axis pointing away from is, the upper sign corresponds
to clockwise rotation and minus sign to anti-clockwise rotation. This electromagnetic
wave is said to be circularly polarised: if we imagine travelling along with the wave in
the z-direction the clockwise rotation is like a right-handed corkscrew and is called right
circularly polarised and the anti-clockwise rotation is called left circularly polarised.

X E X E
z z
y y
Right circularly polarised Left circularly polarised

In summary, if the wave is moving in the z-direction, X + ¢y represents right circular
polarisation and x —1y left circular polarisation. Note that, for a wave moving in the oppo-
site, —z, direction it is the other way around: X — ¢y represents right circular polarisation
and X + 1y left circular polarisation.

Quantum mechanically the photon has two helicity states, h = +1, and these corre-
spond respectively to the right and left circular polarisation of a classical electro-magnetic
wave. There is no classical analogue of the helicity of an electron.

There is a modification of equation (14) if the particles involved have intrinsic spin.
As before label the two colliding particles as particle a and particle b and suppose two
particles ¢ and d come out.?® If the outgoing particles have intrinsic spins s. and sq4, with
helicities h. and hg, then there are more quantum mechanical states available for outgoing
particles to scatter into and, if the final spins are not measured, we should sum over them
in calculating the cross-section (there are (2s.+ 1)(2s4 + 1) possibilities). If the incoming
particles have spins s, and s, respectively then there are (2s, + 1)(2s, + 1) possible initial

25 It is not always the case that the particles coming out are the same as the particles going in — sometimes the
colliding particles can transfer electric charge, or other quantum numbers, during a collision. So, for example, an ingoing
proton might might lose its charge and emerge as a neutron (though the total electric charge, when all other particles
are accounted for, must remain unchanged). In particle physics a process in which the outgoing particles are the same as
the ingoing particles is called an elastic collision. If the emerging particles differ from the ingoing particles the process
is termed inelastic. This is a different use of the words elastic and inelastic as applied to non-relativistic collisions,
where the words refer to whether or not energy is conserved in the collision. In a relativistic collision energy is always

conserved.
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states and, if none of these is fixed by the experiment (i.e. the initial particle states are
unpolarised), then we should average over the initial spin states, that is the initial helicities.
The net result is that we should average over the initial helicities and sum over the final
helicities. In general amplitudes can depend on the helicities of the incoming and outgoing
particle and we denote this dependency by M}L;hd;hah” so this prescription gives 26

2
do_ 17 : ST gttt (17)
AV amntvpor (250 +1)2sp +1) L T

The simplest possibility is that My, is independent of spins, in which case this reduces
to )
do 1 Py 2
— = ———— (25, + 1)(2s4 + 1)| My; 18
T = Ty 25 D28+ DIy (15)
and the cross-section just increases by a factor corresponding to the number of spin states
available to the emerging particles, but this is not always the case.

iv) Resonances: we can use the concept of reaction rate W even for a single particle
decaying into daughter particles: the mean lifetime of a decaying particle is

T=—.

W
For particles that decay due to strong interactions typical lifetimes are extremely short,
T~ 10723 s, which is too short to measure directly. For a given lifetime an energy I' can
be defined, using the uncertainty principle TAFE ~ h, as

h

r=-.

T
I" represents an uncertainty, or a spread, in the energy of the decaying state. Starting with
a sample of Ny particles at time ¢t = 0 the number left after a time ¢ > 0 is

N(t) = N()e_t/T = Noe_rt/h.

For a decaying particle created at time ¢t = 0 with mass m, and so rest energy Ey = mc?,

and initial wave-function (0), the wave-function after as a function of ¢ will be

. Egt

_ e T ) yg0) >0,
dj(t) {0 t <0

in the rest frame of m. The I't term in the exponent represents the fact that the particle
can decay and the number of particles left after a time ¢ is

N(t) oc ™ (£)y(t) = e 7 [9(0)|*

hehaihah hehaihah
26 Note that we use Zh i hesha |Mfi d b|2 and not |Zh iy heoha Mfi d b 2: the final state

particles do have definite helicities, we are just choosing not to measure them.
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Take the wave function to vanish for ¢ < 0 as this is consistent with the particles being
created at ¢t = 0.
It is convenient to work with the Fourier transformed wave-function

0w = [ wtean - / (et

Using Einstein’s relation £ = hw this can be written in terms of energy rather than
frequency

P b Bt T nye,  ilp(0)
0E) = [ veeRa =) [ e #= T

giving the probability

h2)(0)[2

(B - Eo)? +

[G(B)]” = 9" (E)(E) =

which is directly proportional to a cross-section.

This is called the Breit- Wignerresonance formula and it is essentially the same formula
as that for the amplitude of oscillations as a function of driving frequency for a damped
harmonic oscillator near resonance.

Onmax /2

E,-T/2 E,+I12

The peak at £ = Ej is called a resonance of the cross-section and I' determines the
width of the resonance, as a function of energy. The above form of the cross-section near
a resonance is non-relativistic, the special relativistic generalisation is

am(mEgI‘2
(B7 - E3) + T°E3

o(E) =
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where E? is defined here as E? = —P.P/c? with P is the total initial 4-momentum. Thus
E? = m?2c* for a single particle decay, but is more complicated for a two-particle collision.
Conventionally the symbol s is used for E? where

s:=—P.P/c?

is the total centre of mass energy.

Very short lived particles have very large I' and appear as broad peaks in the cross-
section as a function of energy, indeed they are hardly particles at all and are usually
referred to as resonances. These states are more appropriately described by the energy
E = mc? and the width T rather than the mass m and the lifetime 7, the latter are more
usually applied to long lived particles. For example there is a baryonic state with spin 3/2,
given the symbol AT, which is like an excited version of the proton and, like the proton,
has quark content wud. This state has Fy = 1232 MeV and I' = 120 MeV and is often
referred to as a hadronic resonance rather than a particle. Charged pions on the other
hand, 7%+, have

I=h/(26x107% 5) =2.5x 107% eV << myc?

and would usually be called particles rather than resonances.

The quantity that really distinguishes between a ‘particle’ and a ‘resonance’ is the
dimensionless ratio I'/Eq = I'/(mc?): if this is small the state is best thought of as a
particle, with a relatively long life-time; if it is large the state is best thought of as a
resonance. For example the Z° bosons mentioned earlier have Fy = mc? = 91.2 GeV and
I' = 2.5 GeV which translates to an immeasurably short lifetime of 7,0 = 2.6 x 1072% s.
Such a short lifetime could never be measured directly in the laboratory. Nevertheless the
ZY is usually thought of as a particle since I'/(mc?) =~ 0.02 << 1, even though its width
is large compared to that of the AT resonance mentioned above.

3. Symmetries and Conservation Laws

In Lagrangian dynamics symmetries of the action imply conservation laws. Suppose
a physical system has generalised co-ordinates ¢*(t) and velocities ¢*(t) whose dynamics
is governed by a Lagrangian L(q, ). Suppose that the Lagrangian (and hence the action)
is invariant under a change d¢° = ef‘(q) for some definite functions f(g), with € an
infinitesimal constant. Now under any infinitesimal variation ¢* — ¢‘+ d¢* the Lagrangian
changes by
L(q,q) — L(q,q) +0L(q,q)

with

D) = 2 550+ 2 50 = 2 g (aror) -3 (57) - e o0

7

If ¢(¢) is a solution of the Lagrangian equations of motion then

d (9L 9L _
dt \ 9¢* dqt

27




and so

d (0L _ . d oL _ .
0L(q,q) = — ¢ | = — -0q" | .
(¢:9) Zi:dt (341 q) pn <EZ: 9 q)
Now, if d¢*(t) = €f'(q) is a symmetry of L(q,q) then L(¢",¢") = L(¢",¢") + 6L(¢",¢") so
5L(q,q) = 0, because that is what we mean by a symmetry. We conclude that, if ¢*(t) is
a solution of the equations of motion and dq¢' = €f*(q) is a symmetry, then

d oL _ .\ _ oL ;. .
E<¢ aq15q>_0 = Zi:aqif(Q)—Of

is a constant of the motion, independent of time. Hence symmetries imply conservation
laws.

As an example consider a free particle with mass m and position described by Carte-
sian co-ordinates x = ¢', y = ¢ and z = ¢>. The Lagrangian is

3

L(g,4) = sm > _d'd".

2 4
=1

From translational invariance we see that L(q, ¢) is invariant under x — x + € where € is a
constant. So let f1(q) =1 and f?(q) = f3(¢) = 0 and then

aL 7 _ -1 1
Zi:aqif (q) =md" =p

is the x-component of the particle’s momentum, which must be constant if ¢’(¢) are a solu-
tion of the equations of motion. Similarly p? = md?(t) and p® = mq>(t) are also constants.
In other words translational invariance implies conservation of linear momentum.

This is a very powerful result in mechanics. Invariance under translations in time gives
rise to conservation of energy and any system whose dynamics is invariant under rotations
must have constant angular momentum. The fact that energy, linear momentum and
angular momentum are conserved is directly traceable to known symmetries: invariance
under time translations, space translations and rotations.

To summarise:

Translational Invariance < Conservation of Linear Momentum
Rotational Invariance < Conservation of Angular Momentum
Time Independence < Conservation of Energy

In particle physics much can be understood by finding things that seem to be conserved
in the phenomena which then imply symmetries in the underlying dynamics and this often
allow us to guess what the dynamics might be.

Conservation of Energy and Momentum
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In relativistic physics energy and momentum are unified — they are just different
components of the relativistic 4-momentum. The law of conservation of 4-momentum
(which is a consequence of the symmetry of Lorentz invariance in relativistic dynamics) is
often expressed as conservation of energy in the rest frame of a collision.

We have already used the law of conservation of energy in analysing particle decays.
A neutron can decay into a proton, an electron and an anti-neutrino

n—-pte +u,
only because there is excess energy available
2 2

mpc” = (mp + me + m,,e)c2 + Exin > (mp +me +my,_)c”,

where Fk;, > 0 is the total kinetic energy of the final state particles in the rest frame of
the neutron. The inverse process

p—=nte +u, (19)

is forbidden by conservation of energy because
mpyc? < (my, +me +m,,)c>. (20)
As already mentioned quantum mechanically processes like (19) can happen if the final
states are virtual off-shell states and do not survive indefinitely. One still has conservation

of 4-momenta and, in particular, energy even in a virtual process, but the kinetic energy

Fkin can be negative for a time less than At ~ EZ .

Conservation of Angular Momentum

As another an example of the use of conservation laws in particle physics, consider
the emission of a photon by an electron in an atom via an electric dipole transition. In the
process the electron jumps from a higher orbital to a lower orbital in the atom. If the initial
electron wave-function was 1, o Pj(cos ), where [ denotes the orbital angular momentum
of the wave-function, then the final electron wave-function has angular momentum [ — 1.
The process is

Y = Y- + .

The initial angular momentum of the electron is lf. If the spin of the photon is s, then the
final total angular momentum of the electron plus the photon is ({—1)h+s.,h. Conservation
of angular momentum then requires that

Ih=(l—1)h+ syh,
so we deduce that the spin of the photon is
sy = 1.
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In order to utilise the full power of the principle of angular-momentum conservation
it will be necessary to understand how to add two angular momenta in quantum physics,
which is very different to the familiar process of vector addition in classical physics. In
classical physics angular momentum is a vector J with a magnitude J and a direction
specified by three components (J;, Jy, J.). Of course these are not independent, since

JP=3I=Ji+J; + JZ,

and angular momentum is specified by three real numbers. Vectors are added using the
usual triangle law from which

|J1—J2|§|J1+J2|§J1+J2. (21)

Quantum mechanically things are different in a number of ways:
e Angular momentum is quantised. J is not a continuous variable but can take only
discrete values which are multiples of the fundamental quantum unit A. In fact

J? = j(j + 1)R*

where j is either a non-negative integer, j = 0,1,2,... or a positive half-integer
135
J= 515,53,

e The uncertainty principle says that J,, J, and J, cannot be simultaneously specified
— there are only two degrees of freedom in quantum angular momenta. If J is
specified then we can measure only one linear combination of J,, J, or J,, not all
three independently. For example if J and .J, are known for a given quantum state
then J, and J, are completely undetermined and have no physical value. Furthermore
J. is also quantised and has only 25 4+ 1 possible values

J, =m,h

where

For j = %, for example, there are 4 possible values of .J,, given by m, = %, %, —%, —%,

but J, and J, are completely undetermined. Pictorially the situation looks something
like this:

m, =3/2

QV’ -1
-1
m,=-3/2

where J is represented by a cone whose height is determined by m,.
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e Because of the above two restrictions, addition of angular momenta in quantum me-
chanics is also different to the classical case. If two angular momenta J; and Js, are
added to give a third J then the triangle inequality (21) still holds, but J can only
take the discrete values

J=\|h—Ja|,|Jy = Jo| + Dy, Sy + T2 = Ry Jy o,
or equivalently
Jj=1li—J2l,lj1 = Jol +1,.. ., J1 +j2 — 1, j1 + Jo

If the z-components are known there are further constraints on the sum: if J; has
third component J; ., and J5 has third component J . then these do just add like the
classical case and J will have third component

Jz = Jl,z + ']2,2

or m = my + mg. This requires j > |m| because of (22).

In general a particle need not be in a definite state of angular momentum, it may be in a
linear superposition of different j and m. A general state is a vector in a Hilbert space and
we can use definite states of j and m as basis vectors, denoted by |j;m >.27 This basis
can be chosen so that it is orthonormal with

< J; m|j'; m' >= 5jj’5mm’-
A general state is then a linear sum of basis vectors
J
U=>">" ¢jmljsm>
i m=—j

where 1), are complex numbers. For example adding a state with definite angular mo-
mentum |j1;m1 > to a second state with definite angular momentum |jo;ms > produces
a linear superposition of states with angular momenta j between |jo — ji| and jo + j1. A
standard notation for this is

J2+J1
l713m1 > ®|j2;me >= Z Ojj‘ix;mlmQ‘ﬁm > (23)
J=lj2—J1]

where the numbers Cj;?;;mlmz are called Clebsch-Gordon coefficients. Conservation of
angular momentum requires that only states with m = mj +m2 appear in the sum on the

:hi- : jim — —
right-hand side, so C5% . ., = 0 unless m = m; + ms.

27 It is common in quantum mechanics to denote quantum states associated with some property a by |a> and the

complex conjugate state by <al.
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The reason for the ® symbol is that, for fixed j; and jo, there are 2j; + 1 possible
values of m; and 2j5 + 1 possible values of my. Thus the set

{ljismy >mi = g1, =i +1,..., 51 — L j1}

is a basis for a 2j; + 1 dimensional vector space and
{lg2sma >yme = —ja, —ja +1,...,j2 — 1, ja}

is a basis for a 2j5+ 1 dimensional vector space. There are therefore (2j; + 1)(2j2 + 1) pos-
sible states on the left-hand side of equation (23) so vector addition in quantum mechanics
is like multiplication in terms of Hilbert space dimensions.?® A slightly more compact
notation, which we shall often use, is

|71, J2; M1, mo >:=|j1:my > ®|j2;ma > .

For each value of j on the right-hand side of (23) there are 2j + 1 possible values of
m and j runs from |jy — ji| to jo + j1 giving, assuming jo > j; for example,

Jo+i1
Z (25 +1)={(o+j1)+ (G2 —J1)} (2 + 1)+ (21 + 1) = (2j1 +1)(2j2 + 1)

J=Jj2—J1

different |j;m >.
The quantum Hilbert space associated with these angular momentum states is a finite
dimensional complex vector space with dimension (2j; + 1)(2j2 + 1) and either

{lism>;5=j1 —g2lslg1 —del +1,.. .1+ do— L1+ jom=—4,—5+1,...,5—1,j}
or
{71, J2smi,me >my = —ji, =1 +1,..., 51— Lji,me = —jo,—jo+1,..., 52 — 1, ja}

can be used as an orthonormal basis for the space. The Clebsch-Gordon coefficients just
give a linear transformation between two different orthonormal bases.

Consider for example combining two spin-1/2 electrons, so j; = jo = 1/2. Each
electron has a spin which is a vector in a two-dimensional Hilbert space of possible spins,
its spin is some linear combination of two possible spin states, often called spin up (| T >)
and spin down (| | >) relative to some fiducial direction such as the z-axis of a Cartesian
co-ordinate system. In our notation

28 For historical reasons the ® operation is called a tensor product — a term that comes originally from the theory

1 1 1
,§>—|T>, and 5,—§>—|¢>.

N | —

of elasticity in solids.
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There are only two possible results for the total angular momentum when the electron
spins are combined, j = % — % =0orj= % + % = 1. If both electrons are spin up,
mi = mg = 1/2, the combined spin must have m = 1 and only j = 1 is allowed in the

combined state:

1

11 _ . _ 11 _
‘§,§,§,§>_\1,1> & [1>elt>=I1> & Oy =1
Similarly if both electrons are spin down, m; = mg = —1/2, the combined spin must have

m = —1 and again only 7 = 1 is allowed in the combined state:
1 1. 1 B 1,-1 B
29

Obviously these two states are symmetric under interchange of the two electrons.

If however one electron has m; = 1/2 and the other my = —1/2, or vice versa, then
the combination has m = 0 and this could be either j = 1 or j = 0: j = 1 is the symmetric
combination

1,0 >= (I 4>+ 11>)

%\

and j = 0 the orthogonal combination

10;0 >= (I > = 11>),

which is necessarily anti-symmetric.
These can be inverted to give

|N>:‘ (11,0 > +/0;0 >|),

(110 > —[0;0 >),

0;0
=, -
2

0
1.1 1 9 1.1 1
27 272 \/§ 1297 2172 \/§

The total Hilbert space for the electrons’ spin is 4-dimensional and one can use either

‘ll.ll> ‘11.1_1> ‘11_11> ‘ll._l_l>
2222 )0\ 27 ) Uy 2727 ) U222 72072

29 The total quantum state corresponding to two Fermions should of course be anti-symmetric under interchange

of the two particles. Spin is only part of the story, a complete quantum description should also include position. For
example electrons with j=1 could have a relative orbital angular momentum of /=1 making the total quantum state

antisymmetric under interchange of the two electrons.
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or

{I11;1 >,]1;0 >,[1; -1 >,]0;0 >}

as a set of basis vectors. The decomposition into j = 1 (triplet) and j = 0 (singlet) sectors
is

11> = [ 11>
1
11,0> = ﬁ(\ >+ >) (24)
L-1>=[|l>
and .
10;0 >= —= (| 14> —[ I1>). (25)

V2

It is often useful to exhibit the linear transformation that the Clebsch-Gordon coeffi-
cients represent in the form of a table.

j=1 7=0
my Mo m=1 m=0 m=-1 m=20
/2 1/2 1 0 0 0
/2 —1/2 0 1/v/2 0 1/V2
~1/2  1/2 0 1/v2 0 —1/v2
—1/2  —1/2 0 0 1 0

A table for j = % combined with j = % will be derived later.

Parity

Translational and rotational invariance, as well as time translational invariance, are
examples of continuous symmetries. There is no limit to how small a translation can be
and any translation can be generated by repeated application of a very small, or indeed
infinitesimal, translation. There are also symmetries in nature that are discrete, such as
reflection in a mirror.

The operation of reflecting all points in the origin so that, in Cartesian co-ordinates,
(x,y,2) = (—z,—y,—z) is called spatial inversion, often denoted by P, for Parity. It is
equivalent to reflection in a mirror, which interchanges ‘back’ and ‘front’, followed by a
rotation through 7 radians about an axis normal to the mirror:

In quantum mechanics this process has the following effect on wave-functions

Py(r) = ¢(-r).
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Since P2 = 1 it follows that, if an eigenfunction of P exists with eigenvalue P so that
Py = P, then P = £1. For example, in one dimension,

Y(x) =cos(z) = Py =cos(—z)=cos(z)=v¢% =P =+I1
Y(x) =sin(z) = Py =sin(—z)=—sin(z)=—¢ =P=-1
Y(x) = cos(z) +sin(x) = Py =cos(z)—sin(x) = not an eigenstate.

While in 3-dimensions

P(r) = r_(l“)Pl(cos(H)) = Py = r_(l“)Pl(cos(w —0)) = (—1)lr_(l+1)Pl(cos(9))
= P=(-1).

States with parity +1 are called even parity states while state with parity —1 are called
odd parity sates. Parity eigenvalues are multiplicative, i.e. if 1, is an eigenstate with
eigenvalue P, and 1, is an eigenstate with eigenvalue P, then 1,1, is also an eigenstate
with eigenvalue P, Py.

Some vector quantities, e.g. position r — —r and momentum p — —p change sign
under P while others, such as angular momentum

L=rxp—(-r)x(-p)=rxp,

do not. Vectors which do not change sign under the parity operation are called azial
vectors in mechanics (the term pseudo-vector is also commonly used). A magnetic field B
is another example of an axial vector.

