
MP465: Mathematical Physics

Electrodynamics Problem Sheet

1) Starting from the Lorentz force law determine the units, in the MKSA system, of
the electric and magnetic fields and also of the electric permittivity of the vacuum, ǫ0,
and the magnetic permeability of the vacuum, µ0. Show that ǫ0µ0 has the dimensions
of (time)2/(length)2. Show that ǫ0E.E has the dimensions of energy density and that
ǫ0(E× B) has dimensions of momentum density.

2) Show that the electric field at r generated by a point charge Q at r′,

E(r) =
1

4πǫ0

r− r

|r− r|3
,

satisfy the vector equations

∇.E(r) =
1

ǫ0
δ(r− r′), ∇× E(r) = 0,

for r 6= r′.

3) A thin uniform shell of electric charge of radius R carries a total charge Q. Find
the electrostatic potential at a point r outside the shell.

4) A solid sphere of radius R contains a spherically symmetric charge density ρ(r′)
with 0 ≤ ρ′ ≤ R and total charge Q =

∫
Sphere

ρ(r′)dV ′. Find the electrostatic potential at
a point r outside the sphere in terms of Q.

5) Calculate the electric field at the point r in questions (3) and (4).

6) An infinite flat conducting sheet is grounded and a point charge Q is placed a
distance d away from the sheet. Using the method of images calculate the potential due
to this charge at a field point on the same side of the sheet as the charge itself.
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7) An infinite flat conducting sheet is grounded and bent through 90◦ along a straight
line. A charge is placed at a point a away from the 90◦ edge as shown in the figure below.

Q
a

Using the method of images calculate the potential due to this charge at a field point in
the same quadrant as the charge itself.

8) Calculate the potential and the electric field generated by a point charge Q placed
outside a grounded conducting sphere of radius R, with the charge a distance a from the
centre (a > R).

Determine the charge density σ(θ, φ) induced on the surface of the sphere and calculate
the total charge induced there.

9) A grounded, conducting sphere of radius R has a charge, Q, placed inside it, a
distance a from the centre (a < R). Using the method of images, calculate the potential
everywhere inside the sphere.

10) Check that the potential in question (9) agrees with question (6) in the limit of the
radius of the sphere becoming infinite with Q remaining a finite distance from the surface.

11) Using the results from question (9), calculate the Green function for the problem
of finding the potential inside a grounded, conducting sphere of radius R due to a charge
distribution inside the sphere

12) A grounded, conducting sphere of radius R has a uniform ring of total charge Q
and radius a < R placed inside it, centred on the centre of the sphere. Using the Green
function found in question (11) deduce the potential at any point inside the sphere on an
axis through the centre of the ring and perpendicular to it.

Note: You may find the following form for the charge distribution useful

ρ(r′) =
Q

2πa2
δ(r′ − a)δ(cos θ′).

13) Calculate the first two non-vanishing terms in the multipole expansions of the
following two charge distributions:

(i) Q at z = 3a, −Q at z = a, (x = y = 0)

(ii) Q at z = a, −Q at z = −a, (x = y = 0).
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Show that the lowest (dipole) term is the same in each case, but that the next to
lowest order terms differ.

14) Find the lowest order term in a multipole expansion of the electrostatic potential
due to the charge distribution

Q at (x′, y′, z′) = (a, a, 0) and (x′, y′, z′) = (−a,−a, 0)

−Q at (x′, y′, z′) = (a,−a, 0) and (x′, y′, z′) = (−a, a, 0).

Sketch the electric field lines arising from this potential, in the z = 0 plane.

15) Repeat question (14), but with

−Q at z = −a, 2Q at z = 0, −Q at z = +a, (x = y = 0).

16) Calculate the magnetic induction due to a circular wire of radius a, carrying a
current I at a point on the axis perpendicular to the wire, passing through it’s centre.

17) Show that the magnetic field

B = B0

{
x(a − z)x̂ − y(a + z)ŷ +

(
a2 + b −

1

2
(x2 + y2) + z2

)
ẑ,

with a, b and B0 constants, satisfies ▽.B = 0 and ▽ × B = 0 everywhere. Find the
extrema of |B|2 and identify the minima. Hence show that a magnetic dipole can be held
at the origin in stable equilibrium in this field configuration, provided b is negative and
and a is not too small.

