
MP465: Electromagnetism

Brian Dolan

1. Summary of Maxwell’s Equations

From the introductory course you should be familiar with Maxwell’s equations for an
electric field, E(r, t), and a magnetic field, B(r, t), that, in general, can depend on both
position r and time t.
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∇× E+
∂B

∂t
= 0 ∇.B = 0

∇×B− 1

c2
∂E

∂t
= µ0J ∇.E =

ρ

ǫ0

∣∣∣∣∣∣∣∣∣∣∣

The differential form of Gauss’ law

∇.E =
ρ

ǫ0
(1)

states that the divergence of the electric field is proportional to the density of the electric
charge: i.e. the electric field diverges away from the point where a source of electric charge
is situated. The constant of proportionality, ǫ0, is called the electric permittivity of the

vacuum. The value of ǫ0 depends on the system of units chosen: if charge is measured in
Coulombs, C (the charge on an electron is: e = −1.6× 10−19 C), then

ǫ0 = 8.854× 10−12 C2 s2 kg−1m−3.

The numerical value of ǫ0 is a constant of Nature: if ǫ0 were larger than it is then the
electric field due to a fixed charge would be correspondingly weaker, in the sense that a
given charge would produce a smaller electric field; if ǫ0 were smaller then the resulting
electric field would be stronger.

The equation
∇.B = 0,

states that there are no free magnetic charges. No one has ever seen an isolated magnetic
charge in the laboratory: the simplest source for the magnetic field is a magnetic dipole,
which can be viewed as a pair of magnetic charges close to one another and of opposite
sign, so the total magnetic charge is zero. Modern ideas that attempt to unify the forces of
Nature, called Grand Unified Theories, or GUT’s for short, combine electromagnetism and
the two nuclear forces (the strong and the weak nuclear forces) into a single mathemat-
ical formalism, and many such theories predict the existence of magnetic monopoles with
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extremely large masses, about 1016 times the mass of a proton, which would explain why
they have never been produced in the laboratory. But it is not yet known if these theories
are a correct description of Nature: for the purposes of this course we shall assume there
are no magnetic monopoles.

The differential form of Farady’s law of electromagnetic induction,

∇× E = −∂B

∂t
,

dictates the form of the electric field generated by a time-varying magnetic field. The
minus sign on the right-hand side here is the mathematical expression of Lenz’s Law: any
electric currents generated by E will always be in a direction such as to oppose the change
in B.

The fourth equation,

∇×B− 1

c2
∂E

∂t
= µ0J,

was Maxwell’s tour de force. It describes how an electric current density, J, acts as a
source for the magnetic field and also a time varying electric field. Here µ0 is the magnetic

permeability of the vacuum, again for historical reasons. Just as for ǫ0 the value of µ0

depends on the units chosen, but the convention nowadays is to define

µ0 := 4π × 10−7 kg mC−2

and use this value to set the units. The speed of light also appears in Maxwell’s fourth
equation: c from the Latin celeritas, meaning speed. Originally c was measured, as metres
per second, but now the metre itself is defined by setting c to be exactly

c := 299,792,458ms−1.

In deriving his equations Maxwell discovered that c, ǫ0 and µ0 are not independent con-
stants of Nature, but are related by

c =
1√
ǫ0µ0

,

a remarkable achievement.
Maxwell’s equations are differential equations whose solutions determine E and B in

terms of ρ and J. They are a set of coupled, first order, partial differential equations.
A very important and useful aspect of Maxwell’s equations is that they are linear, and
as a consequence once we have found some solutions we can just add them to get more
solutions.

In addition to Maxwell’s four equations above we need some other concepts from the
earlier course.
1) The energy density, with units of energy

volume , stored in an electromagnetic field

w(r, t) =
1

2

(
ǫ0E.E+

1

µ0
B.B

)
.
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2) Electro-magnetic waves can transport energy through empty space. The energy flux
carried by an electro-magnetic field, i.e. the energy crossing a unit cross-sectional
area in unit time, energy

time×area , usually called the Poynting vector, is

S =
1

µ0
E×B.

3) Electro-magnetic fields can also carry momentum and exert a pressure. The momen-
tum density, momentum

volume , is related to the Poynting vector through the speed of light.
The momentum density is

1

c2
S = ǫ0E×B.

4) Finally the Lorentz force, the force experienced by a charge moving with velocity v

and carrying electric charge e in an electro-magnetic field, is

F = e(E+ v ×B).

Hence if the charge is stationary
F = eE

and the magnetic field has no effect. In a region of space where the electric field
vanishes

F = ev ×B

and the force is always at right-angles to both the particle’s motion and the magnetic
field: in particular, when E = 0, v.F = 0 and the Lorentz force does no work on the
particle.
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2. Electrostatics

When there is no time dependence in the fields or charge distributions and B = 0,
which requires J = 0, Maxwell’s equations reduce to

∇.E(r) =
ρ(r)

ǫ0
, ∇× E(r) = 0.

Consider first the electric field produced at a point r by a static point charge Q
situated at r′ which is given by Coulomb’s law

E(r) =
Q

4πǫ0

r− r′

|r− r′|3

(as an exercise, you should convince yourself that this indeed satisfies ∇ × E = 0). The
point r here is called the field point and r′ the source point. For a collection of N charges
Q(j) situated at rj , j = 1, . . .N , we can use linearity to obtain the total electric field at
the field point r simply by adding the individual contributions from each charge:

E(r) =
1

4πǫ0

N∑

j=1

Q(j)
r− rj

|r− rj |3
.

For a very large number of discrete charges it is convenient to approximate them by a
continuous distribution with a charge density ρ(r′), defined by taking a small volume δV ′,
surrounding r′ containing charge δQ′, and taking the limit

ρ(r′) := lim
δV ′→0

δQ′

δV ′ ,

assuming it exists. Then the total charge in a macroscopic volume V is

Q =

∫

V

ρ(r′)dV ′

and the electric field at a point r due to Q is

E(r) =
1

4πǫ0

∫

V

ρ(r′)
r− r′

|r− r′|3 dV
′, (2)

provided there is no more charge around other than that in V .*

* At first sight it may seem that we must keep r outside of V, in order to avoid a
singularity when r = r′, but we shall see later that this is not necessary, provided ρ is
finite at r, (one can sometimes do integrals with an integrand which is infinite at isolated
points and still get a finite answer).
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V

’

δV’

r

r−r’

r’

O

δρ

Writing the electric field in this form allows some vector calculus manipulations which
result in a simplification of the problem. We use the identity

∇
(

1

|r− r′|

)
= − r− r′

|r− r′|3 for r 6= r′

(again when r = r′ the gradient is infinite, but we shall ignore this problem for the moment
and see what happens) to derive

∇
(∫

V

ρ(r′)
|r− r′|dV

′
)

=

∫

V

ρ(r′)∇
(

1

|r− r′|

)
dV ′ = −

∫

V

ρ(r′)
r− r′

|r− r′|3 dV
′.

It is important to realise that the differential operator ∇ here only operates on the field
point r and not on the source point r′, as far as ∇ is concerned r′ is a constant which is
why we can take ∇ inside the integral and pull it through ρ(r′) with impunity.

It is therefore natural to define a scalar function

Φ(r) =
1

4πǫ0

∫

V

ρ(r′)

|r− r′|dV
′ (3)

from which we can derive the electric field at r as minus the gradient of Φ(r),

E(r) = −∇Φ(r).

The function Φ(r) is called the electrostatic potential at the point r. Gauss’ Law, equation
(1), now states that

∇.E(r) = −∇2Φ(r) =
ρ(r)

ǫ0
.

Thus Gauss’ Law can be written as

−∇2Φ(r) =
ρ(r)

ǫ0
. (4)
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With the definition E = −∇Φ the other Maxwell equation for electrostatics, ∇× E = 0,
is automatic — the curl of a gradient is zero for any twice differentiable function.

The advantage of writing things this way is that, for a given charge distribution ρ, we
have reduced the a set of four, first order, coupled differential equations

∇.E = ρ/ǫ0 ∇× E = 0

for three functions (the three components of E) to a single partial differential equation
for Φ, albeit a second order differential equation. In a region of space where there are
no charges ∇2Φ = 0 and we are dealing with Laplace’s equation, which was studied in
the Mathematical Methods course. Equation (4) is an inhomogeneous version of Laplace’s
equation, called Poisson’s equation.

The Method of Images

In many practical situations there is a complication in that ρ(r) is not always known
explicitly. For example suppose we have a single charge Q near a large flat grounded
conducting plate. ‘Grounded’ means that that the plate is earthed and is in effect in
electrical contact with an infinite reservoir of charge which ensures that, wherever we
place Q, the plate remains at the same potential, which we shall choose to be zero, the
same potential as the Earth or the ground. A 2-dimensional surface which is constrained
to have the same potential at all points is called an equipotential surface. Now positioning
Q a distance a away from the plate will cause electric charge to be distributed on the plate
which will be arranged in such a way as to ensure that the plate is at zero potential. There
will be a surface charge density induced on the plate and we do not know what it is until
we have solved the problem, but we cannot solve the problem without knowing the charge
distribution on the plate.

We can break this impasse by using symmetry. Take the plate to be infinite in extent
and co-incident with the x = 0 plane, in Cartesian co-ordinates, with the origin being the
nearest point on the plate to Q and Q positioned at x = a, y = z = 0. The problem now
is to find Φ(x, y, z) in the region x ≥ 0. The method of images works by trying to find a
charge distribution in the region x < 0 that forces Φ = 0 in the x = 0 plane — these charges
are called image charges. We then forget about the plate and calculate the potential in
the region x ≥ 0 due to Q and the image charges. By construction Φ(0, y, z) = 0 and we
shall get the correct Φ for all x > 0 too, that is the same Φ as would result from the metal
plate and Q. It should be intuitively clear that placing a charge of the same magnitude as
Q but opposite sign at x = −a, y = z = 0 produces a potential that exactly cancels that
of Q in the x = 0 plane giving Φ = 0 in the plane,

Φ(r) =
Q

4πǫ0

(
1

|r− a| −
1

|r+ a|

)
=

Q

4πǫ0

(
1√

(x− a)2 + y2 + z2
− 1√

(x+ a)2 + y2 + z2

)
,

where a = ax̂ (x̂ is a unit vector in the x-direction). Φ(x, y, z) vanishes when x = 0.
The electric field is

E = −∇.Φ =
Q

4πǫ0

(
r− a

|r− a|3 − r+ a

|r+ a|3
)
.
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At the surface of plate, x = 0, the electric field is

E = − Q

2πǫ0

(
1

(a2 + y2 + z2)
3/2

)
a, (5)

which is perpendicular to the plate, into the plate if Q > 0 and out of the plate if Q < 0.
This is a general feature of conductors. In a static situation the electric field is always
normal to the surface of the conductor, any tangential component would result in a force
on the charge carriers within the conductor making them move around until they have
redistributed themselves so as to cancel the tangential component. For the same reason a
static electric field is always zero inside a conductor.

−

−+ +

−

−

−

−

Note that for x < 0 the electric field due to the image charge and Q does not co-incide
with that due to the plate and Q, we only get the right answer for x ≥ 0. For x < 0 the
electric field is zero – the plate completely screens the negative x-region form Q.

We can use Gauss’ Law to calculate the surface charge density, σ(y, z), induced on the
plate by Q. Consider a disc-shaped volume of small but finite thickness, like a coin, with
the plate slicing through the middle of the coin so that it has one flat surface (‘heads’) in
the region x > 0 and the other (‘tails’) in the region x < 0. Let E+ be the electric field
(5) at the surface of the conductor on the positive-x side. Gauss’ Law states that the total
flux of electric field through the surface of the coin is equal to the total charge contained
within the coin divided by ǫ0 — if the area of the coin is δA then

∫

S

E.dS =
1

ǫ0

∫

δA

σdA.

If the area of the coin is small enough we can assume, with negligible error, that σ is
constant throughout the whole of δA so

∫

δA

σdA = σ(y, z)δA, (6)

when the coin is centred at (y, z) (at the end of the calculation we can send δA → 0 so any
approximations become exact). Also the electric field vanishes on the x < 0 side of the
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plate and the circular band round the edge of the coin does not contribute to the surface
integral, if the coin is thin enough, so the surface integral is

∫

S

E.dS = − Q

2πǫ0
δA

a.x̂

(a2 + y2 + z2)3/2
= − Qa

2πǫ0

δA

(a2 + y2 + z2)3/2
(7)

where x̂ is the unit normal to the ‘heads’ (x > 0) surface of the coin. Equating (6) and
(7) gives

σ(y, z) = − 1

2π

Qa

(a2 + y2 + z2)3/2
.

The total charge induced on the plate is

Qinduced =

∫ ∞

−∞

∫ ∞

−∞
σ(y, z)dydz = − 1

2π

∫ ∞

−∞

∫ ∞

−∞

Qa

(a2 + y2 + z2)3/2
dydz.

The integral is most easily evaluated by using 2-dimensional polar co-ordinates with y =
r sin θ and z = r cos θ (0 ≤ r < ∞, 0 ≤ θ < 2π), giving

Qinduced = − 1

2π

∫ ∞

0

∫ 2π

0

Qa

(a2 + r2)3/2
rdrdθ = −Qa

2

∫ ∞

a2

dv

v3/2
= −Q,

where we have used the change of variables v = a2+ r2, dv = 2rdr. Hence the total charge
induced on the plate is equal to the image charge.

Now consider a slightly different problem, that of a charge Q placed outside a grounded
conducting sphere of radius R. We shall use spherical polar co-ordinates with the origin
at the centre of the sphere, placing Q a distance a from the centre with a > R. Denote
the position vector for Q by a and try placing an image charge Q̃ inside the sphere at
a point ã, a distance ã from the centre with ã < R. From symmetry we expect the full
potential to be rotationally symmetric about the axis defined by a, there is nothing in the
configuration that can destroy this symmetry even after Q has induced a surface charge
σ(θ, φ) on the sphere: the surface charge should have this axial symmetry. It is therefore
reasonable to guess that, if we can cook up the correct potential for the original problem
using just a single image charge, then ã should be co-linear with a, so either ã = ãâ or
ã = −ãâ, with â = a/a a unit vector in the a direction, depending on whether Q̃ is on
the same or the opposite side of the origin from Q. Now forget about the metal sphere
and write the total potential due to Q and Q̃ at a field point r as

Φ(r) =
1

4πǫ0

(
Q

|r− a| +
Q̃

|r− ã|

)
.

The potential at a point on the surface of the sphere, r = Rr̂ with r̂ the unit normal
pointing out of the sphere, is now

Φ(Rr̂) =
1

4πǫ0

(
Q

|Rr̂− a| +
Q̃

|Rr̂− ã|

)

=
1

4πǫ0

(
Q√

R2 + a2 − 2Ra cos θ
+

Q̃√
R2 + ã2 ∓ 2Rã cos θ

)
,
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where θ is the angle between the unit normal r̂ and a. Our task now is to choose Q̃ and
ã so that this vanishes at every point on the sphere, i.e. ∀ θ. This requires

Q√
R2 + a2 − 2Ra cos θ

= − Q̃√
R2 + ã2 ∓ 2Rã cos θ

⇔ Q

a
√

R2

a2 + 1− 2R
a cos θ

= −Q̃

R

1√
1 + ã2

R2 ∓ 2 ã
R cos θ

which can be achieved by setting

Q

a
= −Q̃

R
,

R

a
=

ã

R

and choosing the upper sign. So we have found a solution

Q̃ = −R

a
Q, ã =

R2

a
, ã =

R2

a2
a.

Note that ã < R and |Q̃| < |Q| since a > R. Thus the full solution to our problem,
∀ r > R, is

Φ(r) =
Q

4πǫ0

(
1

|r− a| −
R

a

1

|r− R2

a2 a|

)
, (8)

this vanishes at all points on the surface of the sphere by construction. Note however that
it does not give the correct potential for the original problem at a field point inside the
sphere: (8) is non-zero for r < R but in the original problem Φ = 0 inside the sphere, since
the sphere is an equipotential surface and there are no physical charges inside the metal
sphere so Φ = 0 everywhere inside.

The electric field and surface charge density can now be derived from (8). In the limit
R → ∞ the sphere becomes a flat plane and the answer reduces to the previous case, once
due account is taken for the shift in the position of the origin.

+
−

−

−
−

−
−

−

−

−
−

−
+

Green functions

The method of images that we have been describing is an example of the Green
function technique that you have learned about in the mathematical methods course.
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Recall that a Green function, G(x, x′), for a linear differential operator L is essentially an
inverse of L in the sense that

LG(x, x′) = δ(x− x′)

where δ(x − x′) is the Dirac δ-function. The Dirac δ-function has the property that, for
any interval [a, b] on the real line,

∫ b

a

f(x′)δ(x− x′)dx′ =

{
f(x) x ∈ [a, b]
0 x /∈ [a, b]

for any function f(x). In particular for the simple case when f(x) = 1

∫ b

a

δ(x− x′)dx′ =

{
1 x ∈ [a, b]
0 x /∈ [a, b]

,

which, if true for all intervals [a, b], is sufficient to define δ(x− x′).
The Green function is not unique, different boundary conditions lead to different

Green functions. The differential operator −∇2 is an example of a linear operator (usually
called the Laplacian) and we will show that

−∇2

(
1

4π|r− r′|

)
= δ(r− r′),

where δ(r− r′) is a 3-dimensional δ-function, in Cartesian co-ordinates

δ(r− r′) = δ(x− x′)δ(y − y′)δ(z − z′),

so

G(r, r′) =
1

4π|r− r′|
is a Green function for the Laplacian.