Now spin, like angular momentum, is an axial vector so it does not change under P.
The helicity h of a particle moving with momentum p is defined as

h = E
p|
Now
p (p_-S) _(=p)(s) _ _ps
p| | — p| Ip|

so parity changes the helicity. Pictorially this can be visualised as follows: suppose a
spin-one particle has spin s parallel to p, so that h = +1, then P flips the direction of p
without changing the spin, so the helicity is flipped h = +1 — h = —1.

S S

— —

Y

A

P
Y P

Until the middle of the 20th century it was tacitly assumed that all the laws of
nature were symmetric under P, in other words the fundamental laws of physics would
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look exactly the same when viewed in a mirror,® but in 1956 an experiment showed that
parity is not an exact symmetry of nature. It does seem to be an exact symmetry of
the electromagnetic and strong forces, but not of the weak force. Mathematically this
means that if an initial wave-function 1;, perhaps describing more than one particle, is a
parity eigenstate Pv; = 41; then after either an electromagnetic or a strong interaction
the final wave-function ¢, which could be describing different particles, must also be
a parity eigenstate, with the same eigenvalue Py s = +1;. This is not true of the weak
interactions. As an example of the use of parity conservation in an electromagnetic process
we shall prove that a positron has the opposite parity to an electron.?! This is an example
of a more general result, first shown by Dirac, that fermions that are parity eigenstates
always have the opposite parity to their anti-particles.

It is possible to make a bound state of a positron and an electron, like a Hydrogen
atom but with the proton replaced with the positron. Such a state is called positronium
but, unlike a Hydrogen atom, it is unstable because the positron and the electron are
anti-particles and if they meet they annihilate each other, producing pure energy, electro-
magnetic radiation, in the form of photons. Just like the Hydrogen atom the ground state
of positronium is when the two particles are in a s-wave configuration relative to each other,
i.e. their relative orbital angular momentum is [ = 0. But electrons and positrons have
intrinsic spin, the same intrinsic spin of one-half (particle and anti-particle always have
exactly the same intrinsic spin), and the physical characteristics of positronium depends
on whether the spins are parallel or anti-parallel — the former is called orthopositronium
and the latter is called parapositronium:

Orthopositronium Parapositronium

If the orbital angular momentum is [ = 0 then the total angular momentum is J = 0 for
parapositronium and J = 1 for orthopositronium. In the notation of atomic spectroscopy
parapositronium is a singlet 1Sy state while orthopositronium is a triplet 3S;, where the
subscript denotes the total angular momentum. Parapositronium decays more quickly than

30 Of course there are many phenomena which are not parity symmetric, such as the right-handed spiral of DNA
molecules for example, but, as far as is known, these do not reflect an underlying asymmetry in the fundamental laws
of physics, but seem to be a chance result of biological evolution. There is nothing in the laws of chemistry saying
that DNA should be right-handed and it could just as easily have evolved as a left-handed molecule. The most likely
explanation of this is that once one form has a slight preponderance over the other then natural selection dictates that
the minority form is doomed.

31 As long as we can leave the weak force out of the picture we can assign an intrinsic parity to every particle.
For massive particles this means that, in the rest frame of the particle, the wave-function is an eigenstate of P with
eigenvalue either +1. This eigenvalue then becomes the intrinsic parity of the particle and is another quantum number

that characterises it.
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orthopositronium, about 1000 times more quickly in fact since the former has a lifetime of
Tj—o = 1.2 x 10710 5 while the latter has 77— = 1.4 x 107 s. Parapositronium also has a
different decay mode to orthopositronium, decaying predominantly into two photons while
orthopositronium decays predominantly into three photons:

150 — 2y 331 — 3.

We can determine the relative parity of the positron and the electron by examining the
decay of parapositronium in detail. This is an electromagnetic decay so parity is conserved.
The initial total angular momentum is J = 0 and angular momentum is conserved so the
final total angular momentum must also be J = 0. This means that, in the rest frame
of the positronium, the two photons must come out back to back with the same helicity,
either h = +1 or h = —1 for both photons

DSACAYAVAVAVS aVAVAVAVAVAVY h=(+,+)
T 1

E— —————
DVAVAVAVAVAVS aVAVAVAVAVAV h=(—,-)
i v
or, more generally, a some linear combination of these two states. Denote these two final

state of the two photons by
|R, R >:=1¢(p,—p; +,+)

when h = +1 and by
L, L>=9(p,—p;— —)

when h = —1. The notation here reflects the fact that a positive helicity photon in
quantum mechanics corresponds to a right-circularly polarised electromagnetic wave in
classical electromagnetism. Let e1, es and ez, denote orthonormal unit vectors in the z, y
and z-directions respectively. As described in the section on Spin and helicity a classical
electric field corresponding to positive helicity photons moving in the ez direction is the
real part of a complex field with E « e; + ies; a negative helicity photon in quantum

mechanics corresponds to a classical field with E o< e; — ies.
S

—_—

QUAVAVAVAUAV . h=+1 D)5~ etHe,

S
—~————— .
"o U h=—1 DD D = 4715
p
Note the left-moving photon in the decay of positronium depicted above is moving in the
—eg direction and a right-circularly polarised left-moving photon corresponds to a classical
electromagnetic wave whose electric field is proportional to the real part of e; — ie; while

a left-circularly polarised photon corresponds to a classical electromagnetic wave whose
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electric field is proportional to the real part of e; + ies: the opposite way round to the
right-moving wave. In classical language a right-moving R is equivalent to e; + ie; while
a left-moving R is equivalent to e; — ie;, correspondingly a right-moving L is equivalent
to e; — te; while a left-moving L is equivalent toe; + ieq

The parity operator flips helicity and momentum and both |R, R > and |L, L > are
symmetric under interchange of the two photon states, because photons are bosons, hence

so neither |R, R > nor |L, L > is a parity eigenstate. The final eigenstates of parapositron-
ium decay are actually linear superpositions of |R, R > and |L, L >, the parity eigenstates
are |R, R > + |L, L > since

P(|R,R>+ |L,L>)=+(|R,R> =+ |L,L >).

Now |R, R > corresponds to oppositely travelling electromagnetic waves with trans-
verse electric field vectors proportional to e; + iey and e; — ies for right and left-moving
waves respectively: denote this as

‘R,R> =4 (e1 —ieg;el—l—ieg) = (el;el)—f—(eg;eg)—f—i(el;eg) —i(eg;el),
while |L, L > corresponds to
|L,L > < (e1+iez;e; —iez) = (er;er)+ (ex;eq) —i(er;er) +i(eq;eq).

Using the principle of superposition in quantum mechanics this means that, up to a overall
phase, |R,R > + |L,L > corresponds to (ej;e;) + (e2;e2) while |R,R > — |L,L >
corresponds to (e1;e3) — (e2;e1). Since the parity operation interchanges the two photons,
it is clear from these expressions that P(|R,R > + |L,L >) = £(|R, R > £+ |L, L >).

Now an electromagnetic wave with E in either the e; or the e, direction corresponds
to a plane wave linearly polarised in either the e; or the ey direction respectively. So a
measurement of | R, R > +|L, L > corresponds a linear superposition to both photons plane
polarised in the e; direction or both in the es: either way there are two emergent plane
polarised photons moving in opposite directions with the planes of polarisation parallel.
On the other hand |R, R > —|L, L > corresponds to the two waves being plane polarised
in perpendicular directions.

This can be summarised by saying that the two photons are in an eigenstate of parity
if they are linearly polarised, not circularly polarised (so they are not helicity eigenstates,
they are linear combinations of helicity eigenstates): Py, = +1 if they are polarised parallel
to each other, e.g. both in the 1-direction with e;.e; = 1 or both in the 2-direction, with
ez.ex = 1; Py, = —1 if they are polarised perpendicularly to each other, e.g. one photon
plane polarised in the e;-direction and the other in the es-direction with (e;.eq) = 0.

It is an experimental observation that the two photons always correspond to the
perpendicularly plane polarised case, so the final state is |R, R > — |L, L > and the final
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state wave-function vy is a parity eigenstate with Py, = —1. The total parity of the final
state Py is the product of the wave-function parity and the intrinsic parities of the photons
P, =7,
2
Py = (PV) P¢f = P¢f = -1

Conservation of parity in electromagnetic interactions then implies that the initial state
of the parapositronium must also be a parity eigenstate with P, = —1. But parity is
multiplicative, so

Pi = Pet Pe-Py, = —1

where P.+ and P.- are the intrinsic parities of the positron and the electron respectively
and Py, is the parity of the parapositronium wave-function. But the parapositronium
wave-function is an s-wave, with orbital angular momentum [ = 0, so its parity is Py, =
(—1)! = +1. Hence the experiments are telling us that

PP =—1 =  Po=-P.

and we can conclude that indeed the positron and the electron have opposite intrinsic
parities.

Electrons cannot be created singly in particle interactions, they can only be produced
together with positrons or in conjunction with anti-neutrinos, so we cannot determine
the intrinsic parity P, of the electron in an unambiguous way. It is therefore defined, by
convention as

P = +1

which then implies that
Pet+ = —1.

Similarly quarks are conventionally given the parity
P, =+1 and P =—1
and protons and neutrons then have
Pp=Pn=Ps =+1.

Neutrinos are only produced in weak interactions and are not parity eigenstates, an in-
trinsic parity therefore cannot be defined for neutrinos.

As a second example, using both conservation of angular momentum and parity, we
shall determine the spin and parity of the pion. Unlike electrons pions can be produced
singly, in strong force reactions like

ptp—ptntr’

where two protons collide, one of them turns into a neutron and a pion is produced. This
means that the parity of the pion is not determined by a convention — if the intrinsic
parity of the proton and neutron are fixed then the parity of the pion can be measured.
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We shall consider the above process when the final proton and neutron are locked together
in a bound state called a deuteron®? which will be denoted by D,

p+p—=D+7T.

This reaction can proceed equally well in both directions, we can fire pions at a deuteron
and break it up into two protons,

D+7t = p+p.
The fact that the reaction can proceed in either direction is denoted by the single expression
p+pe D47t

Since the particles involved have spin we must include the final state spin factors: now the
deuteron has spin one,*® sp = 1 and, for pp — D, the quantum mechanical amplitude
My, is independent of spin so, using (18),

o(pp = D) o (2sp +1)(25x + 1)pppr = 3(25x + 1)ppDr

where ppand p, are the magnitudes of the deuteron and the pion momenta respectively
(pp = pr in the centre of mass frame). On the other hand for D7 — pp, since the proton
has spin s, = 1/2,

1
o(Drt — pp) 5(281, + 1)210127 = Qp?),

where p, is the outgoing proton momentum in the centre of mass frame.3* We shall also
need the fact that the quantum mechanical probability for this process is the same in either
direction,

|Myi|? = | Mg |?

a2 The name deuteron comes from an isotope of Hydrogen in with the nucleus is a proton with a neutron added,
called heavy hydrogen or deuterium, 2H. A deuteron is an ionised deuterium atom.

33 In the ground state of the deuteron the proton and the neutron have no relative orbital angular momentum (s-
wave) and their intrinsic spins are parallel, ptnt, giving total spin 1. If the spins were anti-parallel, it e.g. ptnl, the
deuteron spin would be zero, but this is unstable as the neutron could then SB-decay to a proton, n] — pl: this cannot
happen for ptn?t due to the Pauli exclusion principle, as the p? energy state is already filled.

34 There is a factor of one-half here because the protons are identical and indistinguishable, so the probability of
the final state is symmetric under 6 —m—6, where 0 is the polar angle of one of the emerging protons relative to the
incoming directions of the D and « (in the centre of mass frame). So to calculate the total cross-section we only need

to integrate from 6=0 to 6=m/2
_ "% do _1 [™ do
U—fo a0 sSin Ode—% fO a0 sin 6d0.
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(this is related to another discrete symmetry of the electromagnetic and strong forces —
time reversal, which will be described later). This means that the amplitudes, together
with other irrelevant factors that are identical in both processes, cancel in the ratio

olpp— Dr)  3(2sx + 1) pppx

o(Drt — pp) 2 P2

Experimental measurement of the total cross-section (first performed in 1951) reveals that

3Q@2sxtl) — 3, hence the s, = 0 and the 7 has zero intrinsic spin. The 7~, which is the
anti-particle of the 7T, must therefore also have zero spin.
The parity of the pion can be determined from the similar, but clearly not identical,

reaction of the breakup of a deuteron by a negative pion,
™ +D —=n-+n.

The pion is captured more easily if it is not too energetic, it is best therefore if the pion is
slow which means quantum mechanically that the orbital angular momentum of the initial
Dn~ system should be zero — their initial wave-function should be s-wave, i.e. the initial
orbital angular momentum of the D — 7 pair should be I; = Ip, = 0. Since the pion has
zero spin and the deuteron has spin sp = 1, the total initial angular momentum J; is
just the intrinsic angular momentum of the deuteron J; = Jp = h. Now the deuteron is
bound state of a proton and a neutron which are themselves in an s-wave state inside the
deuteron. Since parity is multiplicative the intrinsic parity of the deuteron is

Pp = PyPn = +1

and the initial parity is

Pi - 7)7r7)D(_1)lD7T = PTF'

The reaction 7~ D — nn is a strong interaction process so parity is conserved, P; = Py.
If we can determine the final parity of the two neutrons then this must be equal to the
intrinsic parity of the pion, so now consider the final state. Neutrons are fermions so the
final state wave-function must be anti-symmetric under interchange of the two neutrons,
either the spatial part is symmetric and spin part is anti-symmetric or vice versa. Consider
first the spin part. We know from the quantum mechanical rules for addition of angular
momenta that two half-integral spins, four states in all | 11>, | 14>, | }1> and | ]{>, can
be combined into either a symmetric triplet or an anti-symmetric singlet (equations (24)
and (25)):

oo _
s=1 ([ 11>+ 1>) (symmetric)
=

1
V2

When the two final state neutrons are interchanged the spin part of the wave-function is
symmetric if s = 1 and antisymmetric if s = 0, so it picks up a factor (—1)**1. If the final

s=0 (| > =] 41>) (anti-symmetric).
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orbital angular momentum of the two neutrons is [y = [,,, then the spatial part of the final
state wave-function changes by a factor (—1)'»» when the two neutrons are interchanged?3?
so the total effect on the final state, upon interchanging the two neutrons, is to pick up a
factor of (—1)!»»*+5+1  Since the final state consists of two neutrons, which are fermions,
the wave-function should change sign when they are interchanged, hence

(_1)lnn+5+1 — _1

and I, + s is even. Now the total final angular momentum is Jy = (Ly + S), where Ly
is the orbital angular momentum and S the spin angular momentum, and conservation
of angular momentum dictates that this equal the total initial angular momentum, which
was found above to have J; = |J;| = h. So conservation of angular momentum forces
Jy = |J¢| = h. Using the quantum rules for angular momentum addition again, the
possibilities are

|J¢| = |Ls + S| = |lpn — 8|k, (|lnn — s| + DR, oo |l + 8],
and only four of these possibilities are compatible with |J¢| = A and s = 0 or 1, namely
lpn =0,s=1 lyn=1,s=0 lpn =1,5s=1 or lyn = 2,5 = 1.

Of these four only (l,,, = 1, s = 1) has l,;,, +s even and so this is the only possibility allowed
by fermi statistics for the two final state neutrons. In the language of atomic physics the
final state neutrons are in a p-wave triplet with total angular momentum Jy/h =1, 3P
The parity of the final state is therefore

Py = PA-1) = (-1 = 1,
from which we finally deduce the intrinsic parity of the pion from parity conservation.
Pr=P; =Py =-1

The pion has intrinsic spin zero and parity —1, usually denoted by J¥ = 0~ in the particle
physics literature. A spin zero particle is called a scalar and a spin zero particle with
odd parity is called a pseudo-scalar because it transforms differently under P to the way
you would expect, just like a pseudo-vector transforms differently to the way a vector
transforms. Pions are therefore sometimes refereed to as pseudo-scalar mesons.

Not all of the fundamental interactions of nature are symmetric under the parity
operation. It was discovered experimentally in 1957 that weak interactions violate P
invariance. For example consider the weak decay of a 7

N T S /M

L>e++ue+ﬂu.

35 As explained in the section on parity, a spatial wave-function corresponding to orbital angular momentum 1
is proportional to the Legendre polynomial, P;(cosf) and 6—m—6 when the two particles are interchanged. Since
cos(m—0)=— cos 0 and P; are even or odd functions of their argument for I even or odd respectively, we have that, when

the particles are interchanged P;(cos(m—8))=(—1)'P;(cos ).
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The muon neutrino produced in the first decay here is always negative helicity (h = —1
or left-handed) and never h = +1. Electron neutrinos also are always observed to have
h = —1. Anti-neutrinos have h = +1. 36

Charge Conjugation

For every fundamental particle in nature there is an anti-particle, with the same mass
and opposite electric charge. The existence of anti-particles was predicted by the English
physicist Paul Dirac in May 1931 and an anti-particle (a positron) was first observed only 4
months later, in September 1931. Anti-particles are a consequence of marrying the theories
of relativity and quantum mechanics and their origin is related to the relativistic formula

E? = m*c* + (P.P)c? = E = tcy/m?c? + (P.P).

The existence of anti-particles is associated with the negative root of this equation. Think
about the time dependence of a solution of Schrédinger’s equation e~ *#*/"  If we change
the sign of the energy ¥ — —F this can be re-expressed as

o—iBt/h _y —i(=E)t/h _ —iB(=t)/h

so a negative energy particle moving forwards in time is equivalent to a positive energy
particle moving backwards in time. This equivalence goes very deep in the mathematics
of relativistic quantum mechanics and the American physicist Richard Feynman first sug-
gested that anti-particles can be viewed, at least from a mathematical point of view, as
being like particles moving backwards in time. We shall return to this later.

For the moment we define an operator, called charge conjugation C, which inter-
changes particles with their anti-particles. e.g.

Clrzt > — |n7 >.

Only neutral bosons, for which their is no distinction between particles and anti-particles,
can be eigenstates of C, e.g.

Clr®> = Cpol|n® >
Cly > Cyly >

36 Recently experiments that detect neutrinos coming from the Sun, and neutrinos produced in the atmosphere by
cosmic rays, have produced unexpected results the simplest interpretation of which is that right-handed neutrinos might
exist. Most people currently believe that this is the correct interpretation of these experiments. But the evidence is

indirect and much work remains to be done before the physical properties of neutrinos are completely understood.
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A photon is its own anti-particle, though C flips helicity — the anti-particle of a positive
helicity photon is a negative helicity photon and vice-versa.

Since, from its definition, C? = 1 it must be the case that the eigenvalues of C are
C = +1. For a particle whose wave-function is an eigenstate of C the corresponding
eigenvalue C is called the particle’s charge-parity, and is another example of a quantum
number.

For example in classical electromagnetism, changing the sign of all the charges in a
given problem also reverses the currents so

E— —-E and B — —B.

We therefore might expect that, at the level of wave-functions in quantum mechanics,
C, = —1. To test this note that C is multiplicative in the sense that the eigenvalues of a
multi-particle state are products of the eigenvalues of the single particle states. So for a
state consisting of n photons |ny >, we expect

Clny >=CZ|ny >= (=1)"[ny > .
Now suppose a neutral pion decays electromagnetically into n photons
70— ny.

Since electromagnetic interactions preserve charge-parity an even number n immediately
implies that C;o = +1, but tells is nothing about C,. Experimentally the decay

70— 2y

is often observed, so we conclude that indeed Cro = +1. If C, = —1 then charge parity-
conservation forbids the decay of a neutral pion into an odd number of photons, a m°
should only ever decay into an even number of photons. If C, were +1 there would be no
such objection to an odd number of photons in the final state. No-one can ever say that
a 10 never decays to three photons, someone might observe such a decay tomorrow. All
we can say is that, in experiments to date, all reliably observed decays have been to an
even number of photons and, if an occasional 7% does decay to three photons, the ratio of
probabilities is

P(n% — 3v)

G 7 1078 2
P(WO_>27)<3>< 078, (26)

0 37

i.e. less than about one in 30 million 7 From this we
conclude that C, = —1.

We note in passing that charge conjugation flips helicity. For example it is observed
that neutrinos produced in the laboratory always have h = —1/2 while anti-neutrinos

always have h = 1/2.

’s will decay to three photons.

37 Ratios like that in equation (26) are called branching ratios in particle physics.
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A very important consequence of charge conjugation invariance, when it is applicable,
is that, if a reaction a + b — ¢ + d is observed, then a + b — ¢ + d must also happen,

a+b—c+d & a+b—c+d,

and the cross-sections are the same.

Electromagnetic and strong interactions conserve C but, again, weak interactions do
not. It was discovered in 1964 that there are some particle decays in nature, which we shall
study later, that even violate CP invariance — this phenomenon is called CP wviolation.