18) Determine the state of polarisation of an electromagnetic wave which has electric

field given by the real part of E = E0e
−i(ωt−kz) where E0 = E0x̂+ Ẽ0ŷ is a constant complex

vector with
i) E0/Ẽ0 real

ii) E0/Ẽ0 = i|E0/Ẽ0|

More generally E0/Ẽ0 = eiφ|E0/Ẽ0| with 0 ≤ φ < 2π. Determine the state of polar-
isation of such a wave and sketch the shape traced out by the electric field in the plane
transverse to the direction of motion. Calculate the angle that the long axis of this shape
makes with the x-axis.
Hint: you may find it useful to write the electric field in terms of the basis e+ = x̂ + iŷ
and e− = x̂ − iŷ and show that, under a rotation through an angle θ in the x − y plane,
e± → e±iθe±.

19) Show that, in the radiation zone kr >> 1, the magnetic field B̃ = ∇× Ã arising
from the magnetic vector potential

Ã(r) = −iω
µ0

4π

eikr

r
p̃,
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with ω = ck, is

B̃ =
1

4πǫ0

k2

c

eikr

r
(n× p̃),

where n = r̂/r is the unit radial vector.
Using Maxwell’s equation ∇×B = µ0ǫ0Ė show that the electric field can be calculated

from

Ẽ =
ic

k
∇× B̃

and is equal to
Ẽ = −c ñ × B̃.

20) Show that the following field configuration is a solution of Maxwell’s equations,
where B0 is a (possibly complex) constant. Calculate the time averaged energy flux and
show that it lies purely in the z-direction,

Ey = i
ka

πc
B0 sin

(πx

a

)
eikz−iωt

Bx = −i
ka

π
B0 sin

(πx

a

)
eikz−iωt

Bz = B0 cos
(πx

a

)
eikz−iωt

(all other components zero)

.

21) Given that ▽
2 (

1
r

)
= −4πδ(3)(r), prove that Gk(r) = − 1

4π
e±ikr

r
is a Green function

for the Helmholtz operator, ▽
2

+ k2.

22) A perfectly absorbing, spherical shell surrounds a radiating dipole at its centre.
Calculate the pressure on the shell due to the radiation from the dipole.

23) Suppose a source consists of N rotating dipoles, all of the same magnitude. Com-
pare the total power radiated when they all have the same phase and when they all have
random, uncorrelated phases.

24) Using the Lorentz transformation properties of Fµν , evaluate the electric and
magnetic fields of a uniform line of charge, with charge density λ/unit length, moving in
the x-direction with constant velocity v. Add to this the field due to a static line of charge
superimposed on the first with line density −λ. Determine the total field due to both
lines in the limit of v/c << 1. Use your result to derive the Biot-Savart law. (See “The
Feynman Lectures On Physics” Vol. II, Chapter 13-6.)

25) Show that the expression

Fµ = e

3∑

ν=0

FµνUν
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reproduces, in the limit of small velocities, the Lorentz force law for the force on a particle
with charge e due to an electromagnetic field (Fµ is the four force on the particle, Uµ is
it’s four velocity and Fµν the usual electromagnetic field tensor).

26) Use the Lorentz invariants derived in the lectures to show that:
a) If E and B are perpendicular and of the same magnitude in one inertial reference

frame, they are perpendicular and of the same magnitude in all inertial reference frames.
b) If E vanishes and B does not vanish in one inertial reference frame, then there is

no inertial reference frame in which B vanishes.

27) Using the Lorentz transformation rules for Fµν derived in the lectures obtain an
expression for the transverse magnetic field components By(x) and Bz(x) due to a charged
particle moving with uniform velocity v in the x-direction in an inertial reference frame S.

28) In the lectures, the electric and magnetic fields, E′ and B′ due to an electric
charge, e, moving with uniform speed were calculated by Lorentz transforming the electric
field

E =
e

4πǫ0

r

r3

of a charge at rest at the origin, with B = 0. Using the form of E′ and B′ obtained in the
lectures show that

1

c2
|E′|2 − |B′|2 =

1

c2
|E|2 − |B|2 =

(
e

4πc ǫ0r2

)2

and
E′.B′ = E.B = 0.
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