To prove this first observe that

∇
(

1

|r− r′|

)
= − r− r′

|r− r′|3 ,

from which

∇2

(
1

|r− r′|

)
= ∇.∇

(
1

|r− r′|

)
= 0,

provided r 6= r′. This means that

∫

V

∇2

(
1

|r− r′|

)
dV ′ = 0,
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if r /∈ V . For r ∈ V decompose V into a small spherical ball, Bε, of radius ε centred on r,
and the rest of the volume, which we denote by V̄ , so that V = V̄ +Bε. Now

∫

V

∇2

(
1

|r− r′|

)
dV ′ =

∫

V̄

∇2

(
1

|r− r′|

)
dV ′ +

∫

Bε

∇2

(
1

|r− r′|

)
dV ′

=

∫

Bε

∇2

(
1

|r− r′|

)
dV ′.

Now we observe that ∇2
(

1
|r−r′|

)
= (∇′)2

(
1

|r−r′|

)
, where ∇′ involves differentiating with

respect to r′, and use the divergence theorem to write

∫

Bε

(∇′)2
(

1

|r− r′|

)
dV ′ =

∫

Bε

∇′.∇′
(

1

|r− r′|

)
dV ′ =

∫

Sε

∇′
(

1

|r− r′|

)
.n′dS′

where Sε is the surface of the ball, a sphere of radius ε with r′ − r = εn′ and n′ is a unit
normal outward from the surface. Now, on the surface,

∇′
(

1

|r− r′|

)
=

r− r′

|r− r′|3 = −εn′

ε3
= −n′

ε2

and dS′ = ε2 sin θ′dθ′dφ′, so

∫

V

∇2

(
1

|r− r′|

)
dV ′ =

∫

Sε

∇
(

1

|r− r′|

)
.n′dS′ = −

∫

Sε

n′.n′ sin θ′dθ′dφ′ = −4π.

Thus we have proven that

−∇2

∫

V

(
1

4π|r− r′|

)
dV ′ =

{
1 r ∈ V
0 r /∈ V

,

for any volume V , which is equivalent to the statement that −∇2
(

1
4π|r−r′|

)
= δ(r − r′).

Hence we have proven that 1
4π|r−r′| is a Green function for the Laplacian −∇2.

We can now give a formal proof that the definition of Φ in (3) is compatible with
Gauss’ Law (4),

∇.E(r) = −∇2Φ(r) = − 1

4πǫ0
∇2

(∫
ρ(r′)

|r− r′|dV
′
)

= − 1

4πǫ0

∫
ρ(r′)∇2

(
1

|r− r′|

)
dV ′

=
1

ǫ0

∫
ρ(r′)δ(r− r′)dV ′ =

ρ(r)

ǫ0
.

The Green function is not unique, different boundary conditions lead to different
Green functions. We can add to G(r, r′) any function F (r, r′) for which ∇2F (r, r′) = 0,
for all r and r′ both in V , to form a different Green function

GF (r, r
′) = G(r, r′) + F (r, r′)
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and we still have
−∇2GF (r, r

′) = δ(r− r′),

∀ r, r′ ∈ V .
For example, if the region of interest V is the exterior of a grounded conducting sphere

of radius R centred on the origin, the choice

F (r, r′) = − 1

4π

R

r′(|r− R2

r′2
r′|)

satisfies
∇2F (r, r′) = 0,

provided r > R, r′ > R, and

GF (r, r
′) = G(r, r′) + F (r, r′) =

1

4π

1

|r− r′| −
1

4π

R

r′
(
|r− R2

r′2
r′|
)

satisfies
−∇2GF (r, r

′) = δ(r− r′).

Physically 1
ǫ0
GF (r, r

′) is the potential at the field point r due to a unit charge placed
at the source point r′, in the presence of the conducting sphere, provided both r > R and
r′ > R.

The power of the Green function method lies in the fact that we can immediately write
down the potential at a field point r outside the sphere (r > R) for any charge distribution
ρ(r′) in the region r′ > R (which we denote by V ) as

Φ(r) =
1

ǫ0

∫

V

ρ(r′)GF (r.r
′)dV ′ =

1

4πǫ0

∫

V

ρ(r′)

(
1

|r− r′| −
R

r′(|r− R2

r′2
r′|)

)
dV ′.

This is guaranteed to vanish on the surface of the sphere r = R since then GF (r, r
′) = 0

for all r′.

Example

As an example of the Green function technique, consider a ring of charge, with total
charge Q and radius a, encircling a grounded conducting sphere of radius R, with a > R.

’φ

r

r’

z

x

φ γ

θ
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Label the points on the ring by the azimuthal co-ordinate 0 ≤ φ′ < 2π and denote the
charge per unit length at φ′ by f(φ′), then the total charge on the ring is

Q = a

∫ 2π

0

f(φ′)dφ′

(we are using 3-dimensional polar co-ordinates (r′, θ′, φ′) to label the source points, with
the ring in the plane θ′ = π/2 and centred on the origin). The charge density due to this
ring can be written using Dirac δ-functions as

ρ(r′) =
1

a
δ(r′ − a)δ(cos θ′)f(φ′),

the prefactor 1/a being chosen so that

Q =

∫ ∞

0

∫ π

0

∫ 2π

0

ρ(r′)r′ 2 sin θ′dr′dθdφ′

and the δ-functions ensuring that ρ(r′) = 0 unless r′ = a and θ′ = π/2.
The potential at a field point r outside the sphere can immediately be written down

as

Φ(r) =
1

4πǫ0

∫ ∞

R

∫ π

0

∫ 2π

0

ρ(r′)

(
1

|r− r′| −
R

r′(|r− R2

r′2
r′|)

)
r′ 2 sin θ′dr′dθdφ′

=
1

4πaǫ0

∫ ∞

R

∫ π

0

∫ 2π

0

f(φ′)δ(r′ − a)δ(cos θ′)

(
1

|r− r′| −
R

r′(|r− R2

r′2
r′|)

)
r′ 2 sin θ′dr′dθdφ′.

Now r.r′ = rr′ cos γ, where γ is the angle between r and r,* so

1

|r− r′| =
1√

r2 + r′2 − 2rr′ cos γ

and

R

r′(|r− R2

r′2
r′|)

=
R

r′
√
r2 + (R4/r′2)− 2r(R2/r′) cos γ

=
1√

(r2r′2/R2) +R2 − 2rr′ cos γ
.

Using these in the multiple integral above the δ-functions make the r′ and θ′ integrals
trivial, they just set r′ = a and θ′ = π/2 in the integrand, giving

Φ(r) =
a

4πǫ0

∫ 2π

0

f(φ′)

(
1√

r2 + a2 − 2ra cosγ
− 1√

(ra/R)2 +R2 − 2ra cos γ

)
dφ′,

* It is important to realise that γ depends on both the field point and the source point: in
particular it is a function of θ′ and φ′, cos(γ(θ, φ, θ′φ′)) = sin θ sin θ′ cos(φ′−φ)+cos θ cos θ′,
so it affects the integrals over dV ′.
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where it must be stressed that γ depends on φ′, cos γ = sin θ cos(φ′ − φ), which its value
when θ′ = π/2.

In the simplest case of a uniform ring of charge, f(φ′) = Q/2πa is a constant, the
charge per unit length, and

Φ(r) =
Q

8π2ǫ0

∫ 2π

0

(
1√

r2 − a2 − 2ra sin θ cos(φ′ − φ)

− 1√
(ra/R)2 +R2 − 2ra sin θ cos(φ′ − φ)

)
dφ′.

For example the potential at point r = ±rẑ on an axis through the origin and perpendicular
to the ring, so θ = 0 or π, is

Φ(r) =
Q

4πǫ0

(
1√

r2 − a2
− R√

(ra)2 +R4

)
,

the first term being generated by the charge density on the ring itself and the second term
being due to the surface charge density induced on the sphere by the ring. The second
term is identical to the contribution of an ‘image’ ring of radius R2/a and total charge
−RQ/a sitting inside the sphere.

Multipole expansions

A second example of a mathematical technique for solving problems in electrostatics
is a method that provides an approximate solution to the problem in terms of an infinite
series whose higher order terms are less and less important in certain situations. Provided
the circumstances are right we can truncate the infinite series at a finite order and get
an answer as close as we wish to the correct answer. In this class of problems we assume
that ρ(r′) is known, and there are no conducting surfaces around to confuse the issue, but
the integral in (3) is too hard to perform analytically so we resort to an approximation
technique, called a multipole expansion. A multipole expansion is really nothing more than
a Taylor expansion of 1/|r− r′|.

We assume that the charge distribution ρ(r′) is confined to a volume V whose largest
dimension is L, say. Then, choosing the origin to lie inside V , we can be confident that
there is a region of space outside of V for which r′/r < L/r << 1, and we restrict ourselves
to field points far enough away from V so that L/r << 1. Now use the Taylor expansion
formula

(1 + x)n = 1 + nx+
n(n− 1)

2!
x2 +

n(n− 1)(n− 3)

3!
x3 + . . . (9)

This expansion converges provided |x| < 1. We can now expand 1/|r − r′|, by setting
n = −1/2 and x = −2(r.r′/r2) + (r′/r)2 in (9),

1

|r− r′| =
1√

r2 − r′2 − 2r.r′
=

1

r

(
1− 2(r.r′/r2) + (r′/r)2

)−1/2

14



=
1

r

(
1− 1

2

[
−2(r.r′/r2) + (r′/r)2

]
+

3

8

[
−2(r.r′/r2) + (r′/r)2

]2
(10)

− 5

16

[
−2(r.r′/r2) + (r′/r)2

]3
+ · · ·

)

=
1

r

(
1 +

r.r′

r2
+

1

2

(
3
(r.r′)2

r4
− r′2

r2

)
+

1

2

(
5
(r.r′)3

r6
− 3

(r.r′)r′2

r4

)
+ o

(
r′

r

)4
)
.

Substituting this expansion in the definition of the scalar potential (3) gives

Φ(r) =
1

4πǫ0

1

r

∫

V

ρ(r′)

[
1 +

r.r′

r2
+

1

2r2

(
3

(
r.r′

r

)2

− r′ 2
)

+
r.r′

2r4

(
5

(
r.r′

r

)2

− 3r′ 2
)

+ o

(
r′

r

)4
]
dV ′

=
1

4πǫ0


Q

r
+

1

r3

3∑

i=1

pixi +
1

r5

3∑

i,j=1

qijxixj +
1

r7

3∑

i,j,k=1

qijkxixjxk + o

(
L4

r5

)
 ,

where xi, i = 1, 2, 3 are Cartesian co-ordinates,

Q =

∫

V

ρ(r′)dV ′

is the total charge contained in V , pi are the components of a vector,

pi :=

∫

V

ρ(r′)x′
idV

′,

called the dipole moment of the charge distribution,

qij :=
1

2

∫

V

ρ(r′)(3x′
ix

′
j − δijr

′ 2)dV ′

is called the quadrupole moment — it is a symmetric, traceless matrix,
∑3

i=1 qii = 0 and

qijk =
1

2

∫

V

ρ(r′)
(
5x′

ix
′
jx

′
k −

(
δijx

′
kr

′ 2 + δjkx
′
ir

′ 2 + δkix
′
jr

′ 2)) dV ′

(known as the octopole moment).
The expansion

Φ(r) =
1

4πǫ0


Q

r
+

1

r3

3∑

i=1

pixi +
1

r5

3∑

i,j=1

qijxixj + · · ·



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is called a multipole expansion, and the sum converges for L/r < 1. Note that the first
term goes like ∼ 1/r, the dipole term like ∼ 1/r2, the quadrupole term like ∼ 1/r3, and
so on. For L/R << 1 the first few terms give a very good approximation to the correct
potential at r, provided they do not vanish. Indeed the most important contribution to the
electric field comes from the first non-vanishing component, which can actually be proven
to be independent of the choice of origin.

For example a very good approximation to the electric field surrounding a non-
spherical neutral molecule, such as a water molecule H2O, can be obtained from the
potential

Φ(r) =
1

4πǫ0

p.r

r3
, (11)

the first term vanishing since Q = 0 for a neutral molecule. A simple model for a charge
distribution giving rise to such a potential is to take two charges of equal magnitude but
opposite sign, q and −q and place them a distance a apart. Placing the charges on the
x-axis, symmetrically placed about the origin at r′ = (a/2)x̂ and r′ = −(a/2)x̂ the charge
distribution can be represented by

ρ(r′) = q
(
δ(x′ − a/2)− δ(x′ + a/2)

)
δ(y′)δ(z′),

where x′ = x′
1, y

′ = x′
2 and z′ = x′

3, so

Q =

∫

R3

ρ(r)dx′dy′dz′ = q

∫ ∞

−∞
((δ(x′ − a/2)− δ(x′ + a/2)))dx′ = q − q = 0,

obviously, while

pi =

∫

R3

ρ(r)x′
idx

′dy′dz′

=





q
(∫∞

−∞
(
δ(x′ − a/2)− δ(x′ + a/2)

)
x′dx′

)(∫∞
−∞ δ(y′)dy′

)(∫∞
−∞ δ(z′)dz′

)
= qa, i = 1

q
(∫∞

−∞
(
δ(x′ − a/2)− δ(x′ + a/2)

)
dx′
)(∫∞

−∞ δ(y′)y′dy′
)(∫∞

−∞ δ(z′)dz′
)
= 0, i = 2

q
(∫∞

−∞
(
δ(x′ − a/2)− δ(x′ + a/2)

)
dx′
)(∫∞

−∞ δ(y′)dy′
)(∫∞

−∞ δ(z′)z′dz′
)
= 0, i = 3,

giving the vector p = qax̂. The next moment is

qij =
1

2

∫

R3

ρ(r)(3x′
ix

′
j − δijr

′ 2)dx′dy′dz′

=
q

2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
δ(x′ − a/2)− δ(x′ + a/2)

)
δ(y′)δ(z′)(3x′

ix
′
j − δijr

′ 2)dx′dy′dz′,

which actually vanishes for all i and j. The qijk are non-zero but we do not need their
explicit form here, all we need to know is that they are proportional to qa3, because this
allows us to write

Φ(r) =
q

4πǫ0

(
ax

r3
+ o

(
a3

r4

))
.
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If we send q → ∞ and a → 0, keeping p = qa finite, then in this limit

Φ(r) =
1

4πǫ0

xp

r3

is exact. This is the potential of a dipole, a pair of opposite sign but equal magnitude
charges sitting close to one another, so that the total charge is zero. The potential falls like
∼ 1/r2 and the electric field like ∼ 1/r3, faster than than the field of a single point charge
(which would be called an electric monopole in the language of multipole expansions).

An example of a charge distribution for which Q = 0 and pi = 0, but qij 6= 0,
so that the first multipole contribution to the potential is at the quadrupole level, is
to take four charges at the edges of a square with a total charge summing to zero and
two opposite edges being anti-parallel dipoles. For example take the square to lie in
the x-y plane with sides of length a: with two charges +q sitting at the two vertices
(x, y) = (a/2, a/2) and (x, y) = (−a/2,−a/2) and two charges −q sitting at the remaining
two vertices (x, y) = (a/2,−a/2) and (x, y) = (−a/2, a/2). Then the charge distribution
is

ρ(r′) = q [δ(x′ − a/2)δ(y′ − a/2) + δ(x′ + a/2)δ(y′ + a/2)

−δ(x′ − a/2)δ(y′ + a/2)− δ(x′ + a/2)δ(y′ − a/2)] δ(z′).

Using the δ-functions to do the integrals in

qij =
1

2

∫

R3

ρ(r)
(
3x′

ix
′
j − δijr

′ 2)dx′dy′dz′

the δij term vanishes and, in matrix form,

qij =
3qa2

2




0 1 0
1 0 0
0 0 0




leading to the potential

Φ(r) =
qa2

4πǫ0

(
3xy

r5
+ o

(
a4

r5

))
.

Now sending q → ∞ and a → 0, this time keeping p = qa2 finite, gives

Φ(r) =
3p

4πǫ0

(xy
r5

)
,

which is a quadrupole potential. It falls off like ∼ 1/r3, giving an electric field whose
magnitude falls off like ∼ 1/r4.