Time Reversal Symmetry

Time reversal was briefly mentioned in the above discussion of charge conjugation. We
define an operator T that reverses ¢ — —t in quantum states (we can certainly make such
a transformation mathematically on all wave-functions even though we are not capable
of reversing the direction of time on real physical clocks). In classical electromagnetism,
sending t — —t will reverse the direction of all currents, but does not change the sign of
electric charges, so

E—-E and B - —B.

(As an exercise, check that Maxwell’s equation are invariant under the above transfor-
mations, provided all currents are reversed at the same time. Newton’s 2nd law, with a
time independent conservative force, is also invariant under ¢t — —t since it only involves
a second derivative with respect to time.)

Time reversal sends all momenta p — —p, does not affect r and flips spin — it
therefore leaves helicity invariant. For example the effect of acting on a left-handed neutrino
state with the time reversal operator is the following

(O—) - —C

v (h=-1) v (h=-1)
Time reversal also has the effect of complex conjugating wave-functions. To see this

first complex conjugate Schrodinger’s equation with a real time-independent Hamiltonian,
with H* = H,

in2% _ Hy = (z

o
ot rn

ot

)*:(Hw)* & —ih

so moving forward in time with wave-function v is equivalent to moving backward in time
with wave-function ¥*.

A very important consequence of time reversal invariance, when it is applicable, is
that, if a reaction a + b — ¢ + d is observed, then ¢ + d — a + b must also happen,

a+b—c+d & c+d—a-+b.
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The cross-sections are not necessarily the same, if the masses and spins of a and b are
different to those of ¢ and d then the kinematic factors in (18) will be different, but the
quantum mechanical amplitudes are related, M,1p—ctqa = M dsath for any interaction
that is symmetric under time-reversal.

The strong and electromagnetic forces are symmetric under time-reversal but, since
the experimental observation of CP violation in 1964, it has been suspected that small
T violating effects should also exist in nature (because of the CPT theorem described
below). Direct experimental verification of T violation was however not seen until 1998,
in an experiment in the large particle accelerator at the European laboratory CERN near
Geneva.

The CPT Theorem

There is an important theorem in the relativistic theory of quantum mechanics (the
latter is too advanced for the presentation here) which states that the product CPT is an
exact symmetry of all phenomena in nature. This is refereed to as the CPT theorem.38
Because of the CPT theorem it is not necessary to assign to particles a new quantum
number associated with time reversal: for T eigenstates it would just equal the product
PC of the eigenvalues already assigned to P and C.

Also, since all three interactions preserve CP, the CPT theorem states that they
must also preserve T, as indeed they are observed to do. The existence of some CP
violating phenomena referred to above must also imply T violation — there must be some
phenomena in nature that are not symmetric under T and for this reason T violating
effects were suspected to exist 30 years before they were discovered.

The CPT theorem can be visualised as follows: the effect of applying first T then P
and finally C to, say, a left-handed (h = —1) electron moving to the right is: first T sends
it backwards in time, keeping the helicity the same; then P flips both the momentum and
the helicity; finally charge conjugation turns the electron into a positron. We end up with a
right-handed positron moving moving backward in time and the CPT theorem states that
this is equivalent to the original state which was a left-handed electron moving forward
time. This sequence of steps is shown below:

38 Like all theorems it depends on certain assumptions, for example it assumed that the underlying physics is invariant
under Lorentz transformations. But all the necessary assumptions lie at the core of our understanding, changing any of
them would require a radical change of the way we view the world. If anyone observed a violation of CPT invariance

we would have to change our understanding in quite a drastic way.
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Fig. 1: The CPT Theorem. The C'PT theorem asserts that all phenomena in nature
are invariant under the combined operations of T, P and C. For example a left-handed
electron moving forward in time is physically completely equivalent to a right-handed
positron moving backwards in time.
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Electric Charge

Another conserved quantum number, with which you are already familiar, is electric
charge. Electric charge cannot be created or destroyed in any process. This does not mean
that charged particles cannot be produced, it just means that, if they are produced, they
must be produced in association with other charged particles so that the total electric
charge before and after is the same. In other words, if (); is the total initial charge and
@ is the total final charge, then the difference is zero:

AQ=Q; —Qi=0.

Thus for example
ptp—ptnta’

is allowed by conservation of charge, but
p+p—ptn+m

is forbidden.

Anti-particles always have the opposite electric charge to particles, so the positron
e’ has the opposite charge to the electron e~ and anti-protons p have negative charge,
opposite to that of protons p.

Although we shall not go into it here, the rule of conservation of charge is associated
with a continuous symmetry of the underlying dynamics. In this case it is the freedom to
change the electromagnetic potential, the 4-vector A, with a = 0, 1, 2, 3 labelling time and
three space directions, by a derivative

Ay — Ay + Og\.
This transformation leaves the electric and magnetic fields unchanged and so is an invari-
ance of Maxwell’s equations. For historical reasons this transformation is known as a gauge
symmetry and electromagnetism is an example of a gauge theory. Modern approaches to

the strong and weak forces are also gauge theories, similar in principle but involving more
complicated transformations. Their explicit form is beyond the scope of these lectures.

Baryon Number

Strongly interacting fermions (baryons, such as protons and neutrons which are gqq
states) are assigned a quantum number called baryon number, denoted by B.

B=+1 for pn B=-1 for p,n.
Experimentally, baryon number appears to be strictly conserved by all three forces,.
AB =By —-B; =0.
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Conservation of baryon number says that the following processes should not happen

p—et+1°  (Bi=+1,B;=0 = AB=-1) (27)
p+p—p+p+n (Bi=2,By=3 = AB=+1). (28)

In recent years models which unify all three forces, electromagnetism, weak and strong,
into a single mathematical framework, called Grand Unification, have been put forward.
These models allow for baryon number violation and some of them predict that the proton
should be unstable under the first process above. Experimentally no-one can ever say that
the process (27) never happens, all we can say is that, if it does occur in nature, then the
lifetime of the proton is at least

Tp > 1033 years.

(Of course no-one can sit around for 103® years watching a proton, waiting to see if it

decays — instead this bound is achieved by watching 1033 protons for one year.)

Baryon number is additive: the total baryon number of a bunch of particles is the
sum of the individual baryon numbers. Since there are three quarks in a proton quarks
have B = 1/3. Mesons have baryon number B = 1/3 — 1/3 = 0 since they are ¢g bound
states and anti-quarks have opposite baryon number to quarks.

Baryon number can be subdivided into individual quark nos., N,, N4, N., Ns, N; and
Np, the numbers of up, down, charm, strange, top and bottom quarks respectively, where

B = 2 (Ny+ Na+ Ne+ Ny + Ny + Np).

Wl =

While strong and electromagnetic interactions conserve the individual quark numbers,
weak interactions do not, but weak interactions still conserve the sum.

Lepton Number

This is similar to baryon number, but for leptons. All leptons are assigned a lepton
number L which is +1 and lepton number has always been observed to be conserved. Anti-
particles have the opposite lepton number to particles. Like baryon number, lepton number
is additive. Conventionally electrons have L.- = +1 and positrons have L.+ = —1. The
existence of [-decay,

n—pt+e 4 e,

implies that anti-neutrinos have lepton number L; = —1, from lepton number conserva-
tion. Neutrinos, like electrons, have lepton number L, = +1.
Conservation of lepton number implies that the process

De+p—>n+e+

is allowed while
Vetn—>p+e

is forbidden.
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The situation when the muon x4~ and 7-lepton are included is more complicated. There
appear to be three different types of lepton number, one for each family (e™,v.;e™, i),
(v v pt,p,) and (77,0777, 7). The evidence for this is that electromagnetic decays
like

pt = et 4y

have never been observed. Muons are always seen to decay via weak process like
o= e +Ve+ vy,
Experimentally the branching ratio is

P(p= — e +7)
P(p= — e +0.+v,)

<1013

even though electromagnetic decays are usually much faster than weak decays. The as-
sumption is that there is a conserved quantum number which simply forbids the decay
u~ — e~ + . It is assumed that p and e have separately conserved lepton numbers,

L )=+1, L) =0

L.(u™)=0 L.(e7)=+1.
There is also a 7-lepton number,

L.(t7)=+1 L.(t7)=-1

To summarise, here is a table of the lepton numbers of all three families of leptons:

e

et

Ve

Ve

=

1

+

Vu

T

Tt v,

Vr

Vi

+1 -1 +1 -1 o o o o 0 0 0 O
L,, 06 o o0 O+ -1 +41 -1} 0 O 0 O
L. 0 0 0 O o o0 o0 O0|+1 -1 +1 -1

While total lepton number has never been observed to be violated there are observa-
tions that indicate violation of individual family lepton number on length scales of hundreds
of kilometres. Pions are copiously produced when cosmic rays hit the upper atmosphere
(mostly by protons hitting oxygen or nitrogen nuclei). As they travel toward the surface
of the Earth the pions decay predominantly through the processes

Tt — ut 4y,

‘—) et + v+ 1,

or

us — WU Fy,
\—> e F+letv,.
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In either case, if we do not differentiate between neutrinos and anti-neutrinos, we expect
the ratio of the number of muon neutrinos to electron neutrinos to be 2. The observed
ratio is closer to 1 than 2, indicating that muon neutrinos are disappearing in the journey
towards the Earth’s surface. The consensus at the moment is that they are probably
turning into tau neutrinos on the way, v, — ;. The total number of all neutrinos is still
believed to be conserved.

Recent measurements on neutrinos emitted by the Sun, as nuclear reactions burn
material in the solar core, and also on neutrinos produced in the atmosphere by cosmic
rays, indicate that family lepton number is not exactly conserved and

Ve = Uy

is possible over very large distances (thousands of kilometres).
However, even in the solar neutrino experiments, it is still the case that the total
lepton number
Lrotat = Le + Lu + L,

appears to be conserved.

Strangeness

Two kinds of hadrons that we have not yet met are a neutral meson called a kaon
K° with mass mygo = 498 MeV/c?, and a neutral baryon called a A-hyperon,?® A with
mass mp = 1116 MeV/c?>. When these particles where first observed they appeared to be
produced by strong interactions and always in pairs, in reactions like

7 4+p— K%+ A.

(This process preserves baryon number if the meson K is assigned baryon number B = 0
and the baryon A is assigned B = 1.) Despite the fact that these particles are strongly
interacting, their decays are surprisingly slow,

A= +p (ta~1070 )

K% — {;;j;ro (Tio = 10710 s).
Although 10710 s is very short on everyday timescales it is extremely long compared to
typical strong interaction times which are ~ 10723 5. In fact 107!V s is a typical weak
interaction time scale. It was proposed, by Gell-Mann and Nishijima, that there is a new
quantum number which is conserved by strong interactions but not conserved by weak
interactions that would protect the K° and A against strong decays but allow them to
decay weakly. This mysterious new quantum number was called strangeness S and the
above decays can be accounted for by demanding that

Sﬂ-:Sp:O, SKO :+1, SA:—]_,

39 Hyperon because it has some properties like a heavy version of the neutron, a hyper-neutron. The kaon and the

A-hyperon were discovered in the same year as the pion, 1947.
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Thus AS = 0 in all strong interactions: K°’s and A’s can only be produced in pairs — a
phenomenon known as associated production. It is observed that even in weak interactions
the strangeness cannot change arbitrarily but seems to obey the rule

|AS| = 1.
For example

K°+n—A+qn° strong interaction, AS =0
KOs nt 47~ weak decay, AS =—-1
AN—p+7n~ weak decay, AS =+1
p+A— KO+ 7~ forbidden, AS = 2.

Isospin

The proton and the neutron have very similar masses, m, = 938 MeV/c? and m,, =
939 MeV/c?. In 1932 Heisenberg suggested that the only real difference between a proton
and a neutron is their electric charge and, if the electromagnetic force were ignored, they
are essentially the same particle, at least as far as the strong force is concerned. If the
electric charge were somehow “turned off” it would be natural to combine the proton
wave-function v, and neutron wave-function v, into a doublet

Wy = (j) (29)

This is reminiscent of spin one-half particles, such as electrons, being put into a doublet
¥y
Py

rotational symmetry and distinguishes between the ‘up’ and the ‘down’ spin-states. Just
as for electron spin, we can ‘rotate’ the v, and v,, states with a 2 x 2 matrix

of spin-up and spin-down, ¥ = ( , only the introduction of a magnetic field spoils the

\I/N — U\IJN
where ,
U =e /D09 — cog(a/2) 1 — i(n.o) sin (or/2)
[ cos(a/2) —ingsin(a/2)  —(ng +ing)sin(a/2)
N (ng —ing) sin (a/2) cos (a/2) + ing sin («/2)
is a unitary matrix, U" = U™', with n = (n1,n2,73) a unit vector in an abstract 3-

dimensional space.*® The three matrices

0 1 0 —i 1 0
ol C) B V) B ()

40 . 3 . .
The notation n.o here stands for _, i, the exponential of a matrix is understood to mean e
n.og § e

oo
M- L M*.
k=0 k!
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are the three Pauli matrices familiar from quantum mechanics. It can easily be checked

that they have the property
3

0i0j = (513' +1 E €ijkOk
k=1

where
€123 = €231 = €312 = —€213 = —€32] = —€132 = +1

is the totally antisymmetric symbol with three indices and values +-1 when all three indices
differ and zero if any two indices are the same.

Thus for example
: Vn )
109V N =
2W N ( i,

(which corresponds to a = —7, n = (0,1,0), a rotation through —7 about the second
axis) interchanges the proton and neutron wave-functions. Heisenberg postulated that
this interchange should be a symmetry of the strong interactions, but this is only an
approximate symmetry — it is broken by electromagnetic interactions.

In the same way, for the two components of electron spin

e (0= ()

is a symmetry in quantum mechanics when there is no magnetic field.

Heisenberg’s symmetry is called isospin, in analogy with ordinary spin in quantum
mechanics. Mathematically the set of all matrices U with the above form is the set of all
unitary 2 x 2 matrices with the special property that det U = 1. For this reason this set
is called the special unitary 2 x 2 matrices, or SU(2) for short.*’ Mathematically there
is an exact parallel between isospin and angular momentum in quantum mechanics. The
nucleon doublet (29) is said to have isospin one-half, I = 1/2, just as the electron doublet
has spin one-half s = 1/2.

There are other isospin multiplets with more than two components. In general the
number of components in a multiplet with total isospin I is 21 4 1, just as the number of
components in a spin j state in quantum mechanics is 2j+1. The idea that, for the purposes
of strong interactions, there is a symmetry between protons and neutrons immediately tells
us something about pions. If protons and neutrons are to be indistinguishable, then the
Yukawa exchange of pions between a proton and a neutron does not distinguish between
protons and neutrons. So the following two processes are identical as far as the strong
interactions are concerned:

41 The set of all such matrices constitutes what is called a group in mathematics.
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The only difference between the above two reactions is in their electromagnetic prop-
erties, which are reflected in the difference between the masses of the neutral and charged
pions: my o = 135 MeV/c?* and m,+ = 140 MeV/c?. In fact the three pions fit into an
isospin triplet [ =1

ﬂ--l-
= | =°
—
The existence of the 7" was first predicted using isospin symmetry — Yukawa's 1935

prediction did not include three different kinds of pions. This is the second example of
a new particle being predicted from a symmetry principle before it was observed, the
neutrino was predicted by Pauli in 1930 on the basis of energy conservation (discovered
in 1956) and the 7° was predicted by Kemmer in 1937 on the basis of isospin symmetry
(discovered in 1947).

Mathematically isospins are added in just the same way as angular momentum is
added in quantum mechanics. Two particles with I = 1/2 and wave-functions v;(z1) and
Yj(xz2), with ¢, 7 = 1,2, can be combined into symmetric and anti-symmetric combinations,

Wi (21, 20) = {@bi(l'l)@[’j(lé) +pj(w)i(z2): T=1
R Yi(z1)Yj(22) — Yji(T1)i(22) T =0,

where the symmetric combination is an I = 1 triplet and the anti-symmetric combination
is an I = 0 singlet. In general combining two states with isospins I; and Is can lead to
states with isospins ranging from |I; — I3| up to |I; + I2] in integer steps:

|y — L], |Ih — La| +1,.. ., |11 + L2 — 1, |11 + I2].

Since this is not the same as ordinary multiplication we often use the notation Iy ® Iy for
the combination and write the result as a sum with the special symbol &, thus

LeLb=H-Lle(|h-Ll+)®&..o(|L+1]-1)& |+ L.

For example m-mesons are bound states of up and down quarks and anti-quarks. Now
the u and d quarks themselves form an isospin doublet

a=(3) = (1),
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where the notation ¢; = u and g2 = d is used. Combining two doublets (I = 1/2) gives a
singlet (I = 0) and a triplet (I = 1),

1 1

- ®-=0d1.

2 @ 2 ©
Just like electron spin, the singlet is the anti-symmetric combination and the triplet is the
symmetric combination of the two I = 1/2 indices. The pion wave-function is of the form
¢i(z1)g;(x2) and we can form the symmetric and anti-symmetric combinations
qj(w2) + g5 (21)Gi(x2), I=1
CL Cjz

x 1 T2
i(w2) — qj(21)qi(x2), I=0.

sl = ()

The triplet we have already seen is the pion triplet above, but the isospin I = 0 singlet is
a new particle, called the n-meson, which has mass m, = 547 MeV/c? and usually decays
to either two photons or three pions,

n = 2v  40% of the time
370 33% of the time

with a life-time of 7, = 5.5 x 107! 5. Notice that the n mass is very different from the
pion mass. Isospin symmetry demands that particles in the same multiplet should have the
same mass. There is nothing to stop particles in different multiplets having very different
masses. The pions and the 7, for example, are in different isospin multiplets and there is
nothing saying that their masses should be the same or even similar.

As a second example of the use of isospin symmetry consider a baryon state, like a
proton or a neutron, consisting of three quarks, ¢;q;qx. Using the rules for combination

111_011_01 11_113_113
52395 =08 )®5—( ®§)@( ®§) —5@(5@5) —293%%
There are therefore two doublets and a quadruplet, I = 3/2 with 2I + 1 = 4. One of
the doublets is the proton-neutron doublet which started off this discussion of isospin.
The quadruplet consists of four baryons labelled (AT+, A+ A% A~) with the quark con-
tent (uuu,uud,udd,ddd). These four particles all have very similar masses at ma =
1232 MeV/c? (we met the A particle before in the discussion on resonances). What about
the second doublet? That does not actually exist in nature because it would require putting
two fermions in the same quantum state and that is forbidden by the exclusion principle
(a full discussion of this point must await the introduction of colour and QCD later).

In analogy with angular momentum in quantum mechanics the isospin [ is like total
angular momentum, but there is also an isospin analogue of the third component of angular
momentum which will be denoted by I3 here. For a given I labelling a multiplet, the indi-
vidual particles in that multiplet are characterised by their values of I3. More accurately
I3 is a linear operator on a vector space and particles are identified with eigenvalues of I3,
characterised by their eigenvalues. For a given [

\)

I3 >= Ay >, AN=—I,—T+1,....1—1,1
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(often we do not distinguish between I3 and its eigenvalues, just denoting the eigenvalues
themselves by I5). For I = 1/2, which could be proton-neutron or up-down quarks for
example, I3 = +1/2 and

1 1 1 1
13|p>:§|p>, I3|n>=—§|n>, 13|U>=§|u>, 13|d>:—§|d>

(in this case the operator I3 is the Pauli matrix $03 which has eigenvalues £1/2). For
I =1, pions for example, I3 = £+1,0

LT >=+1,  L]r° >=0.

Notice that for protons and neutrons the electric charge is

1
On =13+ 3
while for u and d quarks it is
1
Qq =13+ 6
and for pions it is
QTF = 13'
Referring back to the discussion on baryon number, these can all be written as
B
Q=1I+ 5

When strange quarks are included, they are assigned isospin I = 0 and this formula is

modified to
B+ S

Q:h+<j70, (30)

this is called the Gell-Mann — Nishijima relation.

For example
b, 13:1/27B:175:07 Q=+1

Is=-1/2,B=1,5=0, Q=0
T, Is=4+1,B=0,5=0, Q==1
A, I3=0,B=1,5=-1, Q=0
K’ I3=-1/2B=0,S=+1, Q=0.
The isospin of multi-particle states can be calculating by adding the isospins of the
individual particles and the rules for adding isospin are identical to those of angular mo-

mentum: combining a state of total isospin I’ and third component I} with one of total
isospin I” and third component I§ gives a linear superposition of states with total isospin

I=|I'-1"|,| =I"|+1,....'+1"=1,I' + I" (31)
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and third component I3 = I} + I,

I/+I//

1o g T E: ;I3 .

|I ,I ,13,13 >= C ’,I”;Ié,f§'|I7I'?’ >,
I:|I/_I//|

I;1 :

where C')°}, ;/ ;,» are the same Clebsch-Gordon coefficients as for angular momentum and
) y43943

are non-zero only when Is = I5 + If. As an example of these rules we next consider the

scattering of a pion off a proton or a neutron.

Isospin of Pion-Nucleon system.

