Lorentz transformations

In relativity time and 3-dimensional space are in a sense combined into 4-dimensional
space-time. Ordinary 3-dimensional vectors become vectors in a 4-dimensional “space”,
with time as the extra dimension. Physical quantities are described relative to an inertial
reference frame with a specified inertial co-ordinate system related to a time axis and
three spatial axes. All 4-vectors can then be decomposed in this co-ordinate system into a
time-like component (the component along the chosen time-axis) and a relativistic 3-vector
(consisting of the 3 spatial components in the chosen frame). For example time, ¢, becomes
a co-ordinate in space-time, along with the usual three Cartesian co-ordinates, =, y and z,
and all 4 are combined into a space-time position vector X = (ct, z,y, z). The components
of a 4-vector are often written using indices, a,b,c,... = 0,1,2,3. For example X has
components X with the super-script © representing the time-like component, thus the
components of the 4-vector z are X" = ct, X! = z, X? = y and X3 = 2. For a massive
particle moving with speed v the energy E and the non-relativistic 3-momentum p are
combined into the 4-momentum, P = (£, P) where cP? = E = y(v)mc? is the relativistic
energy and P = v(v)mv = v(v)p is the relativistic 3-momentum.

Transformations between inertial co-ordinate systems are implemented by rotations
and/or Lorentz transformations — the latter corresponding to switching between inertial
reference frames that are moving with constant velocity relative to one another. For exam-
ple boosting® from an inertial reference frame with 4-dimensional Cartesian co-ordinates
X? to another inertial reference frame, moving with constant speed v in the z = X! di-
rection relative to the first, we are free to choose Cartesian co-ordinates X in the latter
frame such that ¢y’ = y and 2’ = z. The Lorentz transformation between (ct’, z’) and (ct, z)

in this case is v
t'=~(V) (t - C—sz)

v =y(V)(z-Vt)

where (V) = % is the Lorentz y-factor. A more succinct way of writing this is to
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A neater formula is obtained in terms of the rapidity, a(V'), defined by
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with —0co < a < oo for —1 < ¥ < 1. Then 7(1//) = cosha = 3 (e* + e ) and (V) ¥ =
sinha = 2 (eo‘ — e_o‘) so, using the X% and X notation
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An unfortunate name, as no actual acceleration is involved. Neither of the two reference frames is accelerating,

they are moving with constant velocity relative to one another
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We can choose a < 0, and hence V' < 0, to describe boosting to a reference frame moving
in the negative z-direction relative to the original frame.

Note the similarity, and the obvious differences, between equation (2) for a boost in
the z-direction and the formula describing the change in co-ordinates brought about by a
rotation about the x-axis through an angle ¢, which only affects the y and z co-ordinates
leaving ¢ and z unchanged,
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Just as for electron spin we can simplify the description of rotations by using a (necessarily
complex)? variable y4 =y £iz withy_ =7 1, so that, under a rotation,

ve  —  E
We can also simplify the description of Lorentz transformations by defining X+ = X'+ X°

so that, under a boost,
Xy — efexy.

The same transformations apply to the components of any 4-vector. For the 4-
momentum P, for example, a boost in the z-direction gives
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A particle at rest in the X¢ frame has rest energy cP? = mc?, while P! = P2 = P3 = 0.
In the boosted reference frame cPY = v(V)mec? is the relativistic energy for a particle with
rest mass m moving with speed V, while P! = —y(V)mV is the only non-zero component
of the relativistic 3-momentum in the moving frame.?

A very important aspect of Lorentz transformations is that, just like rotations, they
leave the length of a vector invariant, provided the “length” of a 4-vector is properly
defined. In relativity, just like in ordinary 3-dimensional Euclidean space, the length of a
vector is related to the dot product, with the twist that the dot product of two 4-vectors,
or of a 4-vector with itself, involves a minus sign for the time-like component, for example

XX =—(X°?+ (X)) + (X?)? + (X?)?

or, in terms of X+,
XX =X"X"+ (X)) + (X?)? + (X?)?

2 This is nothing more than a notational convenience however, the vector X is intrinsically real, unlike quantum
mechanics vector spaces which are intrinsically complex.
/

3 The minus sign is due to the convention that X% represent a frame moving in the positive z-direction relative to

X®. So, if the particle is a rest in X%, it is moving in the negative X’-direction in X a’
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is Lorentz invariant. So a photon, leaving the origin at ¢ = 0 and moving in the direction
of the x-axis for example, has ¢t = x, y = 2 =0 and

XX =-ct2+2%=0.
An electron at rest at the origin, £ = y = z = 0, must move through time, X° = ct, so
XX=-<0

and the length squared of its 4-dimensional position vector is negative, X is a time-like
vector.
Similarly for the 4-momentum

PP = (P + (P + (P2 + (PY)? = —m?¢?

has the same value in all inertial reference frames. You can check for yourself that we
get the same answer regardless of whether we use the components of P in the un-primed

frame, P?, or in the primed frame P In any frame

EQ
P.P=-—+PP=-m’c
C

where P.P = (P1)2 4 (P?)%2+(P3)? = P2 is just the ordinary dot product in 3-dimensions.
Hence we get the general formula

E? =m?ct 4 2p? (3)

relating energy to relativistic 3-momentum for a massive particle moving with speed v.
The energy is a minimum in the rest frame of the particle, i.e. a reference frame in
which it is not moving and hence has zero 3-momentum, so

E = mc°.