The multipole expansion in equation (10) is also an expansion in Legendre polynomi-
als:

1

|r− r′| =
1

r

(
1 +

r.r′

r2
+

1

2

(
3
(r.r′)2

r4
− r′2

r2

)
+

1

2

(
5
(r.r′)3

r6
− 3

(r.r′)r′2

r4

)
+ · · ·

)

=
1

r

(
1 +

r′

r
cos γ +

1

2

(
r′

r

)2 (
3 cos2 γ − 1

)
+

1

2

(
r′

r

)3 (
5 cos3 γ − 3 cos γ

)
+ · · ·

)
,
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where γ is the angle between r and r′, r.r′ = rr′ cos γ. The functions of γ appearing here
are Legendre polynomials

P0(γ) = 1

P1(γ) = cos γ

P2(γ) =
1

2
(3 cos2 γ − 1)

P3(γ) =
1

2
(5 cos3 γ − 3 cos γ).

Indeed one way to define the Legendre polynomials is from the expansion

1

|r− r′| =
1

r

∞∑

n=0

(
r′

r

)n

Pn(cos γ),

which converges for r′/r < 1. Thus the multipole expansion of the potential can be
expressed as

Φ(r) =
1

4πǫ0

∞∑

n=0

(
1

r

)n+1

Φn(r̂),

where the multipole moments, Φn(r̂), are

Φn(r̂) =

∫

V

ρ(r′)(r′)nPn(cos γ)dV
′.

Remember that the angle γ appearing in these integrals depends on both the source point
r′ and the field point r, because it is the angle between r and r′, so Φn(r̂) depends on the
direction of the field point r̂ = r/r for n ≥ 1.

Electric dipoles are very important in understanding the properties of electrically
neutral matter, such as a medium like water whose molecules behave like little electric
dipoles. Consider an electric dipole p = aqn = qa of magnitude p = aq, consisting of two
charges ±q a distance a apart in a line determined by the unit vector n, at a point r in an
external electric field E(r). We take r to be the mid-point of the line segment between q
and −q and n = a/a to point from q to −q, so q is at r+ (a/2)n and −q at r − (a/2)n.
The total force on p due to the field E is the sum of the force Fq on q and the force F−q

on −q

F = Fq +F−q = qE(r+ a/2)− qE(r− a/2) = q(a.∇)E(r) + o(qa2).

In the limit q → ∞, a → 0, keeping p = qa finite,

F = (p.∇)E = ∇(p.E), (12)

since

(p.∇)Ei =

3∑

j=1

pj∂jEi = −
3∑

j=1

pj∂j∂iΦ = −∂i

3∑

j=1

pj∂jΦ = ∂i(p.E)
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(the dipole moment p is independent of the position r). This force can be derived from a
potential energy U(r) = −p.E(r) associated with the dipole in the electric field

F = −∇U(r).

Note that for a constant electric field the force vanishes, but if the electric field depends
on position the dipole tends to get pulled in towards regions of stronger field.

Although the net force vanishes in a constant field there is still a torque on p: around
the point r the total torque is (in the limit a → 0 with p finite)

τ =
1

2
a× Fq −

1

2
a×F−q = q a× E(r) +O(qa2) −→ p× E(r). (13)

This torque has the effect of twisting p to bring it parallel with E: dipoles like to line up
with an applied electric field.

The nature of the force on a system of static charges, due to an externally applied field
E(r), is severely constrained by the fact that, in a region of space where ∇.E(r) = 0, i.e
away from the charges that generate the external field, a system of static charges cannot
be in stable equilibrium — a result known as Earnshaw’s Theorem. This is unfortunate
from a practical point of view, because it means that we cannot use static electric fields to
hold charged objects in any one place — if we could do so it might be possible to levitate
objects against the force of gravity, for example. Earnshaw’s theorem states that this is
not possible.

To prove this, suppose we have a single static test charge q at a point r with a potential
energy U(r) = qΦ(r) in the external field E(r) (a more general system of charges can always
be considered to be a linear superposition of individual point charges). Then the force on
q is

F = −∇U(r) = −q∇Φ(r) = qE(r)

and demanding static equilibrium requires that the charge is not being accelerated, so
F = 0 and the potential energy U = qΦ must must satisfy

∇U(r) = 0

at the point r. For stable equilibrium it is necessary that we are at a minimum of the
potential. A necessary (but not sufficient) condition for this is

∇2U(r) > 0 ⇒ ∇2Φ(r) 6= 0.

But we have assumed that
∇.E(r) = −∇2Φ(r) = 0

giving a contradiction. Hence q cannot be in stable equilibrium at r if ∇.E(r) = 0. In fact
even ∇2U(r) > 0 is not sufficient for stable equilibrium, for example in Cartesians

∇2U =
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
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and some of the partial derivatives could be positive and one negative to give an overall
positive quantity, but there is still an instability in the direction in which the partial
derivative is negative. Stable equilibrium requires all three terms on the right hand side
to be positive, but in only needs one of them to be negative for unstable equilibrium. In
fact the most general condition for stable equilibrium at a point where ∇U = 0 is that all
three eigenvalues of the 3× 3 matrix with components ∂i∂jU be positive.

3. Magnetostatics

When there is no time dependence in the fields or current distributions and E = 0,
which requires ρ = 0, Maxwell’s equations reduce to*

∇.B(r) = 0, ∇×B(r) = µ0J(r).

In a region of space where J = 0 these equations are identical to those of electrostatics
with ρ(r) = 0, with E replaced by B, and we can use similar mathematical techniques to
solve them — define a magnetostatic potential Ψ(r), the gradient of which is the magnetic
field,

B(r) = −∇Ψ(r).

The details however are often different because the physics of magnetic fields is different to
that of electric fields leading to different kinds of boundary conditions: for example in elec-
trostatics E is always normal to a conducting surface, which is therefore an equipotential
surface, but we shall see later that B is always tangential to a conducting surface.

We shall pursue a different direction here. Our starting point is the Biot-Savart law
for the magnetic field generated by a current density J in a volume V

B(r) =
µ0

4π

∫

V

J(r′)× (r− r′)

|r− r′|3 dV ′. (14)

For example if the current is carried in an infinitely long straight wire of constant cross-
sectional area, ∆A, in the direction of the unit vector n then the current in the wire is
I = J∆A where J = Jn is the current density. The current is associated with a specific
direction, so it is really a vector too, I = In. Then the magnetic field generated by the
current in the wire is

B(r) =
µ0

4π

∫

V

J(r′)× (r− r′)

|r− r′|3 dV ′ =
µ0

4π

∫

L

(J(r′)∆A)× (r− r′)

|r− r′|3 dl′ =
µ0

4π

∫

L

I× (r− r′)

|r− r′|3 dl′,

* Note that, even though there is no time dependence in the equations here, and they
represent a static situation, there must be moving electric charges to generate a current.
These charges might even be accelerating, for example they could be moving in circles.
For magnetostatics the important criterion is that the currents are independent of time
and the total charge density is zero.
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where
∫
L
· · ·dl′ represents the integral along the length of the wire and we have assumed

that J(r′) is constant across the cross-section of the wire.
The Biot-Savart law is equivalent to

∇×B(r) = µ0J(r).

This follows from

∇
(

1

|r− r′|

)
= − r− r′

|r− r′|3 (15)

so

∇×B(r) = ∇×
(
µ0

4π

∫

V

J(r′)× (r− r′)

|r− r′|3 dV ′
)

= −µ0

4π

∫

V

∇×
(
J(r′)×∇

(
1

|r− r′|

))
dV ′

= −µ0

4π

∫

V

J(r′)∇2

(
1

|r− r′|

)
dV ′ = µ0

∫

V

J(r′)δ(r− r′)dV ′ = µ0J(r).

Using the same vector identity (15) we can also write (14) as

B(r) = −µ0

4π

∫

V

J(r′)×∇
(

1

|r− r′|

)
dV ′ =

µ0

4π

∫

V

∇
(

1

|r− r′|

)
× J(r′)dV ′

= ∇×
(
µ0

4π

∫

V

J(r′)

|r− r′|dV
′
)
.

It is therefore convenient to define a magnetic vector potential, A(r), as

A(r) =
µ0

4π

∫

V

J(r′)

|r− r′|dV
′ (16)

and then
B(r) = ∇×A(r)

is always true, even in the presence of non-zero currents. The vector potential is thus more
general than the concept of a scalar potential for the magnetic field as the latter is only
defined in regions of space where J = 0.

In practical calculations the magnetic vector potential is perhaps not as useful as the
electric scalar potential, involving as it does three triple integrations rather than one as
in the scalar case. Nevertheless it is very important conceptually and we shall examine
some of its properties. First we shall use conservation of charge to show that (16) has zero
divergence,

∇.A(r) = 0.

To show this we need a mathematical expression of the fact that charge is conserved
— electric charge can neither be created nor destroyed. Consider a volume of space V
containing charge Q. For the purposes of this discussion we relax the condition that ρ and
J should be time independent so we allow Q to vary with time but, if it does, charge must
flow either into or out of V to compensate: if Q increases some charge must flow into V
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to compensate, if Q decreases some charge must flow out of V . In either case there must
be a flux of current through the surface, S, of V and

dQ

dt
= −

∫

S

J(r′).dS′,

the minus sign being due to the convention that dS′ is an infinitesimal vector pointing out

of V . Writing Q(t) =
∫
V
ρ(r′, t)dV ′ we use the divergence theorem to express

dQ

dt
=

d
(∫

V
ρ(r′, t)dV ′)

dt
=

∫

V

∂ρ(r′, t)

∂t
dV ′ = −

∫

S

J(r′).dS′ = −
∫

V

∇′.J(r′, t)dV ′

(the prime on ∇′ here indicates that it acts on the source point r′). Hence in any volume
of space ∫

V

∂ρ(r′, t)

∂t
dV ′ +

∫

V

∇′.J(r′, t)dV ′ = 0

which can only be true if
∂ρ(r, t)

∂t
+∇.J(r, t) = 0 (17)

at every point r and at all times t. This equation is a differential form of the statement
that electric charge is conserved.

Returning now to statics, if ρ and J are independent of time we have

∇.J(r) = 0.

Now consider the divergence of A in (16),

∇.A(r) =
µ0

4π
∇
(∫

V

J(r′)

|r− r′|dV
′
)

=
µ0

4π

∫

V

J(r′).∇
(

1

|r− r′|

)
dV ′

= −µ0

4π

∫

V

J(r′).∇′
(

1

|r− r′|

)
dV ′,

where in the last equation we have use the fact that, for any function f(x),

∂f(x− x′)

∂x
= −∂f(x− x′)

∂x′ .

Now use the divergence theorem to write

−µ0

4π

∫

V

J(r′).∇′
(

1

|r− r′|

)
dV ′ =

µ0

4π

∫

V

∇′.J(r′)

(
1

|r− r′|

)
dV ′ − µ0

4π

∫

S

J(r′).dS′

|r− r′|

= −µ0

4π

∫

S

J(r′).dS′

|r− r′| ,
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since ∇′.J(r′) = 0. Provided we chose V large enough to contain all the currents, so
J(r′) = 0 on the surface of V (or at least has no normal component on S), then

∫

S

J(r′).dS′

|r− r′| = 0

and we have proven that
∇.A(r) = 0

is a consequence of charge conservation.
For illustrative purposes we shall now derive the magnetic vector potential due to a

finite segment of straight wire of length L carrying a current I. We choose co-ordinates so
that the wire is aligned along the z-direction, centred on the origin so that it extends to
z = ±L/2. If the wire has constant cross-sectional area ∆A then, assuming J is constant,
J = I/∆A = I

∆A ẑ. From (16)

A(r) =
µ0

4π

∫

V

J(r′)

|r− r′|dV
′ =

µ0

4π

∫

V

I ẑ

∆A|r− r′|dV
′

=
µ0I ẑ

4π

∫

V

1

∆A|r− r′|dV
′ =

µ0I ẑ

4π

∫ L/2

−L/2

1

|r− r′|dz
′

with r′ = z′ẑ. Now

∫ L/2

−L/2

1

|r− r′|dz
′ =

∫ L/2

−L/2

1√
x2 + y2 + (z − z′)2

dz′

=

∫ L/2−z√
x2+y2

−L/2−z√
x2+y2

du√
1 + u2

= sinh−1

(
L/2− z√
x2 + y2

)
+ sinh−1

(
L/2 + z√
x2 + y2

)
,

where we have used the substitution u = (z′ − z)/
√

x2 + y2. Hence

A(r) =
µ0I

4π

[
sinh−1

(
L/2− z√
x2 + y2

)
+ sinh−1

(
L/2 + z√
x2 + y2

)]
ẑ.

Of course it is not possible to have an isolated segment of wire carrying a current which
appears out of nothing at one end and disappears into nothing at the other, that would
violate the principle of conservation of charge. We could connect four such segments into
a square to make a continuous circuit or we could consider the limit of an infinitely long
wire, L → ∞. We shall analyse the closed loop later, in a more general setting, for the
moment consider the case of L → ∞. For large L

sinh−1

(
L

2
√

x2 + y2

)
= − ln

(√
x2 + y2

L

)
+O

(
x2 + y2

L2

)
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so the vector potential behaves as

A(r) = −µ0I

4π
ln

(
x2 + y2

L2

)
ẑ+O

(
1

L2

)
.

Hence,

B(r) = ∇×A(r) =
µ0I

2π

(xŷ − yx̂)

x2 + y2
+O

(
1

L2

)
−→
L→∞

µ0I

2π

(ẑ× r)

x2 + y2
=

µ0I

2π

(ẑ× r̂)√
x2 + y2

.

Thus B encircles the wire in a direction determined by a right-handed screw in the direction
of the current and falls off inversely as the distance from the wire 1/

√
x2 + y2 when L is

infinite.

Magnetic Field of a Localised Current Distribution — Multipole Expansions

Consider a closed loop, C, around which a current I is flowing (to be concrete one
can consider a small wire, but this is not always a good picture). If dr′ is an infinitesimal
tangent vector to the loop at a source point r′ then, using J(r′)dV ′ = Idr′ with I a
constant, we have

A(r) =
µ0

4π

∫

V

J(r′)

|r− r′|dV
′ =

µ0I

4π

∮

C

dr′

|r− r′| ,

where V is any volume containing C (the symbol
∮
reminds us that the integral is around

a closed loop).

For any shape of loop and any current I we can approximate A(r′) using a multipole
expansion, just as we did in electrostatics,

|r− r′|−1 =
(
r2 + r′2 − 2r.r′

)−1/2
=

1

r

(
1− 2

r.r′

r2
+

r′2

r2

)−1/2

=
1

r

(
1 +

r.r′

r2
+ o

(
r′

r

)2
)
,

for r′ > r leading to

A(r) =
µ0I

4πr

(∮

C

dr′ +
1

r2

∮

C

(r.r′)dr′ + · · ·
)
,

where the dots represent higher order corrections — if L is the width of C at is widest
point and the origin is taken near the centre of C then these terms are guaranteed to be
less than L3/r3.

Now ∮

C

dr′ =

∫ r0

r0

dr′ =
[
r′
]r0
r0

= r0 − r0 = 0,
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where r0 is any point on the curve C.* To evaluate the second integral,
∮
C
(r.r′)dr′, use

the vector identity
(r′ × dr′)× r = −r′(r.dr′) + (r.r′)dr′

and Leibnitz rule, varying r′ keeping r fixed,

d[r′(r′.r)] = r′(r.dr′) + (r.r′)dr′.

Adding these gives

(r.r′)dr′ =
1

2
{(r′ × dr′)× r+ d[r′(r′.r)]} ,

so

∮

C

(r.r′)dr′ =
1

2

(∮

C

{(r′ × dr′)× r}+
∮

C

d[r′(r′.r)]

)
=

1

2

(∮

C

r′ × dr′
)
×r+

1

2

(∫
r0

r0

d[r′(r′.r)]

)
,

and again the second term vanishes because

∫ r0

r0

d[r′(r′.r)] =
[
r′(r′.r)

]r0
r0

= r0(r0.r)− r0(r0.r) = 0.

Thus

A(r) =
µ0I

4πr3

{
1

2

∮

C

(r′ × dr′)× r

}
+ · · · ,

where the dots represent terms that are less and less important as r is taken further and

further away from the loop C — these extra terms are of order IL3

r3
or less.

Define the magnetic dipole moment of the current distribution due to the loop C to
be the vector

m :=
I

2

∮

C

(r′ × dr′).

For a planar loop of area A, i.e. a loop that lies in one 2-dimensional plane without
bending into the third dimension,

∮

C

(r′ × dr′) = An,

* As an exercise you may wish to convince yourself of this for the particular case of
a circular loop of radius a lying in the x-y plane, taking r′ = a(cosφ′x̂ + sinφ′ŷ) in 2-
dimensional polar co-ordinates with 0 ≤ φ′ < 2π. For such a loop dr′ = a(− sinφ′x̂ +
cosφ′ŷ)dφ′ and

∮

C

dr′ = a

∫ 2π

0

(− sinφ′x̂+ cosφ′ŷ)dφ′ = a

(
−x̂

∫ 2π

0

sinφ′dφ′ + ŷ

∫ 2π

0

cosφ′dφ′
)

= 0.
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where n is a unit normal to the plane in which the loop lies.* Hence, at least for planar
loops,

m = IAn

is normal to the plane and proportional to the area of the loop.
In any case the expansion becomes more and more accurate as we take smaller and

smaller loops L → 0 and I → ∞, keeping IL2 ≈ IA, and thus m, finite. In this limit the
expression

A(r) =
µ0

4π

m× r

r3
(18)

becomes exact.
The magnetic field generated by this loop of current can now be calculated

B(r) = ∇×A(r) =
µ0

4π

{
3
(m.r)

r5
r− m

r3

}
.