Isospin symmetry can be used to derive quantitative predictions concerning strong
interaction cross-sections. As an example we shall examine pion-nucleon scattering. The

pions have total isospin I, = 1 and the nucleons (N = {p,n}) have Iy = 1/2 and the sum
of these is in general a mixture of total isospin I = 1 + % = % and I =1 — % = %, from

equation (31). The initial and final states are vectors in a 6-dimensional Hilbert space and
an orthonormal basis is

11 1 1 1 1
. - _ + . = _ + . - _ 0
‘1,2,1,2>—|7Tp>, \1,2,1, 5 >=lmtn >, \1,2,0,2>_\7rp>,
1 1 o 1 1 - 1 1 _
‘1,5,0,—§>:|7Tn>, Lgi=Lg>=lnp> |Loi-l—g>=|rn>. (32)

There are thus 6 possible initial states and 6 final states, so the isospin part of thequantum
mechanical amplitude for pion-nucleon scattering M is a 6 x 6 matrix. However conser-
vation of charge forces many of the entries to vanish, for example |7%p >— |79 > is
forbidden by charge conservation so Mo, r+, = 0, only 10 of the 36 entries in M are
non-zero, 26 must vanish due to charge conservation. The hypothesis of isospin symmetry
puts even stronger constraints on M. The total isospin of any initial or final state is a
combination of I = 3/2 and I = 1/2 and isospin symmetry requires that there are only
two independent amplitudes, one for I = 3/2 and one for I = 1/2. In the total isospin
basis, namely

1 1
> — == >, 33
Cgimg e 69)

N | —

L 1 .3>‘1.
27 1227 Ty 1Y

M is diagonal and involves only two complex numbers (which depend on the energy) one
associated with I = 3/2 and one with I = 1/2, M3/5(E) and M, /5(E),

My O 0O 0 0 0
0 My, 0O 0 0 0
B 0 0 Mo 0 0 0 _( M3/214x4 0
M = 0 0 0 M3/2 0 0 _< 0 M1/2]-2><2 ‘ (34)
0 0 0 0 Mypy 0
0 0 0 0 0 My



To calculate the amplitude for particular processes, such as
tp — wp

Tn o — mT™n

+
n  — {Won
Tp
_ ’ﬂ'on
Tp — _ (35)
T p.

{W+n
T™p — 0
mp

on - {Wop ,
mn.

in terms of M3/, and M/, we need to switch from the basis (33) to (32), which requires
Clebsch-Gordon coefficients. Note the power of isospin symmetry, ten amplitudes (35) can
be calculated in terms of only two unknown number Mz, and M /5.

We shall now derive the relevant Clebsch-Gordon coefficients. First note that ‘ 1, %; 1, % >

has I3 = % and therefore must have total isospin I = %, so we can chose

1 1 3 3
1, =1, = >=| =; =
"2’ ’2> ‘2’2>
and similarly,
1 1 3 3
1,1, =>=| ;= >.
‘ 27 2 ‘ 2°2

Now we analyse I3 = :t%. There are three possible pion-nucleon couplings, which we
shall denote by a, b and ¢

0 n 0 p T
a v~ b c v’
p n n
A fourth possibility
n mt
7(‘/,7/
p

must have the opposite charge to n — pm~ because (n,p, 7~ ) have opposite third com-
ponent of isospin to (p,n,7"). The couplings a, b and ¢ are real numbers, analogous to
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electric charge, but they are not independent — they are related by isospin symmetry as
we shall now show.

From these couplings we can construct three amplitudes for N — N scattering via
single pion exchange:

p p n n
70 70
a--———-—-«a b —-——--&«)h
D p n n

p n n p
70 at
am-—-—p—-—-«)h — —Ccp-—-=-p—--&cC
p n p n

where the last amplitude, for pn — pn, is a linear combination of an interchange involving
the product ab minus one involving —c? (the reason we subtract these two amplitudes to
get the total pn — pn amplitude is that protons and neutrons are Fermions and Fermi
statistics requires that there is an additional minus sign if the two final state particle are
interchanged).

Isospin symmetry requires that all 3 amplitudes are actually the same (weak and
electromagnetic interactions are being ignored here of course) which implies*?

a? =0b*=ab+ 2. (36)

It is known that ¢ # 0, since the charge exchange process is observed in experiments, so a
solution requires

a= —b, c = +v2a = FV2b.

The above diagrams represent the fact that quantum mechanically a proton can dissociate
into virtual (7%p) or (7*n) pairs, mathematically

‘%;%>:a‘1,%;0,%>—c‘1,%;1,—%>, (37)
and a neutron can dissociate into virtual (7°n) or (7~p) pairs,

1-—1>:b‘11~0 —1>+c‘11'—11>. (38)

27 2 27772 27 72

The states (37) and (38) must be orthonormal, as are the basis vectors on the right-hand
sides, which implies, using (36),

1 2
1 =a®+c* =3d? = a==+—, c=%4/=
V3 3
1=b"+c*=3b° = P c=F 2
V3’ 3

42 The three amplitudes constitute the total isospin I=1 triplet.

59



The signs are a matter of convention and we shall use

b:i a:—i = c:—i
V3 V3 V3’
SO
‘11 :_i11-01>+111-1_1>
22 \/g 727 72 \/g 7277 2 )
\1—1>=i—110—1>—3—13—11>. (39)
2’ 2 \/g 7277 2 \/g 727 72

The Clebsch-Gordon coefficients that we require are obtained by calculating A, B, C' and
D in

‘;%>:A@%,;>+BL;¢—%>
3 1 1 1 1 1
‘§ﬁ§>zcw20ﬁ§>+ML§ﬁL§>

(again we can choose phases so that A, B, C' and D are real). Using orthonormality of the
bases again and (39) gives

31,31
D =1 A2 32:1
<T2bﬁ> = +
3 1,3 1
T R, :1 2 D2:1
<2,2b,2> = C* +
and
11,31 A 2
— | = — frnd _—— —B: A: QB
<T2b?> 0 = ff_g 0 = V2
1 1,3 1 C 2
<2,2b,2> 0 = 7 ; 0 = C =+/2D,
giving
2 1 2 1
\/7, B=+4/=, C=+4/=, D =+4/-.
3 3 3 3
By convention we take the upper sign in each case,
2 1 2 1
A=1/= B=\/= C=\/= D =4/-.
3’ 3’ 3’ 3
In summary
3 3 1 1
—=>=|1,=;1,=
‘2’2> ‘ "2’ ’2>
31 2 1 1 1 1 1
—i=>=4/=-|1,=;0,= > -1, =1, —= >
‘2’2 \/; 27772 +\/;"2” 2
3 1 2 1 1 1 1 1
27 2 31772777 2 +\/;‘ 27 72
3 3 1 1
‘_7__ :‘ ]-7_; ]-7__ 9
27 2 2 2



EIS SRRV TS WY S 1T SR
2’27 5lbgi0g > iy
1 1 1 1 1 1
—i—=>=4/=-1 1
mﬁ, 5>y
Inverting these gives
1.1 3 3
L= l,=>=| =; =
1L315>= 55>
277 27 V31272 31272
1 1 2,31 1,11
L0, =>=1/z1z:2> /35|33
"2”2> 31272 \/;2’2>
‘11.0_1>_ Eﬁ._l>+\ﬁl 1
277 27 YV 3l2 2 3127 2
1 1 1 1 2,1 1
‘17_;_17_>: o §a__ _\/j‘ y T
2 2 3 2" 2 3127 2
1 1
17_; 7 o _‘ §
2
from which we can read off the Clebsch—Gordon coefficients for the decomposition
3/2 1/2
>®\ I > _\1 I I >= ) CI,’;,,;,é’,é, >+ Y O s
Is=—3/2 Is=—1/2
In tabular form,
1=3/2 I1=1/2
I3 = 3/2 1/2 —1/2 —3/2 1/2 —1/2
(m*p) |1,§,1,§ 1 0 0 0 0 0
(mtn) [1,%;1,-1 0 3 0 0 2 0
(%) |1,;,01 0 2 0 0 —\/3 0
(ﬂ-on) ‘172’ %> 0 0 % 0 0 %
(m7p) [1,4;-1,1> 0 0 3 0 0 -/ 2
(m7n) 11,4;-1,—3 > 0 0 0 1 0 0

We can now use this information to calculate ratios of cross-sections.

example the following three reactions:

i) Tp — 7tp
i1) TP — TP
ii1) T p o 7on.

Consider for



In terms of iSOSpiIl Z) is
2’ ’ 2 ’ 27 ’ 2

and can only proceed through the I = 3/2 channel, thus the cross-section

1

L,

Trtpmiy = K | <1530 0 [ M[1, 351,55

where K is a kinematical factor, depending on the 4-momenta of the incoming and outgoing
particles.
Reaction 1) is
1 1
1.2:—-1.=
‘ ) 27 b 2 >
and this is a combination of I = 3/2 and I = 1/2 and so involves both Ms,, and M 5.
Using the table above and the form of M in (34)

1 1 1
1_
<lgi- 5>
2 1 1 1,3 1 2.1 1
_ _ _ e M . = _ I
{ % 2‘ \/7<2’ 2‘} {\/; 237 \/;‘2 2>}
1
M M
=3 3/2+3 1/2-

Note that the matrix M in (34) is written in theJ I; I3 > basis and not the ‘ 1, r, g >
basis, which is why the table is essential in the derivation. We deduce that

1
Or—p—sn—p — §K ‘ M3/2 + 2‘Z\41/2 27
where K is the same kinematic factor as in i) if the pions and the protons have the same

energy and momentum.
Reaction i) is

1
Loi=1,-> = | 1L,50,-5 >
2
and
1 1 1 1
1,=;—-1,=|M|1,=;0,—=
< 727 72‘ 72707 2
3 \F<3_ 1‘ 2 _1 1‘ Iy \F‘?, 1>+\F‘1_ L
)l Vs3 T2 2 3 72 2 3127 2 3127 2
V2
= ?(M:a/z - M1/2),
leading to



K is the same kinematic factor as in ¢) and i) if the initial 7= and the proton have the

same energy and momentum in all the reactions and the final 7 and neutron in #ii) have

the same energy and momentum as the final charged pion and proton in ) and i) (the

small mass differences between the neutral and the charge pions and between the proton

and neutron are ignored since they would be zero if isospin were an exact symmetry).
The kinematical factor K can be eliminated by taking ratios

1 2
Ortposntp *On—posn—p On—p—onOn = K|M3/2|2 : §K ‘ M3/2+2M1/2 ‘ 2 : §K ‘ M3/2_M1/2 ‘ 2-

If, for example, | M3 /5| >> [M; /2| we expect

1 2
Ontposatp i On—posr—p : On—posgop = 1 : 9 : 9 =9:1:2
while, if | M3 /5| << |My /5|, we expect
4 2
Ortpontp : On—posn—p : On—ponon = 0: 9 : 9 =0:2:1.

The former case is nearer to the experimental situation than than the latter. If we look at
the total cross-section for 7~ p scattering

O-(’/T_p) = Og—posn—p + On—p—non
then, when the I = 3/2 channel dominates, this is
_ 1 9
o(r™p) = §K|M3/2| :

7Tp can only go to 71p so o(rtp) = o(nTp — 7hp) is itself the total cross-section for
7T p scattering and I = 3/2 dominance implies that

These cross-sections are shown below and we see that the ratio is indeed very close to three
at the total centre of mass energy equivalent to the A-hadron, which has I = 3/2.
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4. The Quark Model of Hadrons

Here is a list of the hadrons we have met so far:

+ _0 0 0 —
@ 77r7K47 p7n7A7A++7A+7A7AJa

'

mesons baryons
and there are many more. All observed hadrons can be built up from the six quarks

u (2.3 MeV/c?) d (4.8 MeV/c?)
c (1.3 GeV/c?) s (95 MeV/c?)
t (174 GeV/c?) b (4.2 GeV/c?)

where the masses are indicated in brackets. u, ¢ and t have electric charge Q = 2/3 while
d, s and b have charge Q) = —1/3.

The three lightest quarks are u, d and s, so we shall first consider hadrons composed
of these three quarks.

Strange Hadrons
i) Mesons: the u, d and s quarks are characterised by quantum numbers which include,

among others, the third component of isospin and strangeness:

(I3,5) = (1/2,0) for the u-quark
(I3,5) = (—1/2,0) for the d-quark
(I3,5) = (0,-1) for the s-quark.

The s-quark is assigned S = —1 for compatibility with the Gell-Mann — Nishijima formula
(all quarks have baryon number B = 1/3)

1,1 _ 2
s+s=3% u-quark

B+S 2,6,3
Q:]3_|_( 5 >: —%-I—%:—% d-quark
0+ (1/?;)_1 = —% s-quark.

Using I3 and S as Cartesian co-ordinates, the positions of the these three quarks can be
plotted in a two dimensional plane. They sit at the corners of an isosceles triangle like this
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—1/2 1/2

—-19 s

The three corresponding anti-quarks have exactly opposite quantum numbers

(I3,5) = (—1/2,0) for the u-quark
(I3,5) = (1/2,0) for the d-quark
(I3,5) = (0,1) for the s-quark,

like this

el
ol

-12 12 1,

The quantum numbers I3 and S are additive, i.e. the third component of isospin
I3 and the strangeness S of a composite object, made up of components each of which
has known values I3 and S, are obtained simply by adding the values of I3 and S of the
components. So all the possible mesons, which are ¢g composites, that can be constructed
from the u, d and s quarks can be found just by using vector addition of all possible pairs

of u, d and s with u, d and 5 in the (I3, S) plane. There are nine possibilities:

u, ud, us, du, dd, ds, su, s5 and ss,

which can be represented graphically as a hexagon in the (I3, .5) plane together with three

points at the origin.
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- S
(K°) ds us (K)

0

) d T ud ()

#ﬂ’ +,

(K) su sd (K)

The three states at the origin are linear combination of u#, dd and s5. There are five
S = 0 states, four from the pairing of the I = 1/2 doublet (u,d) with the anti-doublet
(@,d)
1 1

—@-=0a1
7 ¥ =0

and one from the I = 0 singlet s paired with s

0®0=0.

The first four we have already met: the I = 1 multiplet is the pion triplet which can be

constructed from 3
— (" and = Uf
q= / q= R

using the three Pauli matrices, as

(4,d) (? 8) (3) —du=rt,  (wd) (8 (1)) <3) —ad =
- -

(0’1—1:0'2)/2 (Ul+i02)/2

(a,d) (é _01> <Z) = Gu — dd = 7°.

—_——

o3

and

Thus the 70 is a linear combination of wu and dd. The combination orthogonal to the 7°

) ) (1 0) ()

43 The third component of isospin of an anti-particle is the eigenvalue of —I3, rather than I's. Hence @ has —Is=+1/2

while d has —I3=—1/2.
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which is related to the 7 meson mentioned in the previous section. We see from this
discussion however that there is a second I = 0 singlet, made up of s and s-quarks. This is
related to a particle called the n” and it is much heavier than the n at m,, = 958 MeV/c%.
Actually the 1 and the 7 are linear combinations of %u + dd and 5s, a phenomenon known
as mizing. In fact n = uii + dd — 2s5 and 1’ = ui + dd + s3.

There are four other states in the above hexagon diagram, the I = 1/2 doublets with
S = +1 which are labelled (K% K*) and (K—, K°) in the diagram. The K° meson has
already been mentioned when the strangeness quantum number was first introduced in the
last chapter. We see here in the quark model that the K° is only one component of an
isospin doublet with I3 = —1/2, the other component is a positively charged kaon, K+t
with I3 = +1/2. The other doublet, (K~, K9) with S = —1, are the anti-particles with
KO the anti-particle of the K9 and K~ the anti-particle of the K.

These nine states are summarised in the table below where some of their physical
properties, such as mass and lifetimes (or widths) are shown together with their dominant
decay modes.

Particle Mass (MeV/c?) 7 (or T)
nt 140 (— p*v) T=26x10"Fs
0 135 (— 27) T=84x10"1"s
K+ 494 (— p*v) 7=12x10"8%s
K9 KO° 498 (— 27) T=9x10"" s
n 547 (— 27) =13 keV
n' 958 (— nmm) '=02MeV

Notice that all of the complete isospin multiplets, (7, 7, 77), (K°, K1), (K, K0),
n and 7/, have different masses but the particles within each multiplet have very similar
masses.** This is due to isospin symmetry — it is assumed that, if the electromagnetic
force could be turned off, all of the particles in each multiplet would have exactly the same
mass. The mass difference between the multiplets can be thought of as being due to the
fact that the strange quark has a much bigger mass than either the u or the d-quark.C 4°

A very important property that these nine states share is that they all have the same
intrinsic spin and parity. Like the pion they all have J = 07, they are negative parity
scalars (pseudo-scalars). They are scalars because the quark and the anti-quark in each
particle have no orbital angular momentum relative to each other (I = 0) and the intrinsic
spins of the quarks are in opposite directions (1] ), so the particles have no intrinsic spin
either, hence J = 0. The negative parity of the neutral pion, or the n for that matter,
follows for the same reason as the parity of parapositronium is negative — they are bound
states of a fermion with its anti-fermion in an s-wave (I = 0) state.

There are versions of these states in which the quark and the anti-quark have their
spins parallel (11), giving intrinsic spin one but still with zero orbital angular momentum
(quark analogues of orthopositronium). These particles have intrinsic spin J = 1, but still
have negative parity: they are JP = 1~ particles which are significantly heavier than the

44 The K+ and the K~ have the same mass, since they are particle and anti-particle.
45 As mentioned previously, it is actually quite difficult to define what we mean by the mass of a quark, since no one

has ever seen a free quark in isolation.
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JP =0~ mesons.

I°=1

Here is a table with their properties

Particle Mass (MeV/c?) ' (MeV)
p* 0 771 (— 2m) 150
K** 892 (— utv) 51
K*0 896 (— K) 51

w 782 (— 3m) 8.5
0 1020 (— KK) 4.3

These particles are called vector mesons because their spin is J = 1, giving 2J +1 = 3
components, like a vector in three dimensions.*%

The fact that the ¢-meson decays predominantly to KK pairs is a hint that it is a
bound state of mostly s5 pairs, since K’s contain an s-quark and K’s contain an s-bar.
The w however is mostly a combination of i and dd and decays predominantly to pions.
These decays can be represented pictorially like this:

46 Vector mesons are heavier than pseudo-scalar mesons because a state with the quark spins parallel has a higher
energy than a state with the spins anti-parallel. Because of Einstein’s famous formula E=mc? this energy difference
manifests itself as a mass difference. There is an analogy here with the magnetic properties of matter. Some materials are
made of atoms, or molecules, which have small magnetic moments parallel to their spin. In materials called ferromagnets
the energy is lower when the spins of adjacent atoms are parallel and higher when they are anti-parallel (iron is an
example). In materials called anti-ferromagnets the energy is lower when the spins of adjacent atoms are anti-parallel

and higher when they are parallel (chromium is an example). In this language mesons behave like anti-ferromagnets.
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/ atw ~ 7 u™
u d
o { }7;;0 o { Ul
\ u
u \ d \_
(the w is a linear combination of uu and dd, as is the 7°: the decay of the w to 7+ 7~ 7°
is a linear combination of the lower two diagrams above).
There is a rule of thumb for hadron decays in the quark model which states that decays
involving connected quarks lines between the initial particle and the decay products are

favoured over decays which do not involve such connected quark lines. This is called the
Okubo-Zweig-Tizuka Rule (or OZI rule). For example the decay ¢ — 37

is suppressed by the OZI rule, because there are no continuous quark lines running through
the figure from left to right, and indeed this decay is not observed despite the fact that
there are no conservation laws forbidding it. Without the OZI rule we would expect ¢ — 37
to dominate over ¢ — KK because the ¢ is much more massive (m, = 1020 MeV/c?)
than three pions (ms, = 415 MeV/c?) but only slightly more massive than two kaons
(maox = 988 Mev/c?) and this means that the number of final quantum states available
for three pion decay is much greater than that for K K decay. This shortage of phase space
for the final states is reflected in the width of the ¢, 4.3 MeV, which is much less than
that of a typical hadronic decay.

Strange quarks have isospin I = 0 and (u, d) quarks are an isospin doublet. One can
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however generalise the SU(2) symmetry of isospin to a larger symmetry, a 3 x 3 unitary
u

matrix*” acting on a three component column vector | d |,
s

u u
d]| —-U]|d
S S

Since U is unitary, det(U?) = (det U™'), so (detU)* = 1/(detU) and detU is just a
complex phase. An overall complex phase is not observable in quantum mechanics so we
can always choose det U = 1, in which case U is again called a ‘special’ unitary 3 x 3 matrix.
Mathematically the set of all such matrices is denoted by SU(3), and when applied to the
three quark states u, d and s it is called flavour symmetry. Thus the SU(3) of flavour is
an extension of the SU(2) of isospin. Unlike the SU(2) of isospin, however, SU(3) is not a
very good symmetry of nature, nevertheless it can still be used as an organising principle
U
for hadronic particles. For example, if we denote the flavour triplet | d | by 3 and the
S

triplet of anti-quarks by 3, then the nine mesons of the pion pseudo-scalar family,

w QA

JP =17, come from*®

33=148

where there are two independent SU(3) multiplets on the right-hand side.?® These are:
a singlet, denoted by 1 and multiple consisting of eight states, denoted by 8, which are
mixed up between each other by flavour symmetry (just as the three components of an
ordinary vector in three dimensional space, in some given basis, are mixed up under the
action of rotations in three dimensional space). The 1 is in fact the ' and the 8 consists
of the remaining eight particles, (7 +, 70,77, K° K+, K0, K~ 1) — often called the pion
octet.

