MP466: Particle Physics

Brian Dolan

Fourier Transforms

You are familiar with Fourier series for a function on an interval —1T <t < T.

flt) = ;an cos (%ﬂt) + ;bn sin (nTmf) :

where the constants a,, and b, are determined using orthogonality of the trigonometric
functions for positive integers n and n’,
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In the Fourier series % is a frequency,
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and for large T the w,, are close together for successive n, approaching a continuous variable
w as T' — oo. Define -
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and the sums go over to Riemann integrals as T — oo
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It is conventional to define the cosine transform f.(w) and the sine transform fs(w)

of f(t) as .
fo(w) == /0 f(t) cos(wt)dt

fs(w) := /O b F(t) sin(wt)dt.

These integrals certainly exist if [*|f(t)|d¢ exists and is finite. The are examples of a
class of functions called integral transforms where, given a function f(t), we construct a
new function f(w) as an integral

flw)= [ 1K @0
0
where K (w,t) is called the kernel of the integral transform.
If f(—t) = f(t) is an even function then f.(w) = Fa(w) and if f(—t) = f(t) is an odd
function then f,(w) = 5b(w).

Another type of integral transform that is very useful in physics when periodic phe-
nomena are under consideration is is the Fourier transform,

f)= [ et 1)
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as we shall now show. .
Using the definition of f(w) in the right hand side of (2) gives
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is a representation of the Dirac J-function (a heuristic proof is sketched below), so
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Hence

Fw) = /_°° feetdr e f)= o /_°° Flo)e-ivtd,

To see that 5 [ e =1 i can be interpreted as an integral of the Dirac d-function
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it t # t/, because both the real and imaginary parts are just trigonometric functions which
oscillate with w and
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so the integral over all w is zero too. Next when ¢ = ¢/, ¢~ =1 g0
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S et = dw is zero if t # ¢ and diverges if t = t/: these are properties of the
Dirac d-function. We can check the normalisation by setting t' = 0 and making sure that
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for any T' > 0. Evaluating
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where © = wT and we have used the definite integral
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While this is far from a rigorous proof that
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it is certainly consistent with this interpretation.
An important Fourier transform that is used in the lecture is the 3-dimensional trans-
form of the Yukawa potential

We are Fourier transforming in three space co-ordinates x1, x2, x3 rather than time, so we
shall use wave-vectors kq, ko, k3 rather than angular frequency w. The transform that we
want to calculate is

f(k) :/ei(kla:l—l—kgmg—i—kgwg)f(r)d3x: /eik.rf(r)de

where the integral is over all space. It is simplest to use polar co-ordinates
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So we have the following important Fourier transform pairs

e~ kT ~ 4

fo === I0=57

In the limit x — 0 we get the Fourier transform of the Coulomb potential,