Note that, as r increases, A falls off like 1/r2 and B falls off like 1/r3, just like the scalar
potential and electric field for an electric dipole. In fact the geometrical form of B for a
magnetic dipole field is identical that of E for an electric dipole field — it is the familiar
dipole field produced by a bar magnet.

Atoms and molecules sometimes have magnetic dipole moments associated with them,
or can develop magnetic dipole moments in the presence of an externally applied magnetic
field. The underlying mechanism for this is fundamentally quantum mechanical in nature,
but an heuristic understanding can be obtained by using the following classical arguments.
Consider a charged particle, such as an electron, in a circular orbit around an atomic
nucleus in an atom or a molecule. Denote the orbital angular momentum of the electron
by L where

L = M(r× v),

with M is the electron mass, r its position and v its velocity. For a circular orbit L has
magnitude L = Mvr. Since a charge is moving there is a current generated,

I = q
v

2πr

which is the charge per unit time passing any point on the orbit. This current generates a
magnetic dipole moment

mL = Iπr2 =
q

2
vr =

qL

2M
.

Denoting the charge on the electron by q = −e we have

mL = − eL

2M
.

Although we have derived this equation using classical physics, remarkably, it is also true
in a full quantum mechanical treatment of the electron’s dynamics. However this is not

* Again you should convince yourself that this is true for a circular loop.
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the whole story since, in the theory of quantum mechanics, electrons have an intrinsic
angular momentum of their own, which we denote by S, which is not associated with any
orbital momentum but arises from the intrinsic spin of the electron. This also generates a
magnetic dipole moment

mS = −eS

M
,

note there is no factor of 1/2 here — a fundamentally quantum mechanical result which
we shall not derive here but merely state. The total angular momentum of the electron
is then the sum of its orbital and intrinsic angular momentum, L+ S, and the electron’s
motion generates a dipole moment for the atom of the form

m = −
( e

2M

)
(L+ 2S) =

µB

h̄
(L+ 2S), (19)

where µB = − eh̄
2M is called the Bohr magneton. If it were not for the strange factor of 2

in front of S the Bohr magneton would just be the ratio of the dipole moment to the total
angular momentum of the electron, when the latter is measured in units of h̄ — as it is
the relation is a little is a more involved than that, but not much more involved.

Of course atoms and molecules usually have more than one electron and the true dipole
moment will be a combination of all the dipole moments of the constituent electrons, but
a full treatment would take us too far into the theory of addition of angular momenta in
quantum mechanics. For the purpose of this course it is sufficient to observe that atomic
and molecular magnetic dipole moments are related to the constituent electrons’ angular
momenta and spin.

When a material made up of atoms or molecules with permanent non-zero magnetic
moments is placed in an externally applied magnetic field B the dipole moments m like
to line up with B, just like electric dipole moments in and external electric field E. One
way of seeing this is to model a typical magnetic dipole by a small square loop of area a2

carrying current I and placed in a constant external magnetic field, B, so that the unit
normal to the loop, n,* is at an angle θ to the direction of B. The magnetic dipole moment
due to the loop is then

m = Ia2n.

Choose axes so that x̂ is in the direction of B, B = Bx̂. For simplicity we shall consider
the case where n lies in the x-z plane, with n = cos θ x̂+sin θ ẑ, so that two opposite sides
of the square are in the y-direction and the other two opposite sides are in the x-z plane.
There will be forces on the four sides of the loop due to the Lorentz force on the charges
carriers, which cause the current, moving in the field B,

F = e(v ×B).

On any infinitesimally small segment of the square loop of length dl in the direction d l
the force will be

dF = e(v ×B)dN = I(d l×B).

* Defined relative to the direction of I using the right-hand rule.
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where dN is the number of charge carriers in the segment dl.

y

B
θ

1

23

4

n

F

F
F

F

1

2
3

4

x

z

Label the sides 1 to 4, ascending in the direction of the current flow, starting with the
side for which I = Iŷ. Denoting the force on side one by F1, on side two by F2, etc., we
have: on side one

d l = dlŷ ⇒ F1 = aIB(ŷ× x̂) = −aIBẑ;

on side two

d l = dl(− sin θ x̂+ cos θ ẑ) ⇒ F2 = aIB(− sin θ x̂+ cos θ ẑ)× x̂ = aIB cos θ ŷ;

on side three
d l = −dlŷ ⇒ F3 = −aIB(ŷ × x̂) = aIBẑ = −F1;

while on the fourth side

d l = dl(sin θ x̂− cos θ ẑ) ⇒ F4 = aIB(sin θ x̂− cos θ ẑ)× x̂ = −aIB cos θ ŷ = −F2.

Thus the total force on the loop vanishes

F = F1 + F2 +F3 + F4 = 0.

There is however a net torque. The torque generated by Fs on side s of the square
(s = 1, 2, 3, 4) is the same as it would be if Fs were applied to the mid-point of the relevant
side. Denote the mid-points of the four edges by rs then

r1 =
a

2
(sin θ x̂− cos θ ẑ),

r2 =
a

2
ŷ,

r3 =
a

2
(− sin θ x̂+ cos θ ẑ) = −r1,

r4 = −a

2
ŷ = −r2.

r2 and r4 are parallel to F2 and F4 respectively, so they give no torque, leaving

τ = (r1 ×F1) + (r3 ×F3) = 2(r1 × F1) = 2
(a
2

)
(sin θ x̂− cos θ ẑ)× (−aIBẑ)

= a2IB sin θ ŷ = mB sin θ ŷ = m×B,
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where m = Ia2n
Although the torque has been derived for a special geometry, a square loop with two

sides perpendicular to B, the result is general: a magnetic dipole m in an external field B

experiences a torque
τ = m×B.

This is exactly the same result (13) as for an electric dipole in an external electric
field, the torque tends to twists the dipole so that it lines up with the field and the torque
is zero when the dipole is parallel to the field: if the dipole points in the same direction as
the field then it is in stable equilibrium, if the dipole points in the opposite direction to the
field then it is in unstable equilibrium. This effect can be expressed in terms of potential
energy, there is a potential energy U associated with the dipole,

U = −m.B = −mB cos θ,

that is minimised (stable equilibrium) when θ = 0.
As for electrostatics, this expression for the potential energy of the dipole is also valid

when B(r) depends on position, giving rise to a force on m when B(r) is not constant

F = −∇U(r) = ∇
(
m.B(r)

)
.

In a region of space where the current density generating the external field vanishes, so
∇×B(r) = 0, we can derive B from a magnetic scalar potential, B(r) = −∇Ψ(r), and*

Fi = −∂i




3∑

j=1

mj∂jΨ



 = −
3∑

j=1

mj∂i∂jΨ = −
3∑

j=1

mj∂j(∂iΨ) = (m.∇)Bi(r),

so
F = ∇(m.B) = (m.∇)B (20)

and, as in electrostatics (12), a dipole is attracted to regions of stronger B.
There is a version of Earnshaw’s theorem for magnetostatics, but things are more

subtle when quantum effects are taken into account. For example consider a magnetic
dipole m in an external field B, in a region of space where ∇×B = 0 so we can define a
magnetic scalar potential B(r) = −∇Ψ(r). The argument now exactly parallels that of the
discussion of Earnshaw’s theorem in electrostatics, but with U(r) = −m.B(r) = m.∇Ψ(r).
Equilibrium requires the force on m to vanish, so F = −∇U = −(m.∇)∇Ψ = 0 Thus

F = 0 ⇔ (m.∇)B = 0

so B is constant in the direction of m. Stable equilibrium further requires that ∇2U(r) > 0
so

(m.∇)∇2Ψ > 0

* Remember m is constant, independent of r.
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but ∇.B = 0 ⇒ −∇2Ψ = 0 so it is impossible to satisfy the condition for stable equilibrium
in a region of space where ∇×B = 0.

Unlike electrostatics, however, there is a way out of Earnshaw’s theorem in magne-
tostatics, which relies on the quantum properties of magnetic dipoles. This is because
magnetic dipoles are associated with angular momentum and, in the theory of quantum
mechanics, angular momentum is quantised in units of h̄/2, so we might expect magnetic
dipoles to be quantised too and indeed they are. In classical physics the potential energy
of a dipole in an external field, U = −m.B, can have any value between its maximum mB,
when m is parallel to B, and −mB, when m is anti-parallel to B. In the theory of quan-
tum mechanics magnetic dipoles are quantised in the same way as angular momentum —
relative to a reference direction, which we take to be that of the external field, n = B/B.
The dipole moment can only have a discrete set of values

m = sgµBn

where s can take discrete values, either integral or half-integral (h̄s is like an angular
momentum), µB is the Bohr magneton and g is a number, called the Landé g-factor,
which can be calculated using the theory of addition of angular momentum in quantum
mechanics. For example, from (19), g = 1 if m is due solely to the orbital angular
momentum of a constituent electron while g = 2 if m is due solely to the intrinsic angular
momentum of a constituent electron.* In general g is neither 1 nor 2, it can even be
negative.

In any case the potential energy of such a quantised dipole in an external field B = Bn

is
U = −m.B = −sgµBB

and stable equilibrium requires both

∇U = 0 ⇒ ∇B = 0 and ∇2U > 0 ⇒
{
∇2B > 0 if sg < 0
∇2B < 0 if sg > 0.

If gs < 0, U is minimised at places where B is a minimum (weak field seeking states); if
gs > 0, U is minimised at places where B is a maximum (strong field seeking states).† In
particular the dipole can be in stable equilibrium if we can cook up a magnetic field for
which the magnitude of B has a minimum somewhere. A configuration like this is called a

* For a free electron g is actually not quite 2. It can be calculated using the quan-
tum theory of electrodynamics, Quantum Electro-Dynamics or QED. The deviation from
2 is known as the anomalous magnetic moment of the electron and it depends on the

fine structure constant, α = e2

4πǫ0h̄c
≈ 1/137. The best current measurement is g − 2 =

0.0023193043718. In fact comparison of the experimental value with the theoretical pre-
diction of QED gives the most accurate current estimate of α.

† A material that, as a whole, is drawn towards regions of weaker field is called a
diamagnetic material, a material that is drawn to regions of stronger field is called a
paramagnetic material.
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magnetic trap, because it is capable of trapping and holding individual molecules or atoms
at fixed points in space, provided they have a suitable magnetic dipole moment. There
is no analogue of this phenomenon for static electric fields because electric dipoles have
nothing to do with angular momentum and so are not quantised.

Note that while ∇2B > 0 is a necessary condition for weak-field seeking states to

be in stable equilibrium it is not sufficient. Let Hij = ∂2B
∂xi∂xj

, with x1 = x, x2 = y

and x3 = z, then a necessary and sufficient condition for weak-field seeking states to be
in stable equilibrium is that all three eigenvalues of the symmetric matrix Hij must be
positive, not just its trace.

For example suppose that
B = xx̂− yŷ

(you should convince yourself that this satisfies ∇.B = 0 and ∇ × B = 0). Then B =√
x2 + y2 clearly has a minimum at x = y = 0. B not is actually differentiable there, but

clearly minimising B2 is equivalent to minimising B, and B2 = x2 + y2 is differentiable
with

∇(B2) = 2(xx̂+ yŷ)

vanishing iff x = y = 0 while

∂2(B2)

∂xi∂xj
=




2 0 0
0 2 0
0 0 0



 .

A configuration like this is called a linear trap. Actually it only traps dipoles in two
directions, the x and y directions — the dipoles will be in neutral equilibrium in the
z-direction. A configuration that traps in 3-dimensions is

B = B0 + a(xx̂+ yŷ − 2zẑ),

where B0 is a constant vector and a is a constant (again check that this satisfies ∇.B = 0
and ∇×B = 0). In this case B2 = (B0,x + ax)2 + (B0,y + ay)2 + (B0,z − 2az)2 and

∇(B2) = 2a
(
(B0,x + ax)x̂+ (B0,y + ay)ŷ− 2(B0,z − 2az)ẑ

)

vanishes at

x = −B0,x

a
, y = −B0,y

a
, z =

2B0,z

a
,

while

∂2(B2)

∂xi∂xj
=




2a2 0 0
0 2a2 0
0 0 4a2


 ,

and all three eigenvalues are positive.

4. Maxwell’s Equations in the Presence of Matter
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Maxwell’s equations are

∇× E+
∂B

∂t
= 0 ∇.B = 0

∇×B− 1

c2
∂E

∂t
= µ0J ∇.E =

ρ

ǫ0

where ρ accounts for all the electric charge and J for all the current density. Unfortunately
we do not always know where all possible charges that can contribute to ρ and J might
be.

For example, because the distribution of electric charge within a water molecule is not
symmetric the molecule has a small electric dipole moment.

O
HH

p

+

If there is no external electric field the dipole moments of each molecule point in
random directions and they add up to zero, but if we place an electric charge in water
the electric field of the charge will tend to align the electric dipole moments of the water
molecules so that they are no longer random but instead add up to give a significant
contribution to the total electric field in the water. A similar phenomenon can occur even
in a medium whose individual molecules do not have a permanent dipole moment, such as
molecular oxygen, O2. This is a symmetric molecule and has no permanent electric dipole
moment but, if an oxygen molecule is placed in an external electric field then the field
tends to displace the negatively charged electrons in the oxygen relative to the positively
charged oxygen atomic nuclei and the molecule develops a dipole moment, which would
go away again if the external field were turned off.

O    O+

p

E

O    O

Water and oxygen are examples of polarisable media, because they can develop a
significant polarisation in response to an external field, even though they are not polarised
in the absence of such a field. In both cases the problem of calculating the total electric
field due to an electric charged placed in the medium (water or oxygen) becomes difficult.

Consider a small volume δV of a polarisable medium containing δN particles each with
the same electric dipole moment p. It the dipoles were perfectly aligned the total electric
dipole moment of δV would be pδN (in practice the dipoles will never be perfectly aligned,
due to their thermal motion, but we shall make this assumption here for simplicity). We
define a polarisation, P, by

PδV = pδN.
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Now P, the dipole moment in a unit volume of material, will contribute to the electric
field. If δV is positioned at a source point r′ then its contribution to the electrostatic
potential at a field point r will be, from (11),

δΦ(r) =
1

4πǫ0

P(r′).(r− r′)

|r− r′|3 δV ′.

If the material of the medium is contained in a volume V then the contribution of the
medium to Φ(r) is then Φ(P) where

Φ(P)(r) =
1

4πǫ0

∫

V

P(r′).(r− r′)

|r− r′|3 dV ′,

where the superscript (P) is to remind us that this is not the total electrostatic potential,
but only the contribution coming from the dipoles in the medium. This contribution can
be re-expressed as

Φ(P)(r) =
1

4πǫ0

∫

V

P(r′).(r− r′)

|r− r′|3 dV ′ =
1

4πǫ0

∫

V

P(r′).∇′
(

1

|r− r′|

)
dV ′,

where it is important to remember that ∇′ acts on r′ and not on r. Integrating by parts

∫

V

P(r′).∇′
(

1

|r− r′|

)
dV ′ = −

∫

V

∇′.P(r′)

|r− r′| dV ′ +

∫

S

P(r′).dS′

|r− r′| ,

where S is the 2-dimensional surface bounding V . The electric field due to the polarisation
of the medium is now

E(P)(r) = −∇Φ(P)(r)

so

∇.E(P)(r) = −∇2Φ(P)(r) = − 1

ǫ0
∇.P(r) +

1

ǫ0

∫

S

δ(r− r′)P(r′).dS′,

where we have used −∇2
(

1
|r−r′|

)
= 4πδ(r− r′). The last term on the right hand side is

called the surface polarisation, it can be non-zero only when the field point r is taken to
lie on the surface S. When r /∈ S

∇.E(P)(r) = − 1

ǫ0
∇.P(r).

The total electric field is the sum of the electric field due to the charge density ρ(r)
introduced into the medium (we shall call these the free charges and denote the resulting
electric field by EFree(r)) and the electric field induced by the polarisation, E(P). EFree(r)
must satisfy

∇.EFree(r) =
ρ(r)

ǫ0
.
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The total electric field E(r) = EFree(r) + E(P)(r) must then satisfy

∇.E(r) = ∇.EFree(r) +∇.E(P)(r) =
ρ(r)

ǫ0
− 1

ǫ0
∇.P(r)

⇒ ∇.(ǫ0E+P) = ρ.

In effect −∇.P gives an extra contribution to the charge density. It is now convenient to
define a quantity called the electric displacement vector

D(r) = ǫ0E(r) +P(r)

which satisfies the simple equation

∇.D(r) = ρ(r).