A measure of the violation, or breaking, of flavour symmetry is the mass difference
between members of a single multiplet. For example, in the pion flavour octet, myx # m

7 Remember a unitary matrix is one for which U~'=UT, where t denotes the Hermitian conjugate, the complex
conjugate of the transposed matrix
48 A similar notation is sometimes used for isospin, with a bold number denoting the number of components in a
multiplet. Thus I=0 is denoted by 1, I=1/2 by 2, I=1 by 3, and so on. In this notation %®%:O@1, for example,
becomes 2R2=1P83.
49 The reason why the nine states in this equation arranged into 1 and 8 is beyond the scope of this course. Suffice
it to say that there are well defined rules for combining flavour triplets into other flavour multiplets, just as there are
well defined rules in quantum mechanics for combining two angular momenta to get a finite number of different angular

momenta.
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and the relative difference, a dimensionless number, is
— My 494 — 14
o (MK —Mr\ _o 494 — 1401 1.12
mrg + mx 494 4+ 140
(the factor of 2 is because we divide the mass difference by the average mass (mx +my)/2).

This is much larger than the typical mass difference between components of the same
isospin multiplet, e.g. in the pion isospin triplet

M+ — Mgo 140 — 135
2(—— ) =2 —= ] =0.
(mﬂ+ + mﬂo) <14O + 135) 0.036,
indicating that SU(2) isospin symmetry is broken at the level of about 4% in the pion

isospin triplet.
Empirically the masses in the pion octet are related by

m%{() = (m72r0 + 3777%) s (40)

o |

a formula which is called the Gell-Mann — Okubo mass formula. If flavour symmetry were
an exact symmetry of nature then all particles in a given flavour multiplet would have
exactly the same mass, so we would have?°

Myo = MEKo = My,

and equation (40) would be automatic. Why equation (40) should still be satisfied, despite
the fact that flavour symmetry is broken, is not well understood, even though the Gell-
Mann — Okubo mass formula was first suggested in over 40 years ago in 1962.

The meson states described above all correspond to gq pairs which have zero orbital
angular momentum. When orbital angular momentum is included there are more, higher
mass, states which will not be described here: a full listing can be found on the Particle
Data Group’s home page http://pdg.1bl.gov.

i1) Baryons: now consider the possible ways of combining three quarks into baryons, which
are qqq states. Write the wave-function for a baryon made up of three quarks as

Y(w1, T2, 23) = qai(T1)qn; (1) qer (73) (41)

where 4,7,k = 1,2 are ordinary spin labels (not isospin, quarks have spin one-half, like
electrons), 1 is spin up (1) and 2 is spin down () say, and a, b, ¢ = 1, 2, 3 are flavour labels,
1 is the u-quark, 2 is the d-quark and 3 is the s-quark. We shall analyse the different
possibilities by classifying the wave-functions according their symmetry properties under
interchange of quarks. To simplify the notation in the following discussion the arguments

50" Note that, since the n’ is in a different multiplet to the pion octet, even exact flavour symmetry would not require

the n” mass to be the same as that of the pion octet.
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r1, 2 and x3 will be omitted from the wave-function and will be understood from the
order of the factors on the right-hand side of (41), so

Y(x1, 2, 23) = Gaiqbjqck-

Suppose first that 1 is symmetric under interchange of any two quarks. Start with
a proton uud, which has spin one-half. Assuming that the quarks have no orbital an-
gular momentum this means that the three quark spins must be either (uf)(uf)(dl)) or
(ut)(ul)(dr)), i.e. either both u-quarks spin up and the d-quark spin down or the d-quark
spin up and the two u-quarks being one spin up and one spin down. Start first with the
latter and suppose the spin down u-quark and the spin up d-quark are in a spin singlet,
(1} — 11) (the other combination, (1] + |1), is not a spin singlet, it is part of a triplet).
Now take the isospin singlet (ud — du) and pair these to form

(ud — du)(t) — 1) = {(ut ¢>< 1) — (d)(ul) + (d))(ut)}
= {(ut)(d}) + (d)(ut) } — {(u)(d1) + (@) (ul)} (42)

which is clearly symmetric under interchange of the two quarks. Now add a spin-up u-quark

() { (ut)(d)) + (d))(ut) — (ul)(dt) — (d1)(ud)
= (ut)(ut)(dl) + (ut)(dd)(ut) — (ut)(ul) (@) — (ut)(dP)(ul).

This expression is a spin one-half wave-function (remember (42) is spin zero by construc-
tion) and it is symmetric under interchange of the second and third quarks. Now add all
the terms necessary (another eight terms in all) to make it completely symmetric under
interchange of any two quarks:

+ (uh)(d) (ut) = (ul)(u)(dT) = (ut)(dT)(ul)
+(ut) (uh)(dl) + (d)) (ut) (ut) = (ud) (ut)(dh) — (d1)(ut) (ul)
(uf) + (ut)(d)) (u) — (d) (wd)(uh) — (ul)(dh)(ut)

P (ud)(dr) = (wd)(ut)(d?)
) (uh) = (ul)(dr)(ut)
(u)(

— (u
—(u)(dh)(ul) + 2(u
= (@) (ud)(ut) + 2(di) (ut)(ut).

This is the proton wave function, it has spin J = 1/2 and isospin I = 1/2 (remember (42)
has isospin zero). It is more succcintly written, in what is meant to be an obvious matrix
notation, as

2 -1 -1\ [|1>
Ipt>= (Juud > |udu > |duuw>)| -1 2 -1 BB
-1 -l | 41>
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The second member of this isospin doublet is the neutron, which has one of the u-
quarks in (43) replaced with a d-quark — it does not matter which u-quark is replaced,
since (43) is symmetric under interchange of any two quarks.5!

2 -1 ~1 | 1>
Int>= (|ddu > |dud > |udd>)[ -1 2 -1 | 41>

-1 -1 2 | 411>

There is no symmetric J = 1/2 state with all three quarks u-quarks wuu (or all
three quarks d-quarks ddd) since replacing the d in (43) with a u just makes the whole
wave-function vanish, for example

2 -1 -1\ [t
(Joww > |uww > Juuw >) | -1 2 -1 | tt> | =0.
1 -1 o2 )\

However, if we include the s-quark, there are at least five more possible states
uus, dds, uds, ssu, ssd.

Actually there are two linearly independent uds states. One is the I3 = 0 component
of an isospin triplet, with the I3 = 4+1 components being the uus and the dds states —
this is called the ¥ triplet, (X%, X%). The other is an I = 0 state which we have already
met when strangeness was first introduced, it is the A-baryon.

The ssu and ssd states form an isospin doublet with strangeness S = —2, these are
given the symbols =~ and =°.52

So we have eight particles in all — called the baryon octet, which is an 8 of flavour
— which are arranged in the I5—S plane like this:

51 The attentive reader may object to the fact that the proton wave-function constructed here is symmetric under

interchange of any two quarks. Quarks are fermions and wave-functions should be anti-symmetric under interchange of
fermions, not symmetric, because of the Pauli exclusion principle. This will be explained in the next chapter where the
concept of the quark’s ‘strong charge’, or colour as it is known, is introduced. Quarks must carry one of three different
kinds of ‘colour’ and the three quarks in the proton wave-function all have different colour, so they are not identical.
In fact, when colour is factored in, the proton wave-function is completely anti-symmetric under interchange of any two
quarks, in agreement with the exclusion principle.

52 They are sometimes called cascade particles because their decays look like a sequence of decays into a cascade of

more and more particles.
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| SR N 939 MeV/c>

Y 1193 MeV/c
A 1116 MeV/c?

,,,,,,, = 1318 MeV/c?

The baryon octet: the average mass of the members of each isospin multiplet is indicated
on the right in GeV/c? (the symbol N stands for nucleon, the familiar proton-neutron
doublet).

Particle Quark Content Isospin Strangeness Mass
p uud I=1/2, I3=1/2 S=0 938.3 MeV/c?
n udd I=1/2, I3=-1/2 939.6 MeV/c?
Tt uus I=1, I3=+1 S=-1 1189.4 MeV/c?
»0 uds I=1, I3=0 1192.6 MeV/c?
- dds I=1 I3=-1 1197.5 MeV/c?
A uds I=0 S=-1 1115.7 MeV/c?
=Y uss I=1/2, I3=1/2 S=-2 1315 MeV/c?
=" dss I1=1/2, I3=-1/2 1321 MeV/c?

The particles in this octet have parity P = +1, like the proton, so this is a J* = %Jr

octet. If the mass differences between the isospin multiplets were due solely to the mass
of the strange quark we would expect that

ma = mys ma —my = M= — A
e S~~~ N~ ~ - ~—
1116 GeV/c? 1193 GeV/c? 177 GeV/c? 202 GeV/c?

whereas the actual masses are indicated underneath. The fact that we do not quite have
equality here is due to spin effects. The small mass splittings between the individual
members of an isospin multiplet are due to electromagnetic interactions.

With the single exception of the proton all of these particles are unstable. The domi-
nant decay modes and lifetimes are:
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Particle Decay Mode Lifetime

P Stable 7, > 103! years
n —pt+e +1 Tn = 886 s

¥ — pr0, nat s+ =8.0x 1071 s
%0 — Ay Tso =7 x 10720 5
3~ —nm Ts- =1.5x10710 5
A — pr—, nm0 Th =2.6x10"1 s
=0 — An© Teo = 2.9 x 10710 5
=2 — An~ Te- =16 x 10710 5

Now consider what happens when all quark spins are parallel, but still with zero
orbital angular momentum, so we have spin J = 3/2 states. The number of symmetric
states that can be made out three objects is 3(3 + 1)(3 + 2)/6 = 10.>® Explicitly the ten
possibilities for the wave-function are

(uh)(ut)(ut)  (uh)(uh)(dr) (ut)(dn)(dr) (d1)(d)(dt) (ul)(ut)(sT)
(ut)(@)(s1)  (@N)(dn)(st) (ut)(st)(s1) (dN)(st)(sT) (s1)(sT)(sT)

all of which can be symmetrised in the obvious way,

(uf)(ut)(ut)
(d1)(dt)(dt)
(sT)(s1)(sT)
() (ut)(dT) + (ut)(dT)(ul) + (dT) (ut)(ut)
(u)(d1)(d?) + (db)(ut)(dh) + (dt)(dT)(ut)
(ul) (uh)(s1) 4 () (1) (uh) + (s17) (ul) (ut)
(@)(dh)(s1) 4 (d1)(s1)(dT) + (s1)(d1)(dT)
() (s1)(s1) 4 (sT) () (1) + (1) (s1) (uT)
(@) (sT)(s1) + (s1)(d1)(sT) + (sT)(sT)(d1)
(uh)(dt)(s1) + (uh)(s1)(dT) + (dT) (ul) (sT) + (dT)(sT) (ul) + (1) (uh)(dT) + (s1)(dT) (u?).

This gives a baryon decuplet, denoted as a 10 of flavour (average masses of the isospin
multiplets are indicated on the right):

53 It we choose 3 objects out of n possibilities, without worrying about the order, there are n(n+1)(n+2)/6 pos-
sibilities: there are m in which all three objects are the same; n(n—1) with two the same and the third different; and

n(n—1)(n—2)/6 with all three different. These add to n(n+1)(n+2)/6.

76



-
1

(Y[

Can you guess the mass of the 277
The average masses of the four isospin multiplets are indicated above, apart from the

Q)~. The mass differences are

ms- —ma = 153 MeV/c?,

A 1232 MeV/c’

Y " 1385 MeV/c?

=* 1533 MeV/c®

ms+ —my« = 148 MeV/c?.

Here are the current experimental values of the masses (only one value is quoted for
the A baryons as their electromagnetic splittings have not yet been clearly resolved):

Particle Quark Content Isospin Strangeness Mass

ATT uuu I1=3/2, I3=3/2 1232 MeV/c?
AT uud I1=3/2, I3=1/2

A° udd I=3/2, I3=-1/2

A~ ddd I1=3/2, I3=-3/2

yrt uus I=1, I3=+1 1383 MeV/c?
¥*0 uds I=1 1I3=0 1384 MeV/c?
¥*- dds I=1 1I3=-1 1387 MeV/c?
=*0 uss I1=1/2, I3=1/2 1532 MeV/c?
St dss I=1/2, I3=-1/2 1535 MeV/c?
Q- sss I1=0 1672 MeV/c?

In fact the 0~ particle was predicted on the basis of the quark model three years
before its discovery in 1964, and experimentalists even knew what the mass should be, to
within a few GeV'.

All particles in the baryon decuplet are unstable but we shall not go into the details
of the decay modes. Again, as for the mesons, there are higher mass excited states of
the above baryons, in which the quarks have orbital angular momentum and/or radial
excitations but the details are many and varied and will not be described here.

7



Charming and Beautiful Hadrons

VST

When the charmed quark is added to the list we have a quadruplet , suggesting

c
an extension of flavour symmetry to 4 x 4 unitary matrices. However the mass of the

charmed quark
me = 1600 MeV/c? >> my ~ 500 MeV/c? > m, ~ mg ~ 300 MeV/c?

is so much greater than the mass of the s, d, and u-quarks that this would be a very badly
broken symmetry.

Like the up quark, the charmed quark has electric charge Q = 2/3. In analogy with
strangeness a new quantum number called charm is introduced and given the symbol C,
not to be confused with charge parity C. The c-quark has C' = 1, the ¢ has C = —1 and
u, d and s have C' = 0. C is an additive quantum number. The Gell-Mann — Nishijima
formula must now be modified to allow for charmed particles

B+S+C

Q=13+ 5

i) Charmed hadrons: we can construct charmed mesons, ¢q states, by using a c-quark (or
a ¢). If the other quark is a u or a d these are called D-mesons. For example

Dt = cd, DO = we

are charmed analogues of strange pseudo-scalars, (K+, K°) and (K9 K~), in the pion
octet. They are isospin doublets, I = 1/2.

Like strangeness, charm is conserved by strong interactions but not by weak interac-
tions. Charmed mesons can be created in pairs by strong interactions involving collisions
between hadrons with zero charm but the total charm of the final state must be zero so, if
it contains particles with charm, both C' = 41 and C' = —1 must be present and these must
decay to C' = 0 particles via the weak interactions (charmed quarks decay predominantly
to strange quarks). Their lifetimes are therefore comparatively long, at least compared to
strong interaction decays. The physical properties of the D-mesons are

mp: = 1869 MeV/c®>  1px =1.05x 10712 5
mpo = 1864 MeV/c*>  1po = 4.1 x 10713 5.

The u or the d-quark in the D-mesons can also be replaced by a strange quark, giving a
strange-charmed meson, Dy, which is an isospin singlet I = 0,

Df =cs  mpy =1968 MeV/c> 7,0 =49 x 1071 s,

S
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together with its anti-particle D = sc.
All of the D-mesons decay weakly, mostly into kaons plus other stuff, but the details
of the decay modes are a complex and fascinating branch of modern particle physics.
There is also a C' = 0 meson made up of a c-¢ pair, called charmonium in analogy
with positronium, and denoted by 7., because it is the analogue of the 7 in the pion octet.
The 7., like the n, is an isospin singlet but with mass and width

my, = 2980 MeV/c?, =17+3 MeV &1, =4x 1072 s.

Since charmonium has C' = 0 it can decay via strong interactions to other C' = 0 states
and this does not violate charm conservation, hence its short lifetime. The decay modes
of charmonium are also very complicated and include

KK
nwT

Ne — n'wmw
pp

Being a bound state of a fermion and its anti-fermion, with zero orbital angular momentum,
charmonium, like positronium, has parity P = —1.

All of these mesons containing c-quarks (or ¢ or both) can be represented pictorially by
introducing C' as a third co-ordinate and extending the (I3, .S)—plane into three dimensions,
resulting in a shape known as a cubeoctahedron in geometry,

D_(s¢)
All of these particles are pseudo-scalars with J© = 0~ and charm extends the pion pseudo-
scalar family from 9 = 32 to 16 = 42 particles.

There are also charmed analogues of the vector mesons with J© = 1~ and in fact the
observation of the charmonium state with the quark spins parallel, (¢1)(¢t), marked the
discovery of the charmed quark in 1974. It was discovered simultaneously by two groups
in the United States working independently: one group called it the J-particle and gave
it the same symbol J, the other group called it the W-particle. It has since been known
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as the J/U particle and is sometimes affectionately called the ‘gypsy’. The J/¥ is the
charmed analogue of the ¢-meson, with J* = 1=, but, unlike the ¢ which decays to KK,
the J¥ cannot avail of the analogous decay DD because it is below the mass threshold for
DD production: it is exceptionally long lived for such a massive hadron and has a very
high narrow resonance.

The J/¥ decay modes are very complex and have been extensively studied. It weighs
in at mj,g = 3096.9 MeV/c? with an exceptionally narrow width of 91.0 4 3.2 keV .54

ot —tt

Y9 >
) Z+
o =0

54 The width is so narrow because the natural decay mode to D-mesons, .J/¥— DD (the charm analogue of p— K K),
is forbidden by conservation of energy, since m ;,4=3096 MeV/ c2<2mp=3730 MeV/c?. The complicated hadronic
decay modes of the J/¥ are all suppressed by the OZI rule making it relatively long-lived, and hence narrower, than

other hadronic resonances.
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There also charmed baryons extending both the baryon-octet and the baryon-decuplet.
We shall not describe their properties in detail, but just represent them pictorially in the

previous diagram. The previous picture shows the J¥ = %+ charmed baryons, in the shape

of a truncated tetrahedron, and the the J = %+, all 4(4 4+ 1)(4 4 2)/6 = 20 of them,
arranged in a tetrahedron.

i1) Bottom hadrons: including the b-quark makes the spectrum even richer and we now run
out of dimensions for easy visualisation. The b-quark is some three times more massive
than the c-quark with m;, = 4.6 GeV/c? and, like the d and the s-quarks, has electric charge
@ = —1/3. Like s and c-quarks, b-quarks are always produced in strong interactions in
quark —anti-quark pairs, bb, which can then separate in different particles. These particles
subsequently do not decay by strong interactions, but only through weak interactions.
b-quarks are therefore assigned an additive quantum number, called beauty B (not to be
confused with baryon number B), which is conserved by strong interactions but not by
weak interactions. B = +1 for b-quarks and B = —1 for b-quarks.

There are b-mesons, analogues of the D-mesons, which enlarge our sixteen pseudo-
scalar mesons even further. These are

Bt = ub, B = db, mp = 5279 MeV/c?
B~ =ba, B =bd, 71pe=16Tx10"2s 75 =153 x 1072 s.
There is a bb bound state (‘bottomonium’) called the Upsilon particle®®
T = bb, my = 9460 MeV/c?, I =53 keV.
There are also bottom-charm mesons
B = cb, B, = be, mp: = 6.4+ 0.4 GeV/c?, Tp =046 £0.17x 1072 s
and bottom-strange mesons

BY = sb, 30 = b5,  mpo =5.370+£0.002 GeV/c?, 7o =1.46 x107"% s.

With the exception of the T these are all pseudo-scalar mesons, JZ = 0~.

5 Actually the T is a vector meson JX =1~ and not a pseudo-scalar meson, it is the bottom analogue of the .J/¥.
The J¥=0" bottomonium state 7, the bottom analogue of the 7., has a slightly lower mass of 9398 MeV/c?. The
mass splittings between the J¥=1" and the J¥ =07 in the bb and c¢ are due to spin effects (see footnote on page
(69)). The splitting is expected to be proportional to the spin-spin coupling and inversely proportional to the square of
the quark mass and the b-quark, m,=4.2 GeV/c?, is some three times heavier than the c-quark, m.=1.3 GeV/c?, so
we might expect the mass splitting in the bottomonium system to be nine times less than in the charmonium system.
Experimentally m ;. —m, =116 MeV/c? so we would expect mxy —my, ~13 MeV/c? if the quark mass were the only
relevant parameter. The fact that the Y-7;, mass difference is some five times this implies that the spin-spin coupling

between the b and the b in bottomium is some five times larger than the c-¢ spin coupling in charmonium.
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Then there are bottom baryons, e.g.
Ay = udb, my, = 5.624 GeV/c?, A, = 1.2 x 10712 5.