If we know ρ(r) we can use all of the techniques that we have already studied to solve
this equation for D — the net effect of the presence of the medium is simply to replace
ǫ0E with D. However we still cannot calculate E, because the polarisation P depends on
the total electric field E, it is a function P(E), but P also contributes to E so we cannot
calculate E without knowing P and we cannot calculate P without knowing E. To make
progress we need another assumption and in many practical situations it is sufficient to
Taylor expand P(E), that is consider P(E) to be a function of the three component of the
E and Taylor expand in these three variables. This is an acceptable procedure provided E

is not too strong and, in practice, it is often only necessary to retain the first non-zero term
in the expansion to get a good description of the physics. If there is a constant term in the
Taylor expansion P(0) = P0 then there will be a non-zero electric polarisation even when
the electric field vanishes. Materials which sustain such a polarisation are called ferro-

electrics, but this is not common. When there is no constant term in a Taylor expansion,
as for most materials, the first non-zero term starts at the linear level. In fact for most
media it is sufficient to take P to be a linear function of E and ignore quadratic terms. In
a fluid, a liquid (like water) or a gas (like O2), it seems reasonable that P will be parallel
to, an in the same direction as, E, though this is not necessarily true in a solid, such as a
crystal. So for a fluid we write

P = ǫ0χeE (21)

where χe is a positive constant known as the electric susceptibility of the medium (it is
a measure of how susceptible the medium is to being polarised when it is placed in an
external electric field). A medium whose polarisation vector satisfies (21) is called a linear

medium. For such a medium
D = ǫ0(1 + χe)E = ǫE

where ǫ = ǫ0(1+χe) is called the electric permittivity of the medium (in a vacuum χe = 0
so ǫ = ǫ0 is the same as the electric permittivity of the vacuum). In a linear medium

∇.D = ǫ∇.E = ρ ⇒ ∇.E =
ρ

ǫ
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and we can calculated E using all our earlier techniques, just replace ǫ0 with ǫ everywhere.
Note that, since χe is positive in a polarisable medium, ǫ > ǫ0, so the electric field

produced by a charge density ρ is of exactly the same form as, but of a smaller magnitude
than, the field produced by the same charge distribution in a vacuum. The polarisation of
the medium is said to screen the free charges so they behave as though they have a smaller
magnitude. Another name for a polarisable medium is a dielectric and ǫ is also called the
dielectric constant of the medium. For example, in pure water at 20◦C, ǫ/ǫ0 = 1+χe = 80
and most solid dielectrics have χe in the range 1− 20. In the limit of χe → ∞ the electric
field vanishes — this is what happens in a conductor, the electric field inside a conducting
medium always vanishes even when an external field is applied.

There are also interesting effects when matter is put in an external magnetic field.
Many materials, such as again water, consist of atoms or molecules that have small mag-
netic moments, or at least can develop one when an external magnetic field B is applied.
These will tend to line up with B and generate a magnetic dipole moment which then
modifies B. Making the same assumptions as before, suppose a small volume δV of mate-
rial contains δN magnetic dipoles, each with magnetic dipole moment m, then the total
dipole moment in δV will be given by

MδV = mδN,

where M is called the magnetisation. The material in δV situated at r′ then contributes,
from (18),

δA(r) =
µ0

4π

(
M(r′)× (r− r′)

|r− r′|3
)
δV

to the magnetic vector potential, so the total contribution of all the material in a volume
V is then

A(M)(r) =
µ0

4π

∫

V

M(r′)× (r− r′)

|r− r′|3 dV ′.

Using (r−r
′)

|r−r′|3 = ∇′
(

1
|r−r′|

)
we can integrate by parts

∫

V

M(r′)× (r− r′)

|r− r′|3 dV ′ =

∫

V

M(r′)×∇′
(

1

|r− r′|

)
dV ′ = −

∫

V

∇′
(

1

|r− r′|

)
×M(r′)dV ′

=

∫

V

∇′ ×M(r′)

|r− r′| dV ′ +

∫

S

M(r′)× dS′

|r− r′| ,

so we have

A(M)(r) =
µ0

4π

∫

V

∇′ ×M(r′)

|r− r′| dV ′ +
µ0

4π

∫

S

M(r′)× dS′

|r− r′| .

The magnetisation then contributes a term B(M)(r) = ∇×A(M)(r) to the total magnetic
field. Now, using ∇×

(
∇×A(M)

)
= ∇

(
∇.A(M)

)
−∇2A(M) and ∇.A(M)(r) = 0,

∇×B(M)(r) = −∇2A(M)(r) = µ0

(
∇×M(r)

)
+

µ0

4π

∫

S

δ(r− r′)
(
M(r′)× dS′).
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The last term on the right hand side represents a current on the surface of V and vanishes
if r is not on S.

When r /∈ S the total magnetic field is B = B(M)(r) + BFree, where BFree is the
field produced by any currents J that are not associated with the internal structure of the
atoms or molecules, i.e. currents that we force through the medium ourselves. These will
give a contribution BFree(r) satisfying ∇×BFree(r) = µ0J(r). So the total field satisfies

∇×B(r) = µ0J(r) + µ0

(
∇×M(r)

)
⇒ ∇× (B− µ0M) = µ0J.

In effect ∇ × M acts like an extra contribution to the current. It is then convenient to
define a quantity called the magnetic intensity

H =
1

µ0
B−M

so that
∇×H = J

and the net effect of the presence of the medium is to replace B with µ0H in the original
equation. We cannot however calculate B itself yet, just as in the discussion on electric
polarisation B depends on M but M depends on B and we need some assumptions about
M(B) to go any further. We shall Taylor expand in B, which is a reasonable thing to
do so as long as B is not too strong. Magnetic materials which have M 6= 0 even when
B = 0 are called ferromagnets (examples are iron, nickel and cobalt). An ordinary bar
magnet is such a material, for example — it has a non-zero magnetic dipole moment even
in the absence of any external field. For ferromagnetic materials it is usually a very good
approximation to keep only the first non-zero term in a Taylor expansion of M(B) and we
can take M(B) = M0, a constant, so

H =
1

µ0
B−M0.

In particular if there are no currents and H = 0 then B = µ0M is non-zero even when
J = 0, this is the situation in a permanent magnet like a bar magnet.

For materials that do not have a permanent magnetisation, the Taylor expansion will
start with a linear term and for fluids (but not necessarily for solids) we expect M to be
parallel to B.

M =
χm

µ0
B

where χm is called the magnetic susceptibility of the medium.* This leads to

B = µH,

* The 1/µ0 is conventional. Some textbooks define M = χmH ⇒ M = 1
µ0

χm

(1+χm)B,

but in most substances |χm| << 1 so there is no practical difference (superconductors are
an exception to this, they have a very large magnetic susceptibility).
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where

µ =
µ0

1− χm
,

and hence

∇×B = µJ.

The net result is to replace µ0 with µ in Maxwell’s equations. µ is called the magnetic

permeability of the medium and µ = µ0 in a vacuum.

If 1 > χm > 0 then µ > µ0 and the magnetic field generated by a given J is stronger
than it would be in a vacuum — the atomic or molecular dipole moments m line up the
external field and enhance it. A material with χm > 0 is called paramagnetic, for example
aluminium and magnesium are paramagnetic. At first sight it may seem strange that the
electric field generated by a given ρ is weaker in a dielectric than in a vacuum while in a
paramagnet the magnetic field generated by a given J is stronger than it would be in a
vacuum. This can be understood intuitively by considering a slab of dielectric material in a
constant electric field as being like an electric dipole itself, with a dipole moment sustained
by a surface charge induced by the external field. The electric field inside a dipole aligned
with an external field points in the opposite direction to the external field.

EAppliedETotal
= +

EDipole

p

EDipole

+

−
−
−
−
−
−
−
−
−
−

+

+
+
+
+
+
+
+

+
+

EApplied

P

E

−

Dipole

EDipole

On the other hand for a magnetic dipole, thought of as a loop of current, aligned with
an external magnetic field the magnetic field inside the dipole points in the same direction
as the external magnetic field. A slab of paramagnetic material in an external magnetic
field can be viewed as itself being a magnetic dipole with a dipole moment sustained by
surface currents induced by the external field.

37



I

Applied

= +Total Applied Dipole

Dipole

B

B

B BB

M

m

DipoleB

DipoleB

However magnetic effects are subtle and χm, unlike χe, can be negative. Materials
with χm < 0 are called diamagnetic. Put simply, if the atoms or molecules have non-zero
angular momentum (arising, for example, from the spin of unpaired electrons) they will
have a permanent magnetic dipole moment and will tend to be paramagnetic while if they
have no unpaired electrons they will have no permanent dipole moment, but an externally
applied magnetic field may generate one in which case they will be diamagnetic. This can
be understood in terms of Lenz’s law — the currents induced by the external field are in
such a direction as to reduce the field. A diamagnet, like a dielectric, tends to reduce the
applied field. Diamagnetic response to an external field is very common but diamagnetism
is usually very weak and when either paramagnetism or ferromagnetism are present they
usually dominate.

There are thus three types of magnetic materials: ferromagnetic, paramagnetic and
diamagnetic. Some materials can have different magnetic properties under different condi-
tions, for example ferromagnetic materials tend to lose there magnetism at high tempera-
ture, due to thermal motion of the atoms knocking their dipole moments out of alignment,
and become paramagnetic.

Typically magnetic effects are small: χm ∼ 10−2 − 10−5 for paramagnets and the
most diamagnetic substance known, at room temperature, is a form of Carbon called
pyrolytic graphite, with χm = −4.0× 10−4. The most diamagnetic metal is Bismuth with
χm = −1.8 × 10−4. Water is also diamagnetic, with χm ≈ −5 × 10−6. But magnetic
effects are not always small: superconductors are materials in which χm → −∞ at very
low temperatures. Superconductors are perfect diamagnets with µ = 0 and B = 0 inside
a superconductor, even when J 6= 0. When a material becomes superconducting magnetic
field lines are expelled to the exterior of the material — a phenomenon known as the
Meissner effect. For example the element Mercury becomes superconducting below 4.2 K.

The net result of the presence of matter in static situations can be summarised by
taking Maxwell’s equations in the vacuum for time-independent fields,

∇.E =
ρ

ǫ0
, ∇×B = µ0J,
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and making the substitutions

ǫ0E → D ⇒ ǫ0∇.E = ρ → ∇.D = ρ

1

µ0
B → H ⇒ 1

µ0
∇×B = J → ∇×H = J.

The equations ∇.B = 0 and ∇× E = 0 are unchanged: since they are unaffected by
the presence of sources matter does not affect them. The same argument implies that,
even for time varying fields, the equations

∇× E+
∂B

∂t
= 0 ∇.B = 0

are unaffected by the presence of matter. Näıvely using the substitutions above when
time-dependence is included in the full equation

∇×B− ǫ0µ0

(
∂E

∂t

)
= µ0J

gives
1

µ0
∇×B− ǫ0

(
∂E

∂t

)
= J → ∇×H− ∂D

∂t
= J,

and we arrive at Maxwell’s equations in the presence of matter

∣∣∣∣∣∣∣∣∣∣∣

∇×E+
∂B

∂t
= 0 ∇.B = 0

∇×H− ∂D

∂t
= J ∇.D = ρ

∣∣∣∣∣∣∣∣∣∣∣

The same substitutions result in modifications of the energy density and the Poynting
vector,

w =
1

2
(ǫ0E.E+

1

µ0
B.B) → w =

1

2
(E.D+B.H)

S =
1

µ0
(E×B) → S = (E×H).

From now on we shall restrict our attention to a linear medium, in which D = ǫE and
H = 1

µ
B. In this case

∇× E+
∂B

∂t
= 0 ∇.B = 0

∇×B− ǫµ
∂E

∂t
= µJ ∇.E =

ρ

ǫ
,

(22)
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and

w =
1

2
(ǫE.E+

1

µ
B.B) S =

1

µ
(E×B).

5. Plane Waves and Radiation from Simple Systems

Differentiating Maxwell’s equations (22) gives

0 = ∇×
(
∇×E+

∂B

∂t

)
= ∇(∇.E)−∇2E+

∂

∂t
(∇×B) =

1

ǫ
∇ρ−∇2E+ ǫµ

∂2E

∂t2
+ µ

∂J

∂t

⇒ ∇2E− ǫµ
∂2E

∂t2
=

1

ǫ
∇ρ+ µ

∂J

∂t

and

µ(∇× J) = ∇×
(
∇×B− µǫ

∂E

∂t

)
= ∇(∇.B)−∇2B− µǫ

∂

∂t
(∇× E) = −∇2B+ ǫµ

∂2B

∂t2

⇒ ∇2B− ǫµ
∂2B

∂t2
= −µ(∇× J).

In a charge and current free region of space, ρ = 0 and J = 0, Maxwell’s equations im-
ply (but are not equivalent to) a set of coupled, linear, homogeneous differential equations
for E and B,

∇2E− ǫµ
∂2E

∂t2
= 0

∇2B− ǫµ
∂2B

∂t2
= 0. (23)

These equations have wave-like solutions that move with speed v = 1/
√
µǫ, electro-

magnetic waves. To investigate this we shall adopt a complex notation and define os-
cillating complex electric and magnetic fields,

E(x, t) = E0e
i(k.x−ωt) B(x, t) = B0e

i(k.x−ωt) (24)

where E0 and B0 are constant complex vectors, k is a real vector (the wave-vector) and
ω > 0 (an angular frequency). This notation is a mathematical convenience, the true
physical fields are just the real part of these, E = ℜ(E) and B = ℜ(B). For example if
E0 = E0e

iδ and B0 = B0e
iδ , with E0 and B0 real vectors and δ a constant phase, then

E(x, t) = ℜ
(
E(x, t)

)
= E0 cos (k.x− ωt+ δ),

B(x, t) = ℜ
(
B(x, t)

)
= B0 cos (k.x− ωt+ δ).

As another example, if E0 = E0 + iẼ0 and B0 = B0 + iB̃0, with E0, Ẽ0, B0 and B̃0 real
vectors, then

E(x, t) = ℜ
(
E(x, t)

)
= E0 cos (k.x− ωt)− Ẽ0 sin (k.x− ωt)

B(x, t) = ℜ
(
B(x, t)

)
= B0 cos (k.x− ωt)− B̃0 sin (k.x− ωt).
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As long as we only deal with expressions that are linear in E and B with real co-efficients,
such as Maxwell’s equations, then we can use this complex notation and just extract the
real part at the end of the calculation.

In this notation equations (23) give

∇2E − ǫµ
∂2E
∂t2

= (−k.k+ ǫµω2)E = 0

∇2B − ǫµ
∂2B
∂t2

= (−k.k+ ǫµω2)B = 0

⇒ (−k.k+ ǫµω2) = 0 ⇒ ω

k
=

1√
µǫ

.

These configurations correspond to waves of oscillating electric and magnetic fields with
wave-length λ = 2π/k and frequency ν = ω/2π moving in the direction of the unit vector
n = k/k at speed v = ω/k = 1/

√
µǫ.* Thus we can relate the speed of light in a medium,

such as water or glass, to ǫ and µ. For most materials µ ≈ µ0

v

c
=

√
ǫ0
ǫ

=
1√

1 + χe
< 1

so the refractive index is

n =
√

1 + χe

and the speed of light in the medium is related to the electric susceptibility.†

However this is not the whole story, equations (23) follow from, but do not imply,
Maxwell’s equations — information was thrown away in deriving them from (22) — to get
the full picture we should substitute (24) into (22):

∇× E +
∂B
∂t

= 0 ⇒ i(k× E0) = iωB0 ⇒ B0 =
1

v
(n× E0), (25)

∇×B − µǫ
∂E
∂t

= 0 ⇒ i(k× B0) = −iµǫωE0 ⇒ E0 = −v(n× B0), (26)

∇.E = 0 ⇒ k.E0 = 0 ⇒ n.E0 = 0, (27)

∇.B = 0 ⇒ k.B0 = 0 ⇒ n.B0 = 0. (28)

* What we have described here is a monochromatic electro-magnetic wave traveling
through a medium — we focused on a single frequency ω. In general a wave will consist
of a superposition of many frequencies, perhaps centred around a maximum intensity
of a given colour, but this can be described by adding different frequencies of different
intensities — again the linearity of Maxwell’s equation allows us to add solutions to get
more solutions.

† The electric susceptibility can be a function of frequency: in water, for example,
χe ≈ 80 for static fields but this is reduced to χe ≈ 0.8 at optical frequencies giving a
refractive index of n = 1.3.
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Thus n, E0 and B0 are mutually perpendicular. Let n = e3 and introduce a right-handed
orthonormal triple, (e1, e2, e3), with e3 = e1 × e2 and ei.ej = δij . A general complex
vector E0 that is perpendicular to e3 is a linear combination of two linearly independent
possibilities: either E0 is proportional to e1,

E0 = E0e1,

where E0 is a complex number, in which case (25) to (28) require

B0 = B0e2 =
1

v
E0e2,

or E0 is proportional to e2,

E0 = Ẽ0e2,
where Ẽ0 is another complex number, in which case (25) to (28) require

B0 = −B̃0e1 = −1

v
Ẽ0e1.

The most general wave-like solution of Maxwell’s equations is a linear combination of these
two possibilities,

E(x, t) =
(
E0e1 + Ẽ0e2)

)
eik(x.n−vt), B(x, t) = 1

v

(
−Ẽ0e1 + E0e2

)
eik(x.n−vt).

These two linearly independent possibilities are associated with the polarisation of
light. If the two complex constants E0 and E ′

0 have the same complex phase δ, so E0 = E0e
iδ

and Ẽ0 = Ẽ0e
iδ with E0 and Ẽ0 positive real constants, and n is in the z-direction so that

k.n = kz, then the physical fields are

E(x, t) = ℜ
(
E(x, t)

)
=
(
E0e1 + Ẽ0e2

)
cos(kz − ωt+ δ)

and

B(x, t) = ℜ
(
B(x, t)

)
=

1

v

(
E0e2 − Ẽ0e1

)
cos(kz − ωt+ δ

)
.

The electric and magnetic fields therefore keep a fixed orientation in space and are at
right-angles to each other, and to the direction of motion n of the wave, but oscillate in
magnitude. This is called a plane polarised wave.

e1

e2 E

θ=

Plane Polarised Wave

B

tan (E /E )−1 ~
0 0
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Other geometries are possible if E0 and Ẽ0 have different complex phases, e.g. suppose

E0 = E0 and Ẽ0 = iẼ0 with E0 and Ẽ0 real. Then, again with n in the z-direction,

E(x, t) = ℜ
(
E(x, t)

)
= E0 cos(kz − ωt)e1 − Ẽ0 sin(kz − ωt)e2

and

B(x, t) = ℜ
(
B(x, t)

)
=

1

v

{
E0 cos(kz − ωt)e2 + Ẽ0 sin(kz − ωt)e1

}
,

and again E and B are always at right-angles to each other, and to n, but this time they
rotate both describing an ellipse: the wave is said to be elliptically polarised. If E0 = Ẽ0

they describe a circle and the wave is circularly polarised. If Ẽ0 = −iẼ0 the rotation is
in the opposite direction (the two possible rotation directions for a circularly polarised
electro-magnetic wave are called different helicities).

e

e

1

2

Circularly Polarised Wave

E

 θ= −    tωk.n

Electro-magnetic waves carry energy and we calculate the energy flux using the Poynt-
ing vector. The Poynting vector will depend on time and its average value over a cycle of
oscillation is the more relevant quantity. First we must think a little about the meaning
of our complex notation for quantities that are quadratic in the fields, in fact the complex
notation is tailored towards calculating time-averages of quadratic quantities. To show
this we shall prove a little lemma:

If f(t) = f0e
−iωt and g(t) = g0e

−iωt, where f0 and g0 are independent of time t, then
the time average of ℜ(f)ℜ(g) over a complete cycle, T = 2π/ω, is

fg :=
1

T

∫ T

0

ℜ
(
f(t)

)
ℜ
(
g(t)

)
dt =

1

2
ℜ(f∗

0 g0) (29)

where f∗
0 is the complex conjugate of f0.

To prove this let
f0 = u+ iv and g0 = ζ + iη
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where u, v, ζ and η are real and independent of t. Then

ℜ
(
f(t)

)
ℜ
(
g(t)

)
=
(
u cos(ωt) + v sin(ωt)

)(
ζ cos(ωt) + η sin(ωt)

)

= uζ cos2(ωt) + vη cos2(ωt) + (uη + vζ) cos(ωt) sin(ωt)

so

∫ 2π
ω

0

(
ℜ(f)

)(
ℜ(g)

)
dt = uζ

∫ 2π
ω

0

cos2(ωt)dt+ vη

∫ 2π
ω

0

sin2(ωt)dt =
π

ω
(uζ + vη),

since
∫ 2π

ω

0
cos(ωt) sin(ωt)dt = 0 and

∫ 2π
ω

0
cos2(ωt)dt =

∫ 2π
ω

0
sin2(ωt)dt = π

ω . Hence the time
average

fg =
1

2
(uζ + vη).

But
ℜ(f∗g) = ℜ(f∗

0 g0) = uζ + vη,

which proves (29).
We can now apply this to calculate the time-average of the energy flux at a point x

from the Poynting vector S = (E×B)/µ,

S(x) =
ω

2πµ

∫ 2π
ω

0

(
E(x, t)×B(x, t)

)
dt =

1

2µ
ℜ(E∗

0 × B0) =
1

2vµ
E∗
0.E0n,

independent of x (equations (25) and (28) have been used in the last step above). This is
related to the time-average of the energy density in the wave

w =
ω

2π

∫ 2π
ω

0

1

2

(
ǫE(x, t).E(x, t) +

1

µ
B(x, t).B(x, t)

)
dt

=
1

4

(
ǫE∗

0.E0 +
1

µ
B∗
0.B0

)
=

ǫ

2
E∗
0.E0.

So, since v = 1/
√
ǫµ,

S = v wn,

a very natural result stating that the time-averaged energy-flux is in the direction n of the
wave and has a magnitude which is just the time-averaged energy times the speed of the
wave.

Electro-magnetic waves are produced by oscillating charge and current distributions
and in order to describe this we shall use the potentials rather than the fields.

Vector and Scalar Potentials

Since ∇.B = 0 we always have B = ∇×A, even in the presence of matter, so

∇× E+
∂B

∂t
= 0 ⇒ ∇×

(
E+

∂A

∂t

)
= 0.
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Hence E+ ∂A
∂t can be expressed as a gradient, E+ ∂A

∂t = −∇Φ, so

E = −∇Φ− ∂A

∂t
, B = ∇×A.

Notice that for any twice differentiable function Λ(r, t)

A′ := A+∇Λ ⇒ B = ∇×A′ = ∇×A

Φ′ := Φ− ∂Λ

∂t
⇒ E = −∇Φ′ − ∂A′

∂t
= −∇Φ− ∂A

∂t
.

Thus Φ′ and A′ give rise to the same E and B fields as Φ and A. The potentials Φ and A

for an electro-magnetic field configuration are not unique, there is an ambiguity in their
definition. The change

A′ → A+∇Λ

Φ′ → Φ− ∂Λ

∂t
(30)

is called a gauge transformation.* In the magnetostatics section we showed that A(r)
arising from a given J(r) satisfied ∇.A = 0, but we see now that this is not essential, if
∇.A = 0 then ∇.A′ 6= 0 unless ∇2Λ = 0 which need not always be the case. Different
choices of Λ lead to different gauges and a choice which gives∇.A = 0 is called the Coulomb

gauge, which is useful for problems in statics. For time varying fields the condition

∇.A+
1

c2
∂Φ

∂t
= 0

is often convenient, this is called the Lorentz gauge (obviously the Lorentz gauge reduces
to the Coulomb gauge when Φ is independent of t). For any potentials (Φ,A) it is always
possible to find a Λ so that (Φ′,A′) satisfy the Lorentz gauge condition, since

∇.A′ +
1

c2
∂Φ′

∂t
= ∇.A+∇2Λ+

1

c2
∂Φ

∂t
− 1

c2
∂2Λ

∂t2
= 0

⇒ ∇2Λ− 1

c2
∂2Λ

∂t2
= −∇.A− 1

c2
∂Φ

∂t
.

The last equation here is just the inhomogeneous wave-equation for Λ, with a source
f(r, t) := −∇.A− 1

c2
∂Φ
∂t , and this equation can always be solved to find Λ so that (Φ′,A′)

satisfy the Lorentz gauge condition.
However, even the Lorentz gauge condition does not completely remove the ambiguity

in (Φ,A), for example if (Φ,A) satisfy the Lorentz gauge condition then

A → A+∇λ, Φ → Φ− ∂λ

∂t

* The name is historical and, from a modern perspective, is rather inappropriate, but
nevertheless it has stuck.

45



do too, provided λ satisfies the wave equation, −∇2λ+ 1
c2

∂2λ
∂t2

= 0. This residual ambiguity
in Φ and A does not affect any of the following analysis.

In terms of Φ and A two of Maxwell’s equations are automatic,

B = ∇×A ⇒ ∇.B = 0

E = −∇Φ− ∂A

∂t
⇒ ∇×E = −∂B

∂t

so we only need worry about the equations that involve sources ρ and J. In the vacuum,
with ǫ = ǫ0 and µ = µ0,

†

∇.E =
ρ

ǫ0
⇒ −∇2Φ− ∂(∇.A)

∂t
=

ρ

ǫ0

∇×B− 1

c2
∂E

∂t
= µ0J ⇒ ∇(∇.A)−∇2A+

1

c2
∂(∇Φ)

∂t
+

1

c2
∂2A

∂t2
= µ0J.

In the Lorentz gauge 1
c2

∂Φ
∂t = −∇.A these reduce to the inhomogeneous wave-equations

−∇2Φ+
1

c2
∂2Φ

∂t2
=

ρ

ǫ0
, −∇2A+

1

c2
∂2A

∂t2
= µ0J.

In particular in a source free region of space, where ρ = 0 and J = 0, the potentials satisfy
the wave equation

−∇2Φ +
1

c2
∂2Φ

∂t2
= 0, −∇2A+

1

c2
∂2A

∂t2
= 0

and there will be wave-like solutions.

Radiation from Simple Systems

We shall now study the electromagnetic radiation produced by an oscillating distri-
bution of charges and currents, using the method of Greens function. In statics we solved

∇.E = −∇2Φ =
ρ

ǫ0

∇×B = −∇2A = µ0J (in the Coulomb gauge, ∇.A = 0)

in a volume V using Green functions which satisfy −∇2G(r, r′) = δ(r− r′). For example,
if V is unbounded space, G(r, r′) = 1

4π|r−r′| gives

Φ(r) =
1

ǫ0

∫

V

ρ(r′)G(r, r′)dV ′ =
1

4πǫ0

∫

V

ρ(r′)

|r− r′|dV
′

A(r) = µ0

∫

V

J(r′)G(r, r′)dV ′ =
µ0

4π

∫

V

J(r′)

|r− r′|dV
′.

† This whole analysis works equally well in a linear medium with ǫ0 → ǫ, µ0 → µ and
c → v everywhere in the equations.

46



In a dynamical situation, using the Lorentz gauge, we must solve

−∇2Φ+
1

c2
∂2Φ

∂t2
=

ρ

ǫ0

−∇2A+
1

c2
∂2A

∂t2
= µ0J (31).

Our strategy will again be to find suitable Green functions, but first we eliminate the time
derivatives by using Fourier transforms. Define Fourier amplitudes

Φ̃(r, ω) =

∫ ∞

−∞
Φ(r, t)eiωtdt

Ã(r, ω) =

∫ ∞

−∞
A(r, t)eiωtdt,

assuming the integrals exist. Given Φ̃(r, ω) and J̃(r, ω) the original charge and current
densities can be re-constructed using the inverse transforms

Φ(r, t) =
1

2π

∫ ∞

−∞
Φ̃(r, ω)e−iωtdω A(r, t) =

1

2π

∫ ∞

−∞
Ã(r, ω)e−iωtdω.

Multiplying (31) by eiωt, integrating over all t and equating the integrands gives

−
(
∇2 +

ω2

c2

)
Φ̃ =

ρ̃

ǫ0
, −

(
∇2 +

ω2

c2

)
Ã = µ0J̃,

where

ρ̃(r, ω) =

∫ ∞

−∞
ρ(r, t)eiωtdt, J̃(r, ω) =

∫ ∞

−∞
J(r, t)eiωtdt,

are the Fourier transforms of the charge and current densities. The problem is now reduced
to finding Green functions Gk(r, r

′) for the operator −(∇2 + k2
)
, called the Helmholtz

operator,
−(∇2 + k2

)
Gk(r, r

′) = δ(r− r′)

where k = ω/c.
If V is unbounded space we can expect, from translational invariance, that Gk(r, r

′)
should depend only on the difference R = r − r′, Gk(R). Similarly rotational invariance
implies that Gk(R) should depend only on R = |R| and not on its direction, so there will
be no angular dependence. Expressing ∇2 in 3-dimensional polar co-ordinates, with the
origin taken to be R = 0, we therefore have

∇2Gk(R) =
1

R

(
d2(RGk)

dR2

)
⇒ 1

R

(
d2(RGk)

dR2
+ k2(RGk)

)
= δ(R).

If R 6= 0 (
d2

dR2
+ k2

)
(RGk) = 0
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which has two linearly independent solutions which we denote by G±
k ,

RG±
k = C±e

±ikR,

where C± are constants. When k = 0 the Helmholtz operator reduces to the Laplace
operator, that we studied in the electrostatics section, with Green function 1/4πR, so we
can fix the normalisation

Gk(R) −→
k→0

G0(R) =
C±
R

=
1

4πR
.

So we choose C± = 1/4π and set*

G±
k (R) =

e±ikR

4πR
=

e±iω
c R

4πR
.

The method of Green functions therefore leads to two linearly independent solutions in
unbounded space for any given ρ(r, t) and J(r, t),

Φ̃±(r, ω) =
1

4πǫ0

∫

V

ρ̃(r, ω)

|r− r′|e
±iω

c |r−r
′|dV ′, Ã±(r, ω) =

µ0

4π

∫

V

J̃(r, ω)

|r− r′|e
±iω

c |r−r
′|dV ′.

These reduce to the static result when ω = 0. The inverse Fourier transforms give

Φ±(r, t) =
1

4πǫ0

1

2π

∫ ∞

−∞

(∫

V

ρ̃(r, ω)

|r− r′|e
±iω

c |r−r
′|dV ′

)
e−iωtdω

=
1

4πǫ0

∫

V

1

|r− r′|

(
1

2π

∫ ∞

−∞
ρ̃(r′, ω)e±iω

c |r−r
′|−iωtdω

)
dV ′

=
1

4πǫ0

∫

V

ρ(r′, t±)

|r− r′| dV
′,

A±(r, t) =
µ0

4π

1

2π

∫ ∞

−∞

(∫

V

J̃(r′, ω)

|r− r′| e
±iω

c |r−r
′|dV ′

)
e−iωtdω

=
µ0

4π

∫

V

1

|r− r′|

(
1

2π

∫ ∞

−∞
J̃(r′, ω)e±iωc |r−r

′|−iωtdω

)
dV ′

=
µ0

4π

∫

V

J(r′, t±)

|r− r′| dV
′,

* More generally we can take any linear combination

Gk(R) =
1

R

(
C+e

ikR + C−e
−ikR)

as a Green function, provided C++C− = 1/4π. As an exercise check, given that∇2(1/R) =
−4πδ(R), that (∇2 + k2)(e±ikR/R) = −4πδ(R).
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where t± := t∓ 1
c |r− r′|. To summarise

∣∣∣∣∣∣∣∣∣∣∣∣

Φ±(r, t) =
1

4πǫ0

∫

V

ρ(r′, t±)

|r− r′| dV
′,

A±(r, t) =
µ0

4π

∫

V

J̃(r′, t±)

|r− r′| dV
′.

∣∣∣∣∣∣∣∣∣∣∣∣

These formulae have a very simple physical interpretation: Φ+(r, t) at the field point r

depends on ρ(r′, t+) at the source point r′ not as it is at time t but as it was at time
t+ = t − |r − r′|/c, because it takes a finite time |r − r′|/c for information, moving at
the speed of light, about the charge distribution at r′ to reach the point r. Φ+ and A+

are called retarded potentials, because of this time-lag. The second set of solutions, Φ−

and J−, correspond to the fields at r being influenced by what the charge and current
distributions will be at the time t− = t + |r − r′|/c in the future, Φ− and J− are called
advanced potentials. We shall restrict our attention to retarded potentials from now on.*

Multipole expansions

In principle the retarded potentials can be obtained by doing the integrals†

Φ̃(r, ω) =
1

4πǫ0

∫

V

ρ̃(r′, ω)

|r− r′| e
ik|r−r

′|dV ′, Ã(r, ω) =
µ0

4π

∫

V

J̃(r′, ω)

|r− r′| e
ik|r−r

′|dV ′,

for given ρ and J but, as in statics, this is often not possible analytically so we resort to
a multipole approximation. We shall concentrate on a single frequency ω and consider, in
complex notation, a charge and current distribution

ρ(r, t) = ρ̃(r)e−iωt, J(r, t) = J̃(r)e−iωt, (32)

where ρ̃(r) and J̃(r) are a static, possibly complex, charge and current density.‡ Their
Fourier transforms are

ρ̃(r, ω′) =

∫ ∞

−∞
ρ(r, t)eiω

′tdt =
1

2π

∫ ∞

−∞
ρ̃(r)ei(ω

′−ω)tdt = ρ̃(r)δ(ω − ω′),

J̃(r, ω′) =

∫ ∞

−∞
J(r, t)eiω

′tdt =
1

2π

∫ ∞

−∞
J̃(r)ei(ω

′−ω)tdt = J̃(r)δ(ω − ω′),

and for simplicity we shall omit the δ-functions and just use ρ̃(r) and J̃(r) where it is

understood that the angular frequency is ω. Similarly Φ̃(r) and Ã(r) are defined by

Φ̃(r, ω′) = Φ̃(r)δ(ω − ω′) and Ã(r, ω′) = Ã(r)δ(ω − ω′)

* Advanced potentials are important in the theory of relativistic quantum mechanics,
where they are related to the existence of anti-particles.