There are many more possibilities that one can construct and not all have been seen
experimentally, though many have. All spin—% baryons with one b-quark have now been
seen except for the electrically neutral 3 with quark content udb (obtained by replacing
the s-quark in the X° with a b-quark). The latest addition, the =) with quark content
usb (obtained by replacing one of the s-quarks in the Z° with a b-quark) was discovered
in July 2011. The search goes on for the XJ!

The list is too long to describe here and the current status of known particle properties
can be found on the particle data group’s web page at http://pdg.1bl.gov.

The Top Quark

The top quark, which was only discovered in 1994 with the phenomenal mass of
174.3 £ 5.3 GeV/c?, decays so quickly, mostly to b-quarks and emitting W-bosons in the
process, that bound states, either top-mesons or top-baryons, simply do not have time to
form.

Exotic States

All of the hadronic states described above are either mesons, ¢g pairs, or baryons,
qqq states. This is partially explained by the concept of confinement and the idea that
no hadron can be a source for ‘strong charge’, or colour: all hadrons should be colourless
(ideas that will be explained in more detail in the next chapter). However there are many
possible states that would still be compatible with this idea and any hadronic state other
than a meson or a baryon is termed ‘exotic’.

In 2008 a hadronic state with quantum numbers that probably make it exotic was
discovered. With a mass close to 4430 MeV/c? it is dubbed the Z(4430). It appears to
consist of two quarks and two anti-quarks, ¢cud, and perhaps could be a strong ‘molecule’
consisting of a bound state of two mesons.

Glueballs

An important aspect of the underlying dynamics of the strong nuclear force, quantum-
chromodynamics (described in the next section), is that the force carriers, the gluons, can
interact strongly among themselves. This is in stark contrast to electromagnetism where
photons only have very slight interactions among themselves. Classically electromagnetic
waves have no interactions at all among themselves — two electromagnetic waves will pass
through each other without any effect whatsoever — though quantum mechanically there
is a slight, but very weak and in most situations neglible, interaction. It should be possible
to form a bound state of gluons only, with no quarks, called a glueball.>® There is a well
established state near 1500 MeV/c? which is a good candidate for a glueball, called the
fo(1500).

56 Strictly speaking a glueball can contain virtual quarks, quark — anti-quark pairs that can fleetingly pop out of the

vacuum only to annihilate each other almost immediately.

82



5. Chromodynamics

The baryon wave-functions for the octet JX = %Jr and the decuplet JX = %Jr,
described in the last chapter, were completely symmetric under the interchange of any
two quarks. But quarks are fermions and fermion wave-functions should be totally anti-
symmetric under interchange of any two fermions for compatibility with the exclusion
principle.

The anti-symmetric nature of fermionic wave-functions can be accommodated in the
quark model by postulating a new quantum number, taking three values, a = 1,2, 3 say.
The baryon wave function (41) then becomes more complicated, it is a linear combination

of
qaai (5131)61[%] (xl)chk ({133)

with «, 8,7 = 1,2, 3 labelling the new quantum number, a,b,c = 1,2, 3 labelling flavour
and 1, 7, k = 1,2 labelling spin. The wave-function is then

3 3 2
¢($1,$2,$3> = Z Z Z Caﬁ’y;abc;ijk QOzai(x1>QBbj(xl>Q’yck(x3>

a,B,vy=1a,b,c=11,5,k=1

where Cqgy:abesiji are constants, chosen so that 1 (x1, z2, x3) is anti-symmetric under inter-
change of any two quarks. Since all the wave-functions that we have constructed are sym-
metric under interchange of the flavour and spin indices, the C’s must be anti-symmetric
under interchange of colour indices, a7y, so C x €,3-

It is an experimental fact that the «, 3,y quantum numbers are not directly visible.
They label a new kind of charge which, like electric charge, is conserved, but, unlike electric
charge, it comes in three kinds together with three kinds of anti-charge. In electromag-
netism there is only one type of charge (together with the anti-charge), for the strong force
there are three distinct kinds of charge. Because this new strong charge has not been di-
rectly detected in any experiment it is assumed that these three ‘charges’ are like complex
numbers, cube roots of unity 1, €27/3 and e~2"/3 that sum to zero 1+e2™/3 4e=217/3 =
The anti-charges, —1, e~"/3 and ¢™/3 also sum to zero. If each quark in a baryon carried
a different ‘strong’ charge then they sum to zero and this would explain why the strong
charge has not been observed. A rather more picturesque language is to use an analogy
with colour, where the three primary colours, red, green and blue, combine to give white,
which is colourless. This charge is therefore called ‘colour’: quarks carry one of three
colours, red green or blue and baryons consist of three quarks each with a different colour
which combine so that baryons are white, or ‘colourless’. There are also anti-colours: the
opposite of red is cyan; the opposite of green is magenta and the opposite of blue is yel-
low.%” Mesons are also colourless, but this time because they consist of a quark and an
anti-quark with the anti-colour, such as a red quark and a cyan anti-quark for example.
The strong force that binds quarks inside hadrons is therefore usually called the colour
force and the dynamics of the colour force is called chromodynamics. The quantum theory
of chromodynamics, quantum chromodynamics, is usually abbreviated to QCD. QCD is

57 In fact printers talk of cyan, magenta and yellow as the three ‘primary’ colours.
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the fundamental theory of strong interactions, but the details are too advanced for this
course.

Evidence for colour

Colour is not just a theoretical idea, it is a real charge and has physical consequences
albeit indirect ones. Evidence for colour comes from e™ — e~ annihilation experiments,
where electrons and positrons collide together and we watch what comes out. In particular,
if there is enough energy, hadrons can be produced in the collision via an intermediate
(virtual) photon which decays into a quark — anti-quark pair:

e

(in this diagram time can be thought of as running from left to right and four hadrons
emerge on the right). Since a photon carries no colour charge, it is colourless, conserva-
tion of colour charge implies that the quark and the anti-quark produced here must have
opposite colour charge, i.e. whatever the colour charge of the quark the anti-quark must
have the corresponding anti-colour. The blob here indicates that the ¢q pair must combine
into white hadrons in some unspecified way, a poorly understood process that is called
hadronisation, and four hadrons are depicted emerging from the collision in the diagram
above for example.
Let us focus on the quark production process for the moment,

q q

e et
(in this diagram time runs from the bottom to the top).

This is simpler because it does not involve QCD, it is a purely electromagnetic pro-
cess, QCD only enters at the hadronisation stage. Diagrams like this are very important
in particle physics. They have a precise meaning and there is a well defined set of rules,
which we shall not go into in detail here, that associate a quantum mechanical amplitude
with the process depicted above. A quantum mechanical amplitude is a complex number
which tells us the probability of an incoming electron and a positron, with specific momen-
tum, annihilating into a virtual photon which subsequently disintegrates into a qq pair.
Diagrams like this are called Feynman diagrams. Feynman diagrams are not pictures of
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processes in real space, they are graphical representations of quantum mechanical ampli-
tudes and as such they can be added, subtracted and multiplied using the usual rules of
complex addition and multiplication.

To understand the physics here, first consider the simpler process of eTe™ — utpu™,

i ut

e~ et

Ignoring spin, the cross-section for this process can be derived from equation (14),

do  |My* p}
A 4x2p?t v,

(14)

where My; is the quantum mechanical amplitude, the complex number associated with the
Feynman diagram.

The calculation proceeds in a very similar manner to the calculation of the cross-
section for a-particle scattering off an atomic nucleus, calculated earlier, equation (15).
The amplitude can be calculated using the Coulomb potential between the initial electron

and the final muon )

U(r) =

4megr

and it is convenient to Fourier transform this to

2

7 (1) 3,. oik.r _ €
U(k).—/da:e U(T)—EO?

(the derivation of this Fourier transform is left as an exercise) and to express it in terms

of the fine structure constant o« = 5+
dmeghc’

~ e2h? drh3ca
U(k) = =7 (44)

where ¢ = hk is the momentum of the photon that is exchanged in the process above. This
photon is time-like, if its 4-momentum is () then

Q.Q = —¢* = —s/c* <0,

where s is the square of the total energy of the incoming electron and positron in the centre
of mass frame. For large energies we can ignore the particle masses m. and m,,, provided
5>> mic4, and set

v; = 2c, vy =2c (45)
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(remember that v; in (14) is the relative speed of the two incoming particles in the centre
of mass frame and vy is the relative speed of the two outgoing particles). Conservation of
energy requires that the total energy of the outgoing muons must also be /s = gc so, in
the centre of mass frame, each has energy E, = /s/2 = gc/2, so the momentum of either
muon is

E
pr= 7“ = q/2. (46)

The amplitude calculated earlier for a-scattering was
My; = U(q) (47)
and we can use the same amplitude here, combining (14) (44) (45) (46) and (47) to get

do W’
aQ  4q%

(48)

Integrating over all possible directions of the final state muons requires multiplying this
by 47 to get
B mhia? e

2 16medc2q?’

g

This calculation has ignored the spin of the initial electron and positron and the final
muons. If we include spin the differential cross-section is modified, because the amplitude
actually depends on the spin of the incoming and outgoing particles. For example suppose
the incoming electron has positive helicity and the positron has negative helicity (they
must have opposite helicity, if their helicities were the same the total incoming angular
momentum would be zero and a spin one photon could not be created in the collision).
There are then two possible orientations for the outgoing p~ and pu* spins: the pu~ could
have negative helicity and the p* positive helicity, like this

/e
e Ve
7 T
-

or vice versa, like this
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w

/ ~ 0
e Ve
7 T
-

Now the incoming e™ and the outgoing u™ prefer to have their spins parallel and the
amplitude for the first case carries a factor (1 + cos @), which is zero when the e™ and p*
spins are anti-parallel (§ = 7). The amplitude for the second case carries a factor (1—cos8),
which is again zero when the et and p* spins are anti-parallel (§ = 0 in this case). The
quantum probability is calculated from the square of the amplitudes and, according to (17)
we should sum over final spins states. Squaring and adding the amplitudes for these two
cases gives a factor

(14 cos6)? 4 (1 — cos0)? = 2(1 + cos? 6).

There is also the possibility that the incoming electron has negative helicity and the
positron has positive helicity — the analysis in this case is the same, again giving 2(1 +
cos? @) which must be added to the first case to give an overall factor of 4(1 + cos?6).
Another two possibilities are that the electron and the positron have the same helicity,
either positive or negative, but these states have spin zero and so cannot produce a photon
— giving amplitude zero. Averaging over the four initial spin states then requires dividing
by 4 and the final effect of including the spin is to multiply (48) by (1 + cos? #) to give

do  h?a? 9 et (1+cos?6)
d_Q = 4—q2(1 + cos 9) = 647‘(‘26362 q2 . (49)

Integrating this over all possible directions of the final muons gives

4nha?
3¢2

do  h*a?
QT 4q?

™ 2
/ / (14 cos? 0) sin OdOd¢ =
o Jo

so the cross-section for the process ete™ — puTu~, with total centre of mass energy

/8 = qc, is finally
4rh?a?
oerem - ) = T (50)
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Fig. 2: Experimental eTe™ — ptpu~ cross-sections. The figure on the left is the total
cross-section, measured in picobarns, and shows the 1/s behaviour predicted by (50) (both
ete” — putpu~ and ete” — 7777 are shown). The dashed line in the figure on the right
shows the 1 + cos? § dependence of (49) — the solid line includes corrections to (49) due
to the weak force.

It is important that the total cross-section decreases as the centre of mass energy
V/s = qc increases. Cross-sections represent probabilities and probabilities must always be
less than one, a cross-section that grows indefinitely would be physically unacceptable.

Having derived the cross section for e™e™ annihilation to 4+~ the answer for eTe™ —
qq is easy: the only difference, when masses are ignored, is that the electric charge on the
final state quarks is different to that of a muon final state, it can be either 2/3 for u, ¢
or t-quarks or —1/3 for d, s or b-quarks. This means that the factor of o in (44) must be
replaced by Q,a = %a, if a wu pair is created for example, or Qg = —%a if a dd pair is
created and so (50) is multiplied by Q?, with i = u or d. If k different types of quark with
charges Q;, @ = 1,...,k can be created then the probabilities for their production must be

added and
n 47rh a2
oleTe” = qq) Z Q?

If we measure the cross-sections and take the ratio

R oglete™ = qq) ZQ2

olete™ — putpu~

we get direct experimental information about the quark charges. (Experimentally it is the
cross-section o(ete™ — hadrons) rather than o(ete™ — ¢@) that is measured, but these
are equal because the quarks create hadrons with probability one .)
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Now ¢, b and t quarks are significantly heavier than the others so suppose that the
centre of mass energy is not high enough to create these quarks and only u, d or s-quarks
can be created. Then summing over these three possibilities gives the ratio

4 1 1 2

If the centre of mass energy is increased so that c¢ quarks can be created, but b and ¢ are
still forbidden by conservation of energy, the ratio is increased to

R— %4_14_14_% —E
~\9 9 9 9/ 9’

and if b-quarks are created as well

R 4+1+1+4+1 11
~\9 "9 9 9 9/ 9

The experimental measurement of R, shown below, gives R = 2 below cc¢ threshold
and R = % above, when J/W particles can be created, and another increase to R = %
above bb threshold, when Y particles can be created. In each case the ratio R is 3 times
larger than our naive result. The explanation of this is that each quark comes in three

colours and all three colour possibilities should be added together in the final ¢ state.
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Gluons and Jets*

The relativistic quantum theory of electrodynamics is called quantum electrodynam-
1cs, or QED, and the relativistic quantum theory of chromodynamics is called quantum
chromodynamics, or QCD. The details of QED and QCD are too advanced for this course
but these two theories have many features in common, although there are also some crucial
differences. In QED there is only one kind of charge, which has opposite sign for particles
and anti-particles, whereas in QCD there are three kinds of colour charge (red, green and
blue) and three kinds of anti-colour (cyan, magenta and yellow). In QED the electromag-
netic force is mediated by photons which are massless electrically neutral particles with
spin one and negative parity, J& = 17.

€ €

€ €

In QCD the colour force is also mediated by massless particles with spin one and
negative parity, called gluons, but with the difference that gluons carry colour charge. For
example a red (r) quark can emit a gluon and turn into a green (g) quark and conservation
of colour charge dictates that the gluon must carry away a unit of red charge and a unit
of anti-green, or magenta, charge (rg). All gluons carry one unit of colour and one unit of
anti-colour, giving nine kinds of gluon, except there is no colourless gluon in the symmetric
combination (r7 + gg + bb), with b standing for “blue”, so there are actually only eight

independent types of gluon.
9(G) q(R)

G —
RG
a(R) 9(G)

Despite the fact that gluons are believed to be massless, the colour force is not long
range — its effect does not extend much beyond the size of a proton (except in so far as
pions, colourless particles, mediate the strong force between two baryons, but pions are
not fundamental). Neither quarks nor gluons have ever been seen directly, they appear to
be confined inside baryons by the colour force. Experimental evidence for gluons can be
found in the angular distribution of the hadrons produced in electron-positron annihilation
via ete™ — ¢q. At high enough centre of mass energies one of the emerging quarks can
emit a gluon. Although the quarks and the gluon are not directly observed, they hadronise
as they exit giving only hadrons as the observed particles, the outgoing hadrons do carry
a memory of the directions of the original quarks and the gluon — the hadrons emerge are

Sections marked with an asterisk were not covered on the lectures and are include for general interest only.
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three well collimated ‘jets’ of particles

e et
Below is a picture of an event produced in a particle accelerator at CERN (the European
particle physics centre, Centre Europeén de Recherche Nucléaire) in Geneva by colliding a
positron and an electron together at high energy. Three ‘jets’ of particles radiating away
from the interaction point are clearly visible (the rectangular blobs indicate the amount
of energy deposited in the detector by particles as they leave the interaction point)

Unlike photons, gluons carry colour charge, which has the interesting consequence
that, unlike photons, gluons can interact directly with other gluons and a single gluon can

disintegrate into two gluons, like this BG
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(a photon cannot disintegrate directly into two photons, at least not without creating
intermediate electrons and positrons, because photons have zero charge).
This possibility allows for processes like this

g g

e et
which produce four jets of well collimated hadrons emerging from the interaction point.

Here is a picture of a four-jet event produced in an electron-positron collision at CERN

{{

By analysing pictures like those above, in which jets of hadrons are seen emanating from a
point where an electron and a positron collide at high energy, physicists are able to deduce
the physical characteristics of quarks and gluons, such as their spin and electric charge.
The experimental results agree well with the predictions of QCD.

Strong decays of particles can be understood in terms of gluons, for example the decay

of a J/¥-meson (a c¢ bound state) to a p~ (du) and a 7 (ud), must involve a minimum
of three gluons, though it can involve more,?®

58 There must be a minimum of three gluons exchanged between the cc¢ pair and the uw pairs because of conservation
of colour and parity in the strong interactions. The incoming J/¥ particle is colourless and a single gluon has colour

charge so conservation of colour implies that single gluon exchange is forbidden. Two gluon exchange is forbidden by
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Asymptotic Freedom*

There is a subtle quantum mechanical effect associated with gluon exchange which has
the surprising consequence that the closer two quarks get to one another the weaker the
colour force gets. As the distance between the quarks goes to zero the force between them
in fact vanishes and the quarks essentially become free particles (or at least they would if
it were not for the Coulomb force due to their electric charges). This phenomenon is called
asymptotic freedom, because the force vanishes asymptotically as the quarks approach each
other. The effect relies once again on virtual particles borrowing energy to appear out of
nothing for a fleeting existence before disappearing again. Consider the simpler process of
a photon being exchanged between two electrons:

€ €

€ €

The photon exchanged between the two electrons in this process has a space-like four
momentum, Q.Q = —s/c? > 0 (the proof of this is left as an exercise). The amplitude for
a similar process, eTe~ — putp~ for which the virtual photon was time-like, was calculated
earlier, equation (44), at least when masses and spins were ignored. For our purposes here
we can use the same expression (44) and take the amplitude to be proportional to a/s

parity conservation, the J/W¥ is a J¥ =17 state with negative parity and gluons, like photons, also have negative parity.
Two gluons would have parity (—1)2=41 and parity conservation requires that an odd number of gluons must be
exchanged. The minimum number that can satisfy both these criteria is three. While any odd number greater than
three can also be exchanged, and this does happen, the probability of it happening is less than that for three gluon

exchange.
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2
4;‘60
4mh3¢ in (44) which we shall ignore here).

If |s|24m?2c? then the virtual photon can create a virtual electron-positron pair that
can exist for a very short time before annihilating each other leaving behind another virtual
photon (remember that an electron with space-like four momentum P, with P.P > 0,
can only be virtual because a real electron must have time-like four momentum with

P.P=-m2c <0).

is the fine structure constant (there is an unimportant overall factor of

where o =

Now Feynman diagrams are a pictorial representation of quantum mechanical amplitudes
and there are rules in QED that allow the complex numbers corresponding to each ampli-
tude to be calculated. To obtain the full amplitude we must add the amplitude for each
process.?® Although it will not be derived here, that is beyond the scope of this course,
we quote the amplitude for the above process. It depends on the four momentum of the
exchanged photon: it vanishes for \/E <2mec? and, for \/E 22m.c?, it is (again ignoring
an overall constant factor of —47wh>c)

where

_ 5]
X(s)= 3 In <4m§c4) .

Adding this to the first diagram we get

with numerical value o
" (1+ X(s)).

In fact any number of virtual electron-pairs can be created in series

99 An apparent problem showed up here when people first tried to calculate the amplitude associated with the
electron-positron pair diagram in that the answer was infinite! This was a serious problem for the quantum theory of
electrodynamics for many years until it was realised that these infinities are harmless and can be removed in a clever

process called renormalisation. The details of the renormalisation process are too advanced for this course.
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and, according to the rules of quantum mechanics, these should all be added to get the
total amplitude:

Algebraically the total amplitude, up to an overall constant, can be written as

for \/|s|22m.c?. Finally the physical effect of all these virtual electron-positron pairs
can be accounted for by making the fine structure constant a function of the momentum
transferred during the collision and writing

ﬁ:

Ve

» « > 2
7= i a(s)z{l_%1n<|s|/4mzc2> VlslR2mee

a V8| <2mec? .

The net result of all this is that the value of the fine structure constant effectively depends
on the momentum transferred and grows as |s| grows. Large momentum is equivalent to
short distances and the charge on the electron gets larger as we get closer to the electron,
leading to a modification of the Coulomb potential. In fact, if this result is used for arbi-
trarily high |s|, we would conclude that a(s) becomes infinite when /[s| = 2m.c? exp (32),

but this corresponds to a colossal energy, \/m ~ 2mec? exp (;’—g) ~ 2mec? x 10280, equiv-
alent to many times the mass of the universe, so this conclusion is unwarranted — new
physical processes will certainly become important before this energy scale is reached and
even within the theory of QED itself equation (51) is only valid when «(s) is small.