† From now on we shall only consider retarded potentials and omit the superscript +.
‡ As before the physical charge and current densities are the real parts of these.
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so

Φ̃(r) =
1

4πǫ0

∫

V

ρ̃(r′)

|r− r′|e
ik|r−r

′|dV ′, Ã(r) =
µ0

4π

∫

V

J̃(r′)

|r− r′|e
ik|r−r

′|dV ′. (33)

We shall now show that, when ω 6= 0, Φ̃(r) and Ã(r) are not independent — we can

derive Φ̃(r) from Ã(r) using conservation of charge (17), which also follows from Maxwell’s
equations

∇×B− 1
c2 Ė = µ0J

∇.E = ρ
ǫ0

⇒ ∇.J = − 1

µ0c2
∇.Ė = −ρ̇,

since ∇.(∇×B) = 0. The time dependence in (32) gives

∇.J̃ = iωρ̃ ⇒ ρ̃ = − i

ω
∇.J̃.

Hence

Φ̃(r, ω) =
1

4πǫ0

∫

V

ρ̃(r′)

|r− r′|e
ik|r−r

′|dV ′ = − i

4πǫ0ω

∫

V

(
∇′.J̃(r′)

)

|r− r′| eik|r−r
′|dV ′

=
i

4πǫ0ω

∫

V

J̃(r′).∇′
(
eik|r−r

′|

|r− r′|

)
dV ′ = − i

4πǫ0ω
∇.

(∫

V

J̃(r′)
eik|r−r

′|

|r− r′| dV
′
)

=− ic2

ω
∇.Ã(r)

where we have integrated by parts and assumed that there is no flux of current through
the bounding surface of V . This is in fact just the Lorentz gauge condition again

Φ̃(r) = − ic2

ω
∇.Ã(r) ⇒ ∇.Ã(r)− iω

c2
Φ̃(r) = 0 ⇒ ∇.A(r, t) +

1

c2
Φ̇(r, t) = 0.

The multipole expansion follows from a Taylor expansion: in Cartesian co-ordinates,
xi, expanding around r′ = 0 and using the fact that ∂

∂x′

i
= − ∂

∂xi
when acting on a function
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of |r− r′|,

eik|r−r
′|

|r− r′| =
eikr

r
+

3∑

i=1

x′
i

[
∂

∂x′
i

(
eik|r−r

′|

|r− r′|

)]

r
′=0

+
1

2

3∑

i,j=1

x′
ix

′
j

[
∂2

∂x′
i∂x

′
j

(
eik|r−r

′|

|r− r′|

)]

r
′=0

+ . . .

=
eikr

r
−

3∑

i=1

x′
i

∂

∂xi

(
eikr

r

)
+

1

2

3∑

i,j=1

x′
ix

′
j

∂2

∂xi∂xj

(
eikr

r

)
+ . . .

=
eikr

r
− eikr

3∑

i=1

x′
i

(
ik

xi

r2
− xi

r3

)

+
eikr

2

3∑

i,j=1

x′
ix

′
j

[
ikxj

r

(
ik

xi

r2
− xi

r3

)
+ δij

(
ik

r2
− 1

r3

)
+ xi

(
3xj

r5
− 2ik

xj

r4

)]
+ . . .

=
eikr

r
+

eikr

r3
(1− ikr)

3∑

i=1

x′
ixi

+
eikr

2r5

3∑

i,j=1

[
xixj{3(1− ikr)− k2r2} − δijr

2(1− ikr)
]
x′
ix

′
j + . . .

Using this expansion in (33) gives

Φ̃(r) =
eikr

4πǫ0





Q̃

r
+

(1− ikr)

r3
(p̃.r) +

3∑

i,j=1

xixj

2r5
[
(1− ikr)

(
3q̃ij − δijTr(q̃)

)
− k2r2q̃ij

]


+ . . .

Ãi(r) =
µ0e

ikr

4π





1

r

∫

V

J̃i(r
′)dV ′ +

(1− ikr)

r3

3∑

j=1

xj

[∫

V

x′
j J̃i(r

′)dV ′
]
+ . . .




 ,

where

Q̃ =

∫

V

ρ̃(r′)dV ′, p̃ =

∫

V

r′ρ̃(r′)dV ′ and q̃ij =

∫

V

x′
ix

′
j ρ̃(r

′)dV ′

are the multipole moments and Tr(q̃) =
∑3

i=1 q̃ii.* In fact conservation of charge forces

Q̃ = 0 since

Q̃ =

∫

V

ρ̃(r′)dV ′ = − i

ω

∫

V

∇′.J(r′)dV ′ = − i

ω

∫

S

J̃(r′).dS′ = 0

if there is no flux of current through the surface S bounding V .

* Small q̃ij is used here for the quadrupole moment because a capital qij was used in
the electrostatics section to denote the traceless part of the quadrupole moment, q̃ij =
1
2

∫
V
(3x′

ix
′
j − δijr

′2)ρ̃(r′)dV ′.
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As mentioned earlier Φ̃ and Ã are not independent. From charge conservation, ∇.J̃ =
iωρ̃, we have

∫

V

J̃i(r
′)dV ′ =

3∑

j=1

∫

V

∂

∂x′
j

(
x′
iJ̃j(r

′)
)
dV ′ −

∫

V

x′
i

(
∇′.J̃(r′)

)
dV ′

= −iω

∫

V

x′
iρ̃(r

′)dV ′ = −iωp̃i

where again it has been assumed that there is no flux of current through the surface
bounding V , so

3∑

j=1

∫

V

∂

∂x′
j

(
x′
iJ̃j(r

′)
)
dV ′ =

3∑

j=1

∫

S

(
x′
iJ̃j(r

′)
)
dS′

j = 0

from the divergence theorem.
Also

∫

V

x′
j J̃i(r

′)dV ′ =
3∑

k=1

∫

V

∂

∂x′
k

(
x′
ix

′
j J̃k(r

′)
)
dV ′ −

∫

V

x′
iJ̃j(r

′)dV ′ −
∫

V

x′
ix

′
j

(
∇′.J̃(r′)

)
dV ′

=−
∫

V

x′
iJ̃j(r

′)dV ′ − iω

∫

V

x′
ix

′
j ρ̃(r

′)dV ′ = −
∫

V

x′
iJ̃j(r

′)dV ′ − iωq̃ij

⇔
∫

V

x′
j J̃i(r

′)dV ′ =
1

2

∫

V

(
x′
j J̃i(r

′)− x′
iJ̃j(r

′)
)
dV ′ − iω

2
q̃ij .

The first term on the right hand side is anti-symmetric under interchange of the indices i
and j and is called the magnetic dipole moment, it is equivalent to the vector

m̃ =
1

2

∫

V

r′ × J̃(r′)dV ′,

while the second term is the electric quadrupole moment and is symmetric under inter-
change of i and j. Using these expressions

Φ̃(r) =
1

4πǫ0
eikr



 (1− ikr)

r3
(p̃.r) +

(1− ikr)

r5

3∑

i,j=1

xixj

(
q̃ij −

1

2
k2r2q̃ij

)
+ . . .





Ãi(r) =
µ0

4π
eikr


− iω

r
p̃i +

(1− ikr)

r3



(m̃× r)i −

iω

2

3∑

j=1

xj q̃ij



+ . . .


 .

The three terms that are explicit on the right hand side of Ãi here are referred to re-
spectively as the electric dipole term, p̃i, the magnetic dipole term, m̃i and the electric
quadrupole term, q̃ij . In a time independent situation, ω = 0, k = 0, the electric dipole
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and quadrupole terms vanish leaving the familiar magnetic dipole term from statics (18).

As an exercise you may wish to check that indeed ∇.Ã(r) = i ω
c2 Φ̃(r).

Electric Dipole Radiation

To understand how these kinds of potentials can lead to radiation we shall examine
the electric dipole term as an example. So consider

Ã(r) = −i
µ0ωe

ikr

4π

p̃

r
.

Using ∇r = r/r := n, the unit vector in the radial direction,

B̃(r) = ∇× Ã(r) = −i
µ0ωe

ikr

4π

(
ikn

r
− n

r2

)
× p̃ =

µ0k
2c

4π

eikr

r

(
1 +

i

kr

)
(n× p̃).

The electric field can be evaluated either from Ẽ = −∇Φ̃ + iωÃ directly or by observing
that Maxwell’s equation

∇×B = µ0ǫ0Ė ⇒ Ẽ =
ic2

ω
∇× B̃ =

ic

k
∇× B̃.

Using the identity

∇×
(
n× p̃

r

)
= ∇×

(
r× p̃

r2

)

= −2

(
n× (n× p̃)

r2

)
+

1

r2
∇× (r× p̃)

= −2

(
n× (n× p̃)

r2

)
− 1

r2
p̃(∇.r) +

1

r2
(p̃.∇)r

= −2

(
n× (n× p̃)

r2

)
− 3

r2
p̃+

1

r2
p̃

= −2

(
n.p̃

r2

)
n
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gives

B̃ =
k2

4πǫ0c
eikr

(
1 +

i

kr

)
(n× p̃)

r

⇒ Ẽ =
ic

k
∇× B̃

=
ic

k

k2

4πǫ0c
∇×

(
eikr

(
1 +

i

kr

)
(n× p̃)

r

)

=
ick

4πǫ0c
eikr

[
ik

(
1 +

i

kr

)
n× (n× p̃)

r
+∇×

{(
1 +

i

kr

)
(n× p̃)

r

}]

=
ick

4πǫ0c
eikr

[{
ik

(
1 +

i

kr

)
− i

kr2

}
n× (n× p̃)

r
− 2

(
1 +

i

kr

)(
n(n.p̃)

r2

)]

= − k2

4πǫ0
eikr

[{
1 +

i

kr

(
1 +

i

kr

)}
n× (n× p̃)

r
+

2i

k

(
1 +

i

kr

)(
n(n.p̃)

r2

)]

= − k2

4πǫ0

eikr

r

[
n× (n× p̃) +

i

kr

(
1 +

i

kr

)
{3n(n.p̃)− p̃}

]
.

Note that Ẽ.B̃ = 0.
These expressions are rather involved in general and it is instructive to examine two

special limits:
i) The near zone, kr << 1 so r is small,

B̃ =
ik

4πǫ0c

n× p̃

r2
, Ẽ =

1

4πǫ0

3n(n.p̃)− p̃

r3
,

where the electric field dominates.
ii) The far zone, kr >> 1 so r is large,

B̃ =
k2

4πǫ0c

eikr

r
(n× p̃), Ẽ = −c(n× B̃),

where the electric and magnetic fields both fall off like 1/r. Remember that this is a
multipole expansion and these expression are only accurate when r is much greater
than the largest dimension of the volume containing the charges and currents.

The physical electric and magnetic fields are then the real parts

E = ℜ(Ẽe−iwt) B = ℜ(B̃e−iwt).

The far zone is particularly important for understanding radiation a long way away from
the sources where the energy flux, averaged over a cycle of period 2π/ω, is given by (29)

S̄ =
1

2µ0
ℜ(Ẽ× B̃∗) =

1

2µ0

1

(4πǫ0)2
k4

cr2
{(n× p̃)× n} × (n× p̃∗)

=
k4c

2(4π)2ǫ0

1

r2
{(p̃× n).(p̃∗ × n)}n.
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The energy flux is therefore purely radial, in the n direction, and falls off like 1/r2.
Now suppose, for example, that the complex vector p̃ has the same complex phase for

each component, i.e. p̃ = eiαp̃0 where p̃0 is a real vector. In this particular case

S̄ =
k4c

2(4π)2ǫ0

p̃20 sin
2 θ

r2
n (34)

where θ is the angle between p̃0 and r and p̃20 = p̃0.p̃0. Most of the energy is radiated in
the direction θ = π/2, that is perpendicular to the direction of p̃0 and none is radiated
parallel to p̃0.

n

0

~ θ
Q

The total time-averaged power radiated, P̄, is the integral of the energy flux through
a sphere surrounding the dipole. Taking a sphere with large radius and using the radiation
zone expressions for E and B

P̄ =
k4c p̃20

2(4π)2ǫ0

∫ 2π

0

∫ π

0

(
sin2 θ

r2

)
r2 sin θdθdφ =

k4c p̃20
2(4π)2ǫ0

∫ 2π

0

∫ 1

−1

(1− u2)du =
k4c p̃20
12πǫ0

,

where u = cos θ. So the total power radiated through a sphere of large radius is

P̄ =
ω4p̃20

12πǫ0c3
=

p̈20
12πǫ0c3

, (35)

proportional to the square of the second derivative of p̃0 with respect to time.

Example: centre-fed linear antenna

A model for an antenna transmitting radio-waves is two collinear straight cylindrical
rods of length d with constant circular cross-section made of some conducting material
with an alternating current fed into a small gap between them (hence centre-fed).
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AC generator

n

d

d

y

x

z

We model the current as an oscillating function which decreases linearly (hence linear)
from a maximum amplitude I0 at the centre to zero at the end of the rods. Place the rod
so as to be aligned along the z-axis with the central gap at the origin, then the physical
current is the real part of

I(z, t) =

{
I0

(
1− |z|

d

)
e−iωt, |z| ≤ d

0, |z| > d.

Assuming the current density in the rods is independent of position, define J0 by

I0 = J0∆A,

where ∆A is the cross-sectional area of the rods. Then we define a complex current density
inside the antenna

J =
I0
∆A

(
1− |z|

d

)
e−iωtẑ, −d ≤ z ≤ d

while J = 0 outside the rods. Now

∇.J = ± I0
∆Ad

e−iωt

and conservation of charge
∇.J = −ρ̇

then implies a charge density, ρ(r, t) = ρ̃(r)e−iωt, with

ρ̃(r) = ± iI0
ωd∆A

inside the antenna (plus for 0 < z ≤ d and minus for −d ≤ z < 0) while ρ̃ vanishes outside
the antenna. We can define a charge per unit length

λ̃ = ρ̃∆A = ± iI0
ωd
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giving a dipole moment

p̃z =

∫ d

−d

zλ̃(z)dz =
iI0
ωd

(∫ d

0

zdz −
∫ 0

−d

zdz

)
=

2iI0
ωd

∫ d

0

zdz =
iI0d

ω
,

while p̃x = p̃y = 0, so

p̃.p̃∗ = p̃20 =

(
I0d

ω

)2

.

The time-averaged energy flux for r >> d is now given by (34) to be

S̄ =
ω4p̃20

2(4π)2ǫ0c3
sin2 θ

r2
n =

(ωI0d)
2

32π2ǫ0c3
sin2 θ

r2
n.

The time-averaged power radiated through a large sphere with the antenna at the centre
and r >> d is now given by (35) to be

P̄ =
(ωI0d)

2

12πǫ0c3
.

This is proportional to ω2, so higher frequencies radiate more power for a given current I0.
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Example: rotating dipole

Our next example is a dipole of constant magnitude, rotating around an axis at a
constant angle α to p. Choose the axis of rotation to be the z-axis with

p = p0 sinα
(
cos(ωt)x̂± sin(ωt)ŷ

)
+ p0 cosα ẑ = p0 sinαℜ

{
(x̂± iŷ)e−iωt

}
+ p0 cosα ẑ.

ωt
n

θ

z

y

x
φ

α

p

The last term on the right hand side is independent of time and will not radiate, so
we can determine the radiation by focusing on

p̃ = p0 sinα(x̂± iŷ).

Expressing the unit radial vector r/r = n in Cartesians,

n = sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ,

we can determine the Poynting vector from

p̃× n = p0 sinα
{
(sin θ sinφ± i sin θ cosφ)ẑ+ (− cos θ)ŷ∓ i cos θ x̂

}

⇒ (p̃× n).(p̃× n)∗ = (sin2 θ + 2 cos2 θ)p20 sin
2 α = (1 + cos2 θ)p20 sin

2 α

giving

S̄ =
ω4p20 sin

2 α(1 + cos2 θ)

32π2ǫ0c3r2
n

in the radiation zone kr >> 1. The radiation is most intense in the direction of the axis
of rotation, the z-axis when θ = 0 or π, but there is still some radiation (half the intensity
of that along the z-axis) in the direction perpendicular to the axis of rotation, θ = π/2.
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α

ωt

z

n

θ

p

Time-averaged energy flux from a rotating dipole.

The time-averaged power is then

P =
ω4p20 sin

2 α

16πǫ0c3

∫ π

0

(1 + cos2 θ) sindθ =
ω4p20 sin

2 α

16πǫ0c3

∫ 1

−1

(1 + u2)du =
ω4p20 sin

2 α

6πǫ0c3
.

Thus a rotating electric dipole radiates a time-averaged power proportional to the fourth
power of the frequency.