An intuitive picture of what is happening here is that short-lived electron pairs can
pop out of the vacuum and a free charge, like a real physical electron, will preferentially
attract the opposite charge of the pair during the pair’s brief existence. This effect is
more pronounced the closer we get to the free charge and the vacuum itself behaves like a
dielectric medium. In a dielectric, such as water or wax, the electric field produced by a
charge is less than it would be in a vacuum, because the molecules in the medium respond
to the field produced by the charge by becoming polarised in a manner that reduces the
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field. For example a sphere with a positive charge at the centre actually contains less
charge than one would expect because the molecules of the medium behave like little
electric dipoles and line up with the radial electric field, like this

o5 P

‘@@

.-

This effect is called screening because the medium has the effect of reducing the charge, in
a sense it tries to hide the charge reducing its effectiveness. Mathematically the effect is
encoded in the dielectric constant of the medium through the electric permittivity € > ¢,
SO

V.E=p/e<p/ey

where €y is the short distance (vacuum) permittivity. The closer we get to the charge
the less effective the medium is at screening it and the ‘effective’ charge increases as we
approach.

A similar effect occurs in a vacuum, except it is not real charges in a polarisable
medium that cause the effect, but virtual dipoles that are electron-positron pairs. The
increase in a(s) as |s| increases can be interpreted as a decrease in the electric permittivity
of the vacuum, that is the vacuum behaves as though it has a dielectric constant €(s) that
decreases with |s| and gets smaller as we approach the free charge, increasing as we recede
from it,

e2

als) = 4me(s)hc

and approaching €y only for large distances (small |s|). This affects Maxwell’s equation so
that
VE=L.>2
e(s) " €

The usual permittivity of the vacuum, €, is only the large distance (small |s|) permittivity.
Close to a physical charge (large |s|) €(s) is smaller and the vacuum becomes more and
more dielectric as |s| decreases. There is strong experimental evidence that «a(s) really
does grow with energy and this phenomenon is known as vacuum polarisation.

Alternatively, since the speed of light in the vacuum is invariant, ¢ = 1/(eu) =

1/(€opo), we can write
a(s) = e? _ e?u(s)c
4me(s)he 4mh

and we say that the effective magnetic permeability of the vacuum u(s) decreases as |s|
decreases, approaching the vacuum value p, for large distances: the vacuum behaves like a
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diamagnet, a material in which the magnetic permeability is less than g, so that currents
generate smaller magnetic fields that they would if the magnetic permeability were pg.

Now consider the exchange of a single gluon between two quarks in QCD:

q q
q q
The amplitude of this process is
~  «a
7 — QQcp
s
where Q is the 4-momentum of the gluon transferred between the quarks (s = —(Q.Q)c?)
and
o _ 9Q¢D
@ED T Urhe

is the QCD analogue of the fine structure constant of electromagnetism, depending on
the magnitude of the colour charge gocp (the QCD analogue of € is set equal to one by
convention — it is essentially absorbed into the definition of ggcp). Just as in QED, the
exchanged gluon can produce a ¢q pair if |s| is large enough:

=

But now in QCD there is a second process which is allowed — the exchanged gluon
can also produce a gluon—anti-gluon pair like this

o

The combination



should be added as quantum mechanical amplitudes. The numerical value requires a
calculation that is too advanced for this course and we shall just quote the result as being

proportional to
Q
—EEEY (s)
s

where
2N — 33)04QCD

6m

where N is the number of quarks with 2mc? < \/H 59 The —33 comes from the gluon
diagram above.

Again an infinite series of quark and gluon diagrams, like those above, can be con-
nected together to give an s-dependent strong coupling constant

aQCD@)::aQCD - yr(g) — AQCD 1 '
s s 1;) () s (1—Y(s))

The net result is that the QCD fine structure constant agcp(s) depends on |s| and is

Y(s) = ( In(|s|/4m?c?)

aQCD
1+ B322Nagen 1y (|| Jam?2c2)

aqgep(s) =

The crucial point about this formula is that, provided N < 33/2, agcp(s) decreases as
|s| increases, i.e. QCD becomes weaker at higher energies and shorter distances. In the
language of magnetism, the quarks give a diamagnetic contribution to the magnetic perme-
ability of the vacuum (the —2N in the formula above) while the gluons give a paramagnetic
contribution (the +33 in the formula above). As long as there are not too many quarks,
the gluons win and the vacuum behaves more and more like a paramagnetic as the quarks
get further away from one another.

At very short distances quarks behave as though they are free particles as far as QCD
is concerned — this phenomenon is called asymptotic freedom. By the same token the
colour force gets stronger as we recede from a quark. Suppose we try to pull a quark out
of a proton, for example. As it recedes from the other two quarks the colour force between
them gets stronger and it gets more and more difficult to pull the quark further out. This
is believed to be the reason why quarks are confined inside hadrons, though the details of
the process are still poorly understood.

The Noble prize for physics was awarded in 2004 to the three physicists who first
published the calculations proving asymptotic freedom.

60 por simplicity the formula is written assuming all the quark masses are the same, but in fact N changes every

time s is increased to the point where a new type of quark can contribute.
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5. Weak Interactions

Weak interactions occur between all types of leptons and quarks, indeed they are the
only interactions in which neutrinos participate. They are mediated by W and Z-bosons,
in a manner very similar to the way that photons mediate the electromagnetic force and
gluons mediate the colour force. A crucial difference however is that W and Z-bosons are
massive my = 80.4 GeV/c?, mz = 91.2 GeV/c?, so the weak force is very short range,
and also W-bosons carry electric charge +1 (there are two kinds of W-bosons W and
W~ which are anti-particles of one another, the Z-boson is electrically neutral and this
often exhibited explicitly as Z°).

Interactions among particles can be classified as electromagnetic, weak or strong.

An example of a purely electromagnetic interaction is the scattering of an electron off
a quark (inside a proton, for example) by exchanging a photon,

e q

e q
Fig. 3: Electron-quark scattering via photon exchange.
But electrons and quarks can also scatter off one another by exchanging a W-boson,
a purely weak interaction,

Ve d

— u
Fig. 4: Electron-quark scattering em'a W -exchange.
This is called a charged current interaction because the W™ that is exchanged can be
thought of as carrying a small electric current with it, due to its electric charge.

Neutrinos however do not interact with photons, since they have no electric charge,
but they do interact with W and Z-bosons. For example an electron and a neutrino can
exchange a Z°:

ZO

e Ve

Fig. 5: Electron-neutrino scattering via Z°-exchange.
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This is called a neutral current interaction, to distinguish it from the charged current
interaction carried by the W-boson above.

More complicated processes can involve two or more different kinds of interactions.
For example the decay A — p+ 7~ of a A-baryon (usd) to a proton (uud) and a 7~ (du)
necessarily involves both the weak and the strong interactions:

d d
— -
U

S

w1

u

u d
Fig. 6: A-decay. A weak decay, proceeding via W-exchange, but with strong interactions
dictating the final decay products. Note that, by absorbing a W'-boson, an s-quark turns

into a u-quark in this decay — a phenomenon known as quark mizing. (In this diagram
the particles enter from the left and exit on the right.)

Weak interactions differ from electromagnetic and colour interactions in a number of
ways. They occur between all types of matter particles, both leptons and quarks. They are
classified as leptonic, semi-leptonic and non-leptonic, depending on whether or not they
involve leptons, leptons and quarks or quarks only. For example, in figures 5 and 6 above
we have

e +ve—e +1, (leptonic)
A—-p+7n~ (s > u+u-+d) (non-leptonic)

while figure 4 could represent what happens if a high energy electron penetrates a proton
and turns one of the u-quarks into a d-quark,

pt+e —n+v. (e7 +u—v.+d) (semi-leptonic)
A related process is $-decay, when a neutron decays to a proton and emits an electron

(B-particle),
n—pte +0 (d—=u+e +0e) (semi-leptonic)

At the quark level a d-quark in the neutron emits a W~ and turns into a u-quark, like this
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d
An example of a purely leptonic decay is u= — e~ + v, + vy,

e
Vi Ve

I
In terms of the above classification these decays are:

P —=e + .+, (leptonic)
n—pt+e + (semi-leptonic)
A—=p+rm— (non-leptonic).

Weak interactions violate parity. This originates in the fact that W-bosons do not
couple to left-handed and right-handed fermions in the same way. Right-handed fermions
do not feel the weak force at alll Only left-handed fermions couple to the W and Z-bosons.5!

There is a potential associated with the weak interactions which, because the W and
Z-bosons are massive, takes the same form as the Yukawa potential discussed earlier for
pion

U(r) = ﬁe_’w
 dnr

where k = % is the inverse Compton wavenumber of the exchanged particle (the Compton

wavelength is A = % where M is either the W or the Z mass) and gy is a weak ‘charge’

analogous to the electric charge in the Coulomb potential, 47re:Or. The Fourier transform
of the weak potential is

2
r7 ik.x g
U(k) = / U(r)e**d3y = kaz (52)

61 Strictly speaking it is not helicity that dictates the type of particle that couples to W and Z-bosons, but a related
property called chirality. The technical definition of chirality is beyond the scope of these lectures, suffice it to say that
chirality, unlike helicity, is always Lorentz invariant. For massless particles with positive energy helicity and chirality

are the same thing.
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where Kk = QT” Using this potential we can calculate the cross-sections for some weak

processes. Consider for example inverse [-decay

n+ve —>p+e

which can happen if a high energy neutrino strikes a neutron, %2

e p

w+

Ve n
Inside the neutron the WT-boson is absorbed by a d-quark, turning it into a u-quark

e~ U d u

wt

Ve d d u

Let the 4-momenta of the incoming neutron and neutrino be P, and P, respectively
and for the outgoing proton and electron let the 4-momenta be P, and P, respectively.
Conservation of 4-momentum demands that the total 4-momentum P remains unchanged

during the collision
P=pP, +P, =P, +P..

In the centre of mass frame the total 4-momentum is
P =(E/c,0)
where F is the total energy,
EFE=F,+FE,=FE,+E..

Let @ represent the 4-momentum of the exchanged W particle, then conservation of
4-momentum at each vertex in the diagram above for n + v, — p + e~ requires that

P,+Q=P, and P,=Q+P,

62 The time reversed process, p+e~ — n-+ve, happens at the end of a massive star’s life. When a star runs out
of nuclear fuel it can no longer sustain itself against gravitational collapse and it contracts, forcing the protons and
electrons into a smaller and smaller volume until they fuse into neutrons, releasing a huge number of neutrinos in a

massive nuclear explosion — a supernova.

102



If we decompose the individual 4-momenta into their time-like and space-like components
in the centre of mass frame

P, = (En/cv B)? P, = (E,,/C, _B)v P, = (Ee/cv _B/)7 Ep = (Ep/cv Bl)?

and

Q=(Q"Q = ((B - E)/e.P' = P) = ((B, — E)je,~P+ P).
If the neutrino is very energetic, £, >> m.c?, then we can ignore m, and so, assuming
also that the neutrino is massless,

~V'~V

P,.P,=-m?c*~0 = P? .=

e~ e e

P=FE?/ = P=E,/c
' P =FE?/c = P' =FE,/c (53)

So

)
E E, 4F, F,
c? 2

QQ=-(Q")+Q.Q=—(E, — E)*/c* + (P’ - P).(P' - P)
(

- 2<EVEe/c2 - B-B’) =2 1 cosf) = sin?(0/2),

where the 0 is the angle between the incoming neutron and the outgoing proton, P.P’' =
PP’ cosb,

e (E./c,—P)

‘\ e
v, (E,/c,— P) . n(E,/.,P)
H H

|
\

0~
p (E /cP")

Note that
E E,

c?

=Q.Q= (1 —cosf) >0

is space-like. The electron and proton energies can be expressed in terms of the neutrino
and neutron energies as follows: since

E.=FE-E, = E!=E’-2FE,+E;

and
Eg/c2 —P?=m2c® = FP?*=FE’= Eg - mﬁc‘l,

using (53), from which

E? -l-m?)c4 E? —m2ct

P= T 9F °F



Using this in ¢% above gives

E,(E? —m2ch)
2 _ v P
q = o2 (1 —cosb).

In fact we can even eliminate E and express everything in terms of the incoming neutrino
energy and known constants using

E2+m2c*+ E,

(we leave the proof of this as an exercise in relativistic kinematics).
Ignoring spin the cross-section can now be calculated using My; = U(k), with U(k)

given in (52) and ¢ = hk,
do 1 | Myi|*p? _ i i
dQ  4m2rt vpv; 4m2(M3E,c® + %)% vpu;

Including spin is a little subtle because of the way the W-boson interacts with quarks
and leptons, we need to know something about the amplitude M}lfh“;h”hd where he, hy,
h, and hg are the helicities of the electron, the u-quark, the neutrino and the d-quark
respectively. We will not go into too many details here, but the final answer is that
spin effects reduce the cross-section by a factor of 2. Only left-handed neutrinos have
ever been observed directly in any experiment so far and this implies that the W-boson
only couples to left-handed neutrinos: even if right-handed neutrinos exist they are never
produced by weak interactions. The incoming neutrino beam is therefore 100% polarised,
it is purely left-handed, and we therefore do not average over the incoming helicity states
of the neutrino. The incoming d-quark can be either left or right-handed but the parity
violation of the weak interactions has been established to be such that the W-boson only
couples to left-handed quarks,®® so M hfh“;h”hd is zero if the incoming quark is right-
handed. Averaging over the incoming d-quark helicity (or, equivalently, averaging over
the incoming neutron helicities) therefore introduces a factor of a half — basically the
cross-section is reduced by a factor of 2 because the W-boson only interacts with half of
the incoming neutrons. The net result is that spin effects reduce the cross-section by a
factor of 2 giving

do _ 9iy Py
dQ — 8m2(M3Z,c? + ¢?)2vpv;

In this expression py is the relativistic 3-momentum of one of the outgoing particles, in
the centre of mass frame, and ¢ is the momentum transferred between the two colliding
particles,

E? —m2ct FE
o _ P 2 _ vDf
pf =P —Ee/0—72EC and q° =2 .

(1 —cos®).

63 Strictly speaking this is only true when the particles are relativistic, but a more detailed analysis yields the same

factor of one-half.
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v; is the relative speed of the two initial state incoming particles and vy is the relative
speed of the two outgoing final state particles.

To understand the implications of this cross-section consider some limiting cases:
i) mec? << E, << myc?. This implies that n and p are slow, so we can set E, ~ m,c
and v, /c &~ 0 together with E, ~ m,c? and v,/c = 0, and that the electron is relativistic
with ve & ¢ = vy = v, + v & ¢ (remember vy is the relative speed of the outgoing
particles) together with v, = ¢ = v; = v, + v, & ¢. Also

2

2 4 2 2 2 4

E? — mac” ~ m2ct + 2F,m,c? — my,c” = (my, — my) (M, + mp)c4 +2E,m,c? ~ 2E,m,,c*

since B, >> mqc? =~ (1/2)(m,, —my,)c*. So

E,(E* —m2c*) 2E2m,, 2 2F2

P = (1 —cosf) ~ CNCESRE (1 —cosh) ~ —~(1 — cosh) << MZ,c?

Ec?

c2

E?—mict  2E,m,c? _ 2E,m,c* B,

2Ec  2(En+E))c  2(mn®+E,)e ¢

Substituting these into the differential cross-section gives

do 9w EJ1 _ gwkE)
dQ 87r2M{}Vc4 c? 2 87r2M{}VCS

which is independent of €, so the total cross-section
on IWED
2m M3, c®

grows quadratically with energy, for E, << m,,c?.

it) B, >> mync?. In this extreme relativistic limit we can ignore the proton and neutron
masses and set m, ~ 0, m, =0, E, ~ £, ~ E/2, E, ~ E. = E/2, v; =~ vy ~ 2c. This
gives

E E, ,  2E?
T vt q %6—2(1—C089>
i 2 2
do G 1 E, - gy B2 1
dQ 7 82 (MZ,2+¢2)2 \ ¢ ) 42 3272 | M2,c* + 2E2(1 — cos )

which goes like ~ 1/E? for E, >> Myyc? and 6 is not too small.
The total cross-section is now

d Td
az/%d(l:%/o o sin 66
4 E2 ™ 1 2 4 E2 1
~ W / _ sin fd = —IW — .
16w Jo | Myct+2E2(1 — cosb) 8T My, ct \ My, c* + AE?
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If m,c? << B, << Myc? (which means E, is somewhere in the region of 10 GeV)
the denominator is independent of F,, to a good approximation,

4 2
o~ gWEl/
8T ML 3

which again grows quadratically, but with a different pre-factor to that of case 7). Experi-
mentally
o(E, =10 GeV) ~ 1071 m? = 1072 bn = 1 pb,

where 1 barn = 10728 m?2. This is a small cross-section: compare it, for example, with the
typical cross-section for e"et — p~uT at s = ¢?c? = (10 GeV)? of around 8 x 10738 m? =
8 x 10719 bn = 0.8 nb, as calculated earlier in (50). This is why the weak interactions are
called “weak”. But using the experimental value for the W-mass, My, = 80 GeV/c?, the
weak analogue of the fine structure constant at £, ~ 10 GeV, is

g 1

aw = dmhe 30

which is significantly greater than the electromagnetic fine structure constant a = #2% ~
ﬁ. The weak force is not intrinsically weak, in absolute terms it is in fact stronger than
the electromagnetic force, it only appears to be weak because the W and Z-bosons are so

massive.

Kaon decay and CP violation

We have already come across an example of a weak decay in the S-decay of the neutron
n—pt+te 4+

and charged pions also decay by weak interactions
at — ,u+ + vy
(O VI o 7P

Kaons decay by weak interactions too. The physics of kaon decay is a fascinating sub-
ject, exhibiting some rather subtle quantum effects. Kaons are hadronic particles and are
produced by strong interactions, but they have strangeness S = +1 and decay mostly to
pions, violating conservation of strangeness, AS = +1, so they can only decay by weak
interactions. Kaons are part of the pion octet, J© = 07, and so are eigenstates of parity
with P = —1. In particular K° and K° are neutral particles and charge conjugation C
sends particles to anti-particles, so it sends K° to K° and vice versa. We can choose the
phases of K° and K° so that

CP|K" >= |K° > and  CP|K° >=|K°> .
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Although |K® > and |K® > are not themselves eigenstates of CP the linear combinations

1 _

|Kg > = \ﬁﬂKO >+ K9 >), CP = +1
1 _

K >:= —(|K° > —|K" >), CP=-1

V2

are, and weak interactions conserve the combination CP although they do not conserve C
and P separately.

|K? > and |K" > are defined by their mode of production (e.g. 7= +p — K° + A)
while |[Kg > and |K1, > are defined by their mode of decay:

070 31% ~11
KS—>{W+W_ jord F=00x10"" s
nteFu(v.) 39%
ruFv,(v,) 27%
707070 21%
a0 13%.

K — 7=52x10"%s

The lifetime of the Kg is 7 = 9.0 x 10~!! s while that of the K is 77, = 5.2 x 1078 s
and this is the reason for the notation Kg and K: Kg (K-short) has a much shorter
life-time than K (K-long).

These decays are all weak decays, but they can be further classified by the decay
products:

K; — mev,
K — muy,

Ks—>27r

Hadronic decays { K, — 37

Semi-leptonic decays {

Now look at the CP content of some the final states in kaon decay.

i) 7°7°, 777 ~: kaons and pions have J¥ = 0. If the initial and final states both have
intrinsic spin zero then conservation of angular momentum dictates that the pions are
produced with orbital angular momentum zero, [ = 0 i.e. s-wave. Pions are bosons so the
final state wave-function should be symmetric under interchange of the two pions — this
is true both for 7979, where the final state bosons are identical, and for 7+ 7, where the

7T and the 7~ are particle anti-particles. Now
+ - - +
c(<”—-”—>) - (<”—.L>) =

PC(&.”—;):P<<”—_o”—+>>:<<“—+o£>)7772r:<<”—+og>

so PC|rtn~ >= +|7t7~ > and the two pion final state has CP = +1, the same as Kg.
In terms of the quark model the K° component of the Kg — 77~ decay looks like this,
reading from left to right,

5 _ U
- 107 -
- é o

d
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where the dots denote the hadronisation process.

i) 07070 and 77~ 7%: the argument here requires an intermediate step. Denote the
orbital angular momentum of two of the three pions (either 797° or 777 ~) about their
centre of mass by Lis = l1ohi. Let the angular momentum of the third pion (7%) about
the centre of mass of the first two be L3 = I3h. Then, by the rules of quantum mechanical
angular momentum addition, the total angular momentum must be given by one of L/h =
lig + 13, lio+ 13— 1,110+ 13— 2, -, |112 — l3| Since the initial total angular momentum is
L = 0 conservation of angular momentum requires that the final angular momentum must

also be L = 0, and this is only possible if [15 = l3. The parity of the final state is then
P = (1) (1)Y= -1,

since l15 = l3 and the intrinsic parity of the pion is P, = —1.
The 7° is even under charge conjugation C,o = +1 so
C|r°n%7% >= (+1)3|7°7%7° >= |7%7%7° >,
hence
CP|r°7%7° >= —|7%797° >
and the 77970 final state has CP = —1.
As in i) above CP|nTn~ >= +|nt7n~ >. Also CP|r? >= —|7% > 70 since the 7° has

C = +1 and P = —1, also P gives a factor of (—1)!, due to orbital angular momentum
between the 777~ pair and the 7°, so

CPlrTn 7% >= —(-1)8|ntn 70 > .

However the decay is predominantly to I3 = 0, because higher angular momentum requires
more energy and the mass difference between the kaon and three pions is only 83 MeV/c?,
in relative terms 83 MeV /Mpc? = 0.17, and there is very little energy available to excite
any non-zero orbital angular momentum. I3 > 0 is highly suppressed and CP = —1 to a
high level of accuracy.

In either case the three pion final state is CP = —1.

Now Ky, has CP = —1, Kg has CP = +1 and these particles decay via the weak
interaction, which conserves CP, so we expect that

Kg — 27 and Ky — 3,

which is indeed the pattern in the decay modes quoted above. However experiments on
very large numbers of K decays show that

o(Kyp — 2m)
o(K| — anything)

=(2.1240.09) x 1072 > 0
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which is small but non-zero. The fact that this is non-zero implies that CP is being
violated in kaon decays. The CPT theorem would then force us to conclude that T is also
violated — the fundamental laws of nature are not symmetric under time reversal! CP
violation was first observed in kaon decay in 1964, but direct experimental evidence for
T violation was not found until 1998, though the CPT theorem led physicists to believe,
even before it was seen, that it had to be there. CP-violation has also been observed
recently in B-decays, in 2001. and in D-meson decays in 2011.

CP violation, though a tiny effect, is crucial to our existence because without it
there would be no matter in the Universe! Huge numbers of electrons and positrons (and
quarks and anti-quarks) were produced in the Big Bang 13.7 billion years. As the Universe
expanded and cooled most of these annihilated with each other to produce photons but
there was a tiny excess of electrons and quarks over positrons and anti-quarks which was
left over, and this tiny excess accounts for all the Hydrogen and other elements that we
see in stars today. There must have been CP violating process in the early Universe for
this excess to have been produced. It turns out that the CP violation in the Kaon system
is not large enough to account for all the matter in the present day Universe, there must
be some other source of CP-violation that is not yet understood!

Strangeness Oscillation and Kaon Regeneration

Kg and K, have different lifetimes and decay modes, unlike K° and K they are not
particle and anti-particles of one another and their masses do not have to be equal. Indeed
a tiny mass difference can be detected via a subtle effect known as kaon regeneration.
Because the lifetimes are different relativistic K’s and Kg’s will travel different distances,
on average, before decaying,

76 =9x 107" 5 = cts =2.7x 1072 m=2.7 em

TL:5><1O_88 = ctr, = 15 m.

The actual distance travelled will be increased by the Lorentz ~y-factor, due to time dilation,
but this cancels in the ratio and we expect Ky, to travel about 500 times further than Kg.

Assuming that the Kg and K wave-functions are energy eigenstates (which is rea-
sonable because they have definite lifetimes) in the kaon rest-frame we can write

N .
Ks(t) > = e (FHms)UM pee0) >

'r

Kp(t) > = e (FHme)m g ) 5,

where the complex phases are due to the usual Schrédinger time evolution in quantum
mechanics ¢ (t) = e"*Ht/74)(0), with H = mc? the energy in the particle’s rest frame, and
the exponential decay represents the fact that the particles are unstable and decay to other
things, so the amplitude of their wave-functions decreases exponentially with time.
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Now suppose we produce a K° by a strong interaction process at time ¢ = 0, %4

$(0) =|K° >= % (1Ks(0) > +|KL(0) >)
= (1) :% (e_(FTS“mSCZ)t/h\KS(O) > +e_(FTL+imL‘32)t/h\KL(O) >> .

Choosing {|Kg(0) >, |K1(0) >} to be an orthonormal basis, in particular < Kg(0)|K1(0) >=
0, then after a time ¢ the quantum mechanical amplitude for finding a K° in (t) is

2

_ %e—imLc%/h (e_(FTS'HAmCZ)t/h + e—g—é’t)

W (0)(t) = 1 (e_(FTS-I-imsa?)t/h i e_(FTL+imch)t/h)

where Am = mg — my. The probability is

1 r r r
[ (0))(t)]? = Z‘ e~ 7t cos(AmcPt/h) + e Tt —je ot sin(Amc*t/h)|?

1 2
_ Z {(e_l;_gt COS(Amczt/h) + e—l;—gt) + e—f‘st/h Sinz(Amczt/h>}
_ % {e—Fst/h + e Tet/h 4 9= (Ts+I'L)t/2h cos(Acht/h)} .

Repeating the calculation for fo, the quantum mechanical amplitude for finding a
K’ >= L(|Ks(0) > —[KL(0) >) in (t) after a time ¢ is

1 r r r
Z‘ e~ 7t cos(AmcPt/h) — e Tt — jemn ! sin(Amc*t/h)|?

= % {e_rst/h + e Tet/h _ 9o~ (Ts+TL)t/2h cos(Acht/h)} .

This calculation has the surprising implication that, if we create a beam of pure K°’s
(S = +1) then after a time it becomes a mixture of K° and K with both S = +1 and
S = —1, that is some of the K°’s turn into their anti-particles K’s before they decay. An

. —0
experimental graph of the number of K»’s (upper curve) and the number of K ’s (lower
curve), in time units of 7g, is shown on the next page.

What is measured here is the number of K%’s and K ’s. A beam which is initially
pure K9 eventually becomes pure K, as all the Kg decay. If the beam then hits a target,
such as a slab of material containing protons and neutrons, strong interactions will pick

64 It is relatively easy to produce Kaons in strong reactions like p+7~— K°+A or n+7°— K°4A, remember the
A is a baryon with S=—1. It is not so easy to produce KO0 using protons or neutrons as it would have to be accompanied

by a baryon with strangeness S=+1 and there is no feasible candidate.
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out the S = +1 (K°) and S = —1 (FO) components of the beam. An initially pure K°

. . -0
beam can produce S = —1 particles in a target a few metres away from the source. K
are detected via A-production in reactions like

Fo—i-p—)/\—i-ﬂ—i—.

From strangeness oscillation experiments like this we deduce the tiny Kp-Kg mass
difference of
Am =3.5x 107% eV/c?.

Oscillations have also recently (2006) been observed in the B? — FS system. Remember
the quark content of the BY meson is sb, so ES is b5 and an oscillation changes both S and
B quantum numbers (see http://www.fnal.gov/pub/presspass/press_releases/CDF_04-11-

06.html). Charm oscillations in the D? — D’ system were first observed at CERN in
November 2011 (http://cerncourier.com/cws/article/cern/48323).
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C P-violation in neutral B-mesons

C'P violation has also been seen in the BO-B" system, first observed in 2009. Although
it is a much larger effect there than in kaons, of order 30% compared to 0.1%, it was not
observed till more than 50 years after its discovery in the K 0_R° system, because B-mesons
are harder to produce and to work on. We shall not enter into the details but show here
a graph of the time difference between BY and B’ decaying into C'P-even and C'P-odd
states (note the timescale, 1 ps (picosecond) is 10712 s, as compared to ~ 1078 s for kaons
— this is one of the reasons that experiments on neutral B-mesons are harder than for
kaons). The C'P violation here is 30% (raw symmetry 0.3 in the figure).
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Higgs bosons

The standard model of particle physics consists of the fermions in (14) together with
the force particles: the photon, the W+ and Z° bosons and eight gluons, but there is one
other piece that we have not yet described. There is one other particle which is needed
to understand a fundamental difference between photons and gluons on the one hand and
W+ and Z° bosons in the other: namely photons and gluons are massless while W+ and
Z° bosons are massive. This particle goes by the name of the Higgs boson.®® Its existence
was predicted in 1964 and it was finally discovered 48 years later in 2012, in high energy
proton-proton at the Large Hadron Collider at CERN.

It was first found by its decay into two photons, when a quark in each incoming proton
emits a gluon and the two gluons form a ¢-t quark pair which immediately decay to form
a Higgs boson. The Higgs does not live long enough to be detected directly, rather it
subsequently decays into another ¢-f pair which then annihilate into two photons whose
combined energy give the Higgs mass of 125 MeV/c? — the Higgs particle itself is not
seen directly, it is the photons that are detected, but a resonance at 125 MeV/c? is a solid
signal of a particle at that energy,

1 q

Below is an image of an actual Higgs decay, from the CMS detector at the LHC. The

red tracks are a reconstruction of the photon trajectories, all the other stuff is a jungle of
lower energy QCD bi-products.

65 Named after Peter Higgs at the University of Edinburgh in Scotland who first proposed that such a particle might

exist and described a mechanism through which it could make force particles massive.
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6. Neutrino Masses and Oscillations

Direct measurements have never been able to detect a mass for neutrinos, to date they
have only produced upper bounds on possible neutrino masses

m,, <3 eV/c? =~ 6 x 107%m,, my, <0.2 MeV/c?, m,_ <18 MeV/c?.

There is also an indirect constraint coming from cosmology — the Universe is bathed
in a thermal background of photons (the microwave background) at a temperature of
2.7K, corresponding to a few hundred photons per cubic centimetre. The Big Bang model
predicts that there should be a similar background of neutrinos, but if neutrinos have mass
this would contribute significantly to the energy density of the Universe and slow up the
cosmological expansion, because of the extra gravitational attraction caused by neutrino
mass. Current cosmological observations indicate that, if neutrinos do have a mass then
the total mass of all three types must be less than Z§:1 m,, <0.7 eV/c2.

However, over the last 30 years, there has been mounting indirect evidence that neu-
trinos do have a non-zero, but very small, mass and in the last five years the evidence for
this has become very strong. If neutrinos have a mass then a number of things that have
been said previously must be qualified.

i) Positive helicity neutrinos have never been directly observed, only negative helicity
neutrinos have been directly detected in weak interaction processes, but if neutrinos have
a mass positive helicity neutrinos must exist. To see this suppose that a negative helicity
neutrino is moving in the positive x-direction, with helicity h = —1 so the spin is in the
negative x-direction. If the neutrino has a mass then it must necessarily be travelling at
less than the speed of light so we can Lorentz boost to an inertial reference frame moving
in the positive z-direction at a speed greater than that of the neutrino (but still less than
the the speed of light relative to the first frame, of course). In this new frame the neutrino
is now moving in the negative x-direction, but its spin has not changed so its helicity is
now h = +1 i.e. we can turn a negative helicity massive particle into a positive helicity
particle just by a Lorentz boost.

S
- Boost -

> 9
Left—handed Right—handed

This cannot be done for truly massless particles because they must travel at the speed
of light and we can never overtake such particles. So if neutrinos have a mass, right-handed
neutrinos must exist even thought they have never been directly detected.

The fact that right-handed neutrinos have never been seen directly means that, if they
exist, then they are not produced in weak interactions, which in turn means that they do
not participate in the weak force, that is they carry no ‘weak’ charge. In this regard
they are the same as other fermions — only left-handed fermions see the weak force, right
handed fermions do not (see discussion on page 101).

A

i1) If neutrinos have mass it is possible for different generations to mix as they evolve in time
giving rise to neutrino oscillations. This would mean that the individual lepton numbers
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L., L, and L, are not absolutely conserved, though experimentally they do appear to be
conserved by weak interactions. If individual lepton number conservation is violated, the
possibility still remains that the total lepton number L7 = L.+ L, + L is conserved, even
allowing for neutrino oscillations.

The mechanism for neutrino oscillations is similar in principle, but different in detail,
to that of kaon regeneration in that particles produced by specific interactions, weak in-
teractions in this case, are not necessarily mass, or equivalently energy, eigenstates and so
can mix under time evolution. To illustrate the process of neutrino oscillations consider
just two generations for simplicity, for example the electron and muon neutrinos. Write a
neutrino quantum state as a linear combination of the two flavours of neutrino

v >= alve > +5|v, >
where o and 8 are complex numbers. |v, > and |v, > represent the electron and muon

neutrinos that are produced in weak interactions, such as in the decay of the positive pion
for example

N T M

L>e++ye+ﬂu.

Y

or the neutrino produced in proton-proton collisions
p+p — p+ntet+u (54)

(the latter is the main source of neutrinos coming from the Sun). A general neutrino state
lv > is a complex vector in a 2-dimensional Hilbert space and we can chose |v, > and
lv,, > as an orthonormal basis, < v.|v, >= 0. Since L. and L, are conserved by weak
interactions the electron and muon neutrinos cannot mix at the time of creation — it is
the subsequent time evolution that allows them to mix. |v. > and |v, > are called weak
ergenstates. The important point is that mass, being a physical observable, corresponds
to an Hermitian operator on the Hilbert space but it does not have to be diagonal in the
(|ve >,|v, >) basis. Represent the mass by a 2 x 2 Hermitian matrix M and denote its
(real) eigenvalues by m; and mo with corresponding orthogonal eigenvectors |v; > and
|I/2 > with < I/Z'|I/j >= 5ij7

M|V1 > = m1|V1 >

M|V2 > = m2|V2 >

lv1 > and |v, > are called mass eigenstates, but it is |v, > and |v, > that are produced
in weak interactions.
Now the basis vectors (|v. >, |y, >) can be written in terms of the alternative basis
(|V1 >, |l/2 >)
|ve > = cosO|vy > +sinf|vy >

lv, > = —sinflv; > +cosb|vy >
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(we can always choose the complex phases of |v. >, |v, >, |v1 > and |v2 > so that the
co-efficients on the right-hand side of this relation are real). In matrix notation this reads

|ve >\ [ cosbia sinfis | >
lv, > )  \ —sinbia cosbis lvg > )

Suppose weak eigenstates |v.(0) > and/or |v,(0) > with energy E are produced by
some weak interaction process at time t = 0. The quantum states satisfy a wave-like
equation®® and we take them to be plane waves of the form

i (t) > = ' Prx=E0/R L, (0) >

‘Vg(t) S = ei(Pz.X—Et)/FL‘V2<O) >,
where P; are and relativistic 3-momentum respectively of |v; >, with ¢ = 1,2. It is the
mass eigenstates, |1 > and |vo >, that are eigenstates of energy and momentum, not |v, >
or |v, >.

Suppose and electron neutrino, v., is produced at t = 0, for example in an electron-
proton collision e~ + p = v, + n. Then the wave-function is initially

¥(0) = |ve >= cos b2 |v1(0) > +sin b1 |v2(0) >

and evolves to

P (t) = cosBi2|vr(t) > +sinbia|va(t) >
= c0s 012 € PrX"ED/P1(0) > 4 sin 09 P2 X" EV/P 1y (0) >
at time ¢.
We can always assume that the motion is in the z-direction, P;.x = P;z. The neu-

trinos, being almost massless, will be highly relativistic and move almost at the speed of
light, so they will travel a distance z = L in a time ¢t = L /¢, and hence

PZ'.X — Bt = (Pz — %) L.

Of course P; can be expressed in terms of the energy,

E? 1
P; PZ:PiQZ__mchZ_(EQ—m264) = Py = —\/E?2 —m?2c*
2 ? 7 A
c C c
E
So, for m; << ,
1
2.4\ 2 2.4
p-= 1— Dl ~E -2,
c E c 2F
66 The relevant equation, for spin—% fermions, is called the Dirac equation — it is a relativistic version of the

Schrodinger equation.
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and

Thus we can write

Y(t) = cos b2 el |1(0) > +e P2 |2(0) >,

2.3
2L
where ¢; = S
We can now calculate the quantum mechanical amplitude for finding a muon neutrino,
v, = —sinfio vy + cos b2 v, at time ¢ in an initially pure beam of electron neutrinos,

M,,,, =< —sinf12v1(0) + cos 013 12(0)| cos 012 e~ 1y, (0) + sin 612 e "2 v2(0) >

= — 8in By cos O3 € 91 + cos B9 sin O15 € 2 = — sin By cos 1o (e_“’51 + e‘wz).

From which follows the probability

2 . .
= sin? 615 cos? 01 (1 +1—eidr1=¢2) _ e_l(d’l_d’?))

= 2sin® 15 cos® b1 (1 — cos(¢1 — ¢2)) = sin®(26;2) sin® (@) '

Py, v, = sin? 015 cos? 015 ’—e_“m + e M2

Now

E E

AL <m_% m_%) L (mf—m3) L (Am?) (55)

h1- 0= “on E 20 E
where Am? = m? — m3.

Suppose therefore that we initially have a beam of purely electron neutrinos with
energy F, produced for example by nuclear reactions in the core of the Sun, then after
travelling a distance L some of the electron neutrinos will have turned into muon neutrinos
with a probability

Am?2ccL
Py, = sin2(2912)sin2 ( me )

4FEh

Similarly the probability of an electron neutrino being found a distance L in an initially
pure beam of electron neutrinos is

Am?c3L
P, ., =1- sin2(2912) sin? < me ) ,

4FEh

since
Pye—n/u + PIIE—H/E = 17

unlike kaon oscillations the neutrinos are not actually decaying, they are just oscillating,
and there is no leakage of probability into creation of other particles.
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For neutrinos of a given energy the oscillation length, L,s., is defined as the distance
over which P(v, — v,; L) achieves its first maximum, i.e at

2rEh

Losc = Am2c3 .

Such oscillations are observed in attempts to detect electron neutrinos produced by
nuclear reactions in the Sun. An astrophysical analysis of reactions like (54) in the Sun
leads on to expect a flux of about 10'® m?s~! electron neutrinos at the Earth’s surface.
The neutrinos are produced in the core of the Sun with energy F and then travel a distance
of L = 1.5 x 108 m to Earth, in about eight and a half minutes. The number of neutrinos
detected is about half of that expected and this can be interpreted as being due to electron
neutrinos oscillating to muon neutrinos with

1 . Am?c3L
PVE—H/“ = 5 Sln2<2912) {1 — COS (W) } .

Because the Earth-Sun distance is so large the cosine is rapidly oscillating as a function
of L and it averages to zero with small variations in L, such as the Earth’s rotation
(AL = 12,000 km in 12 hours) and the eccentricity of its orbit (AL = 8 x 10% km in 6
months), so

1.
Py, = 3 sin?(2613)

and the observation that P, ., ~ 1 /2 implies that 015 ~ 7/4, which is a large mixing
angle. A detailed analysis of the experiments reveals that

Am? =754+02x 1077 eV?/c!

and
010 = 32.4°+£0.8° = sin?(20;2) ~ 0.82. (56)

Another place where neutrinos appear to oscillate is in measurements of fluxes coming
from cosmic rays. Cosmic rays are highly energetic particles produced in astrophysical
sources, often from outside the solar system. When an energetic charged particle, such as
a proton for example, slams into the Earth’s atmosphere pions are produced. There is a
continuous flux of pions raining down on the Earth’s surface from cosmic rays (indeed the
pion was first detected in these cosmic rays). On their journey from the upper atmosphere
to the Earth’s surface some of these pions decay to muons (or anti-muons), producing a
muon neutrino, and the muon subsequently decays to an electron (or a positron), producing
an electron neutrino in processes like this

AN Tl %
L>e++ue—|—ﬂu

for example. If both muon neutrinos and anti-neutrinos are detected at the Earth’s surface,
without distinguishing which is which, one expects to find twice as many muon neutrinos
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as electron neutrinos because each decaying pion produces two muon neutrinos for every
electron neutrino. Experiments indicate that the total number of muon neutrinos and
electron neutrinos arriving at the Earth’s surface is the same. This can be interpreted as
being due to muon neutrinos oscillating and the experiments indicate that they are not
turning into electron neutrinos but into 7-neutrinos.

These muon-tau neutrino oscillations involve a different mixing angle 653 and a differ-
ent mass difference Am? than the electron-muon neutrino oscillations observed from the
Sun. For atmospheric neutrino oscillations the experimental parameters are

Am? =2.45+0.07 x 1073 eV?/c?

and
3 = 40.4°+1.3° = sin?(20,3) ~ 0.97. (57)

A full analysis of neutrino oscillations must include three angles for rotations, R,
between three different types of neutrinos,

‘Ve > ‘Vl >
vy > =R| |ra>],
|I/7- > |V3 >

where |v. >, |v, > and |v; > are produced in weak interactions and |4 >, |2 > and |v3 >
are mass eigenstates. The angle measured in Solar neutrino experiments (56) is usually
denoted 612, as it rotates between |y > and |ve >, and the one measured in atmospheric
neutrino oscillations (57) is denoted #33. The third angle, 613 was first measured in 2011,
and was found to be smaller than the other two at 613 = 8.7° £ 0.45° giving mixing at the
level of 10%, sin® 2615 ~ 0.09. Thus the current experimental status on neutrino mixing
angles is

012 = 32.4° £ 0.8°, Oo3 = 40.4° + 1.3° 013 = 8.7° £0.45°.
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