If we picture a neutral hydrogen atom as an electron in a circular orbit around a
proton, with a separation equal to the Bohr radius, ao = 5.3 × 10−11 m, then this is a
rotating electric dipole which should radiate and lose energy. The electron will spiral into
the centre and the atom is unstable. The above formula for the power radiated predicts
that the atom can only last for 1.2× 10−11 s. Quantum mechanics resolves this paradox
by assuring us that the electron does not have a definite position and its wave-function is
in fact spherically symmetric — there is no rotating dipole.

A rotating magnetic dipole with

m = m0(cosωtx̂− sinωtŷ) sinα+m0 cosαẑ,

so m.m = m2
0, leads to almost the same expression, except ǫ0 → 1/µ0,

P̄ =
ω4m2

0µ0 sin
2 α

6πc3
.

A pulsar is a rotating neutron star with a magnetic dipole that is not aligned with the
axis of rotation and this expression gives the time-averaged power radiated by a pulsar in
electromagnetic (radio) waves. This loss of energy makes pulsars spin down with time.

6. Relativistic Formulation of Electromagnetism

From the special theory of relativity the Lorentz transformations between two inertial
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co-ordinates systems* (ct, x, y, z) and (ct′, x′, y′, z′), written in matrix form, is




ct′

x′

y′

z′


 =




γ(v) −γ(v) v
c

0 0
−γ(v) vc γ(v) 0 0

0 0 1 0
0 0 0 1







ct
x
y
z


 (36)

where γ(v) = 1/
√
1− v2/c2. Equivalently, using an index notation xµ′

= (ct′, x′, y′, z′)
and xµ = (ct, x, y, z) with µ = 0, 1, 2, 3,

xµ′

=

3∑

ν=0

Lµ′

ν(v)x
ν

where Lµ′

ν(v) are the components of the 4 × 4 matrix in (36). Note that, as a matrix,
L(−v) = L−1(v). Denote four dimensional vectors (4-vectors) by U

˜
, with components Uµ

in the xµ co-ordinate system and Uµ′

in the x′µ co-ordinate system so

Uµ′

=
3∑

ν=0

Lµ′

ν(v)U
ν .

Then an invariant “length squared” of U
˜
, denoted by a dot product U

˜
.U
˜
, can be defined

by first introducing a matrix

η =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




and defining

Uµ :=

3∑

ν=0

ηµνU
ν ⇒ (U0, U1, U2, U3) = (−U0, U1, U2, U3).

Also

Uµ =

3∑

ν=0

(
η−1

)µν
Uν

where η−1 is the inverse matrix to η (in fact η−1 = η since η2 = 1). With this notation

U
˜
.U
˜

:= −
(
U0
)2

+
(
U1
)2

+
(
U2
)2

+
(
U3
)2

= −
(
U0
)2

+U.U =
3∑

µ,ν=0

ηµνU
µUν =

3∑

ν=0

UνU
ν ,

* We take the x, y and z-axis aligned with the x′, y′ and z′-axis respectively and the
origins (x, y, z) = (0, 0, 0) and (x′, y′, z′) = (0, 0, 0) co-incising at t = t′ = 0.
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where the 3 dimensional vector (3-vector) U has components (U1, U2, U3) in the xµ co-
ordinate system and (U ′1, U ′2, U ′3) in the xµ′

co-ordinate system.* Note that U
˜
.U
˜

can be

positive, negative or zero depending on whether
(
U0
)2

> U.U (time-like vector),
(
U0
)2

<

U.U (space-like vector) or
(
U0
)2

= U.U. (light-like or null vector).
In this notation the differential form of charge conservation

∂ρ

∂t
+∇.J =

∂ρ

∂t
+

3∑

i=1

∂iJ
i = 0,

where ∂i = ∂/∂xi, can be written succinctly by defining a 4-vector J
˜
, with components

Jµ = (cρ, J1, J2, J3)

in the xu co-ordinates, so that

∂ρ

∂t
+

3∑

i=1

∂iJ
i = c

(
1

c

∂ρ

∂t

)
+

3∑

i=1

∂iJ
i =

3∑

µ=0

∂Jµ

∂xµ
=

3∑

µ=0

∂µJ
µ = 0,

where ∂µ = ∂/∂xµ. The 4-vector J
˜
is called the 4-current.

Compare this with the wave equations for the potentials that follow from Maxwell’s
equations, with µ = µ0, ǫ = ǫ0 and c2 = 1/ǫ0µ0 in the Lorentz gauge ∇.A+ 1

c2
∂Φ
∂t = 0,

∇2Φ− 1

c2
∂2Φ

∂t2
= − 1

ǫ0
ρ = −µ0c

2ρ

∇2A− 1

c2
∂2A

∂t2
= −µ0J.

Combining cρ and J into a 4-vector then implies that it is also natural to combine Φ/c
and A into a 4-potential

Aµ = (Φ/c, A1, A2, A3)

which satisfies (
∇2 − 1

c2
∂2

∂t2

)
A
˜

=
3∑

µ,ν=0

(
η−1

)µν
∂µ∂νA˜

= −µ0J˜
,

Denote by the second order differential operator

=

(
∇2 − 1

c2
∂2

∂t2

)
,

* Note that U has no Lorentz invariant meaning, it is a different 3-vector in different
reference frames. As an exercise, check that U

˜
.U
˜

is the same in both reference frames but
U.U is not.
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called the wave operator, or sometimes the d’Alembertian, then Maxwell’s equations imply

A
˜

= −µ0J˜
.

In this notation the Lorentz gauge condition is

3∑

µ=0

∂µA
µ = 0.

What about the electric and magnetic fields themselves?

E = −∇Φ− ∂A

∂t
⇒ Ei = −c

∂A0

∂xi
− c

∂Ai

∂x0
= c
(
∂iA0 − ∂0Ai

)

(note the sign change A0 = −A0) and

B = ∇×A ⇒ Bi =
1

2

3∑

j,k=1

ǫijk
(
∂Ak

∂xj
− ∂Aj

∂xk

)
=

1

2

3∑

j,k=1

ǫijk
(
∂jAk − ∂kAj

)
,

where ǫijk is defined to be
ǫijk = ei.(ej × ek)

with
{
e1, e1, e1

}
a right-handed orthonormal basis.*

The 6 components of E and B can be combined into an anti-symmetric 4× 4 matrix
with components

Fµν = ∂µAν − ∂νAµ (37)

with Fµν = −Fνµ. Then Ei/c = Fi0 and Fjk =
∑3

k=1 ǫ
ijkBk and, as a matrix,

Fµν =




0 −E1/c −E2/c −E3/c
E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0


 .

The electric and magnetic fields are different to other 3-dimensional vectors that you have
met in this regard. In relativity 3-momentum P is combined with energy E into the the
4-momentum P

˜
= (E/c,P) and current density J is combined with the charge density ρ

into the 4-current (ρc,J). E and B do not become 4-vectors in relativity, they are the

* This is shorthand way of writing the components of a vector product: there are 33 = 27
different possibilities for ǫijk but 21 of these are zero (if any two of i, j or k are the same)
so i, j and k must all be different leaving 6 possibilities, ǫ123 = ǫ231 = ǫ312 = +1 and
ǫ213 = ǫ132 = ǫ321 = −1.
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components of the anti-symmetric matrix Fµν which is called the electromagnetic field

tensor. Sometimes it is convenient to ‘raise’ the indices on Fµν using η−1 thus, using a
shorthand notation ηµν = (η−1)µν ,

Fµν =
3∑

ρ,σ=0

ηµρηνσFρσ =




0 E1/c E2/c E3/c
−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0


 ,

or even just raise one index,

Fµ
ν =

3∑

ρ=0

ηµρFρν =




0 E1/c E2/c E3/c
E1/c 0 B3 −B2

E2/c −B3 0 B1

E3/c B2 −B1 0




or

Fµ
ν =

3∑

σ=0

ηνσFµσ =




0 −E1/c −E2/c −E3/c
−E1/c 0 B3 −B2

−E2/c −B3 0 B1

−E3/c B2 −B1 0.




Be careful of these signs, the notation of upper and lower indices is adopted here to
account for the minus signs that arise in special relativity. A zero superscript always has
the opposite sign to a zero subscript but there is no practical difference between an upper
1, 2, or 3 or a lower 1,2 or 3.

Maxwell’s equations are now seen to be related to

3∑

µ=0

∂µF
µν =

3∑

µ=0

∂µ
(
∂µAν

)
−

3∑

µ=0

∂µ
(
∂νAµ

)
= Aν − ∂ν

(
3∑

µ=0

(
∂µA

µ
)
)

= Aν = −µ0J
ν

(in the Lorentz gauge, note the sign change ∂µ =
∑3

ν=0 η
µν∂ν so ∂µ = (−∂0, ∂1, ∂2, ∂3)).

So the two Maxwell’s equations involving sources

∇×B− 1

c2
Ė = µ0J, ∇.E =

ρ

ǫ0

are combined in a relativistic formulation into

3∑

µ=0

∂µFµν = −µ0Jν

(4 equations, one for each value of ν).
What about the other Maxwell’s equations

∇×E+
∂B

∂t
= 0, ∇.B = 0 ?
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Consider the combination

∂µFνρ + ∂νFρµ + ∂ρFµν =
1

2

(
∂µFνρ + ∂νFρµ + ∂ρFµν − ∂µFρν − ∂νFµρ − ∂ρFνµ

)

with µ, ν and ρ all different. There are 4× 3× 2 = 24 possibilities, but only 4 of these are
independent because, up to a sign, it does not matter what order the three indices are put
in. With the choice µ = 1, ν = 2 and ρ = 3 this is

∂1B1 + ∂2B2 + ∂3B3 = ∇.B,

with µ = 0, ν = 1 and ρ = 2 it is

1

c

∂B3

∂t
+ ∂1

(
E2

c

)
+ ∂2

(−E1

c

)
=

1

c
(∇×E)3 +

1

c

∂B3

∂t
,

with µ = 0, ν = 2 and ρ = 3 it is

1

c

∂B1

∂t
+ ∂2

(
E3

c

)
+ ∂3

(−E2

c

)
=

1

c
(∇×E)1 +

1

c

∂B1

∂t
,

with µ = 0, ν = 3 and ρ = 1 it is

1

c

∂B2

∂t
+ ∂3

(
E1

c

)
+ ∂1

(−E3

c

)
=

1

c
(∇×E)2 +

1

c

∂B2

∂t
.

Introducing the shorthand notation

∂[µFνρ] :=
1

3!

(
∂µFνρ + ∂νFρµ + ∂ρFµν − ∂µFρν − ∂νFµρ − ∂ρFνµ

)

when µ, ν and ρ are all different* we have

∇×E− ∂B

∂t
= 0, ∇.B = 0 ⇔ ∂[µFνρ] = 0.

In fact
∂[µFνρ] = 0

is an automatic consequence of the fact that Fµν can be derived from the potential Aµ,
Fµν = ∂µAν − ∂νAµ, provided only that Aµ is at least twice differentiable.

In summary, Maxwell’s equations can be written in a relativistic formulation as
∣∣∣∣∣∣∣∣∣∣∣

3∑

µ=0

∂µF
µν = −µ0J

ν

∂[µFνρ] = 0,

∣∣∣∣∣∣∣∣∣∣∣

with Jµ = (cρ,J).

* The notation [µνρ] indicates that the three indices appear with all six possible per-
mutations, with a plus sign for the three even permutations of the indices (i.e µνρ, νρµ
and ρµν) and a minus sign for the three odd permutations (i.e µρν, νµρ and ρνµ). Such
a linear combination is said to be anti-symmetrised under permutations.
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Gauge invariance.

In relativistic notation the gauge transformation (30) can be written

A′
µ = Aµ + ∂µΛ

where Λ(xµ) is a differentiable function. Then the components of the electromagnetic field
tensor are invariant

F ′
µν = ∂µA

′
ν − ∂νA

′
µ = ∂µAν + ∂µ∂νΛ− ∂νAµ − ∂ν∂µΛ = ∂µAν − ∂νAµ = Fµν .

This is like a 4-dimensional version of the 3-dimensional analysis for B,

B = ∇×A and A′ = A+∇Λ ⇒ B′ = B since ∇×∇Λ = 0.

Indeed Fµν is like a 4-dimensional ‘curl’ of Aµ.

Lorentz transformations

In this section we shall discuss how E and B transform under Lorentz transformations.
To simplify notation let β = v/c and γ(β) = 1/

√
1− β2. Then

xµ′

=
3∑

ν=0

Lµ′

ν(β)x
ν

with

Lµ′

ν(β) =




γ(β) −βγ(β) 0 0
−βγ(β) γ(β) 0 0

0 0 1 0
0 0 0 1


 .

Similarly Jµ are the components of a 4-vector so they transform as

Jµ′

=
3∑

ν=0

Lµ′

ν(β)J
ν

and Aµ are the components of a 4-vector so they transform as

Aµ′

=
3∑

ν=0

Lµ′

ν(β)A
ν

The ‘divergence’ of the 4-current

3∑

µ=0

∂µJ
µ = ∂

˜
. J
˜
= 0
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is a scalar, not a vector, and so should be invariant,

3∑

µ=0

∂µJ
µ =

3∑

µ′=0

∂µ′Jµ′

= 0,

charge is conserved in all reference frames. This dictates how ∂µ should transform under
Lorentz transformations, suppose

∂µ′ =
3∑

ρ=0

Mρ
µ′(β)∂ρ

for some Mρ
µ′(β) then

3∑

µ′=0

∂µ′Jµ′

=
3∑

µ′=0

(
3∑

ρ=0

Mρ
µ′∂ρ

)(
3∑

ν=0

Lµ′

νJ
ν

)
=

3∑

ν,ρ=0





3∑

µ′=0

(
Mρ

µ′Lµ′

ν

)
∂ρJ

ν





=

3∑

ν,ρ=0

(ML)ρν∂ρJ
ν =

3∑

ν=0

∂νJ
ν

where ML is the product of the two matrices. This can only be true for any J
˜
if ML is

the identity matrix, in components (ML)ρν = δρν , so M(β) = L−1(β) = L(−β). Hence

Jµ′

=
3∑

ν=0

Lµ′

ν(β)J
ν , ∂µ′ =

3∑

ν=0

(L−1)νµ′(β)∂ν .

Indeed any vector with the index as a sub-script must transform with L−1, e.g Jµ =∑3
ν=0 ηµνJ

ν transforms as

Jµ′ =

3∑

ν=0

(L−1)νµ′Jν

under Lorentz transformations. Vectors that transform with L are called contra-variant

vectors (they have super-scripts) while vectors that transform with L−1 are called co-

variant vectors (they have sub-scripts). The difference again amounts to some sign differ-
ences, since L−1(β) = L(−β).

We can now determine how Fµν , and hence E and B, transform. Since

Aµ′ =

3∑

ν=0

(
L−1

)ν
µ′
Aν and ∂µ′ =

3∑

ν=0

(
L−1

)ν
µ′
∂ν ,

we have

Fµ′ν′ = ∂µ′Aν′ − ∂ν′Aµ′ =

3∑

ρ,σ=0

(
L−1

)ρ
µ′

(
L−1

)σ
µ′

(
∂ρAσ − ∂σAρ

)

=

3∑

ρ,σ=0

(
L−1

)ρ
µ′

(
L−1

)σ
µ′
Fρσ..
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This can be re-written using the usual rules of matrix multiplication and the fact that L

is a symmetric matrix
(
L−1

)T
= L−1, in components

(
L−1

)ρ
µ′

=
(
L−1

)
µ′

ρ
, so

Fµ′ν′ =

3∑

ρ,σ=0

(
L−1

)ρ
µ′

(
L−1

)σ
µ′
Fρσ =

3∑

ρ,σ=0

(
L−1

)
µ′

ρ
Fρσ

(
L−1

)σ
ν′

or, in matrix notation,

F ′ = L−1FL−1 ⇔ F = LF ′L (38)

where F is the co-variant matrix with components Fµν and F ′ is the matrix with compo-
nents Fµ′ν′ .

As an illustration of (38) consider a point charge Q at rest at the origin of the xµ′

co-ordinate system. The electric and magnetic fields in the primed frame, with components
Ei′ and Bi′ , are

E′ =
Q

4πǫ0

r′

(r′)2
, B = 0 (39)

so

F ′ =




0 −E1′/c −E2′/c −E3′/c
E1′/c 0 0 0
E2′/c 0 0 0
E3′/c 0 0 0




and

F = LF ′L

=




γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1







0 −E1′/c −E2′/c −E3′/c
E1′/c 0 0 0
E2′/c 0 0 0
E3′/c 0 0 0







γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1




=
1

c




γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1







βγE1′ −γE1′ −E2′ −E3′

γE1′ −βγE1′ 0 0
γE2′ −βγE2′ 0 0
γE3′ −βγE3′ 0 0




=
1

c




0 −(1− β2)γ2E1′ −γE2′ −γE3′

(1− β2)γ2E1′ 0 βγE2′ βγE3′

γE2′ −βγE2′ 0 0
γE3′ −βγE3′ 0 0




=
1

c




0 −E1′ −γE2′ −γE3′

E1′ 0 βγE2′ βγE3′

γE2′ −βγE2′ 0 0
γE3′ −βγE3′ 0 0


 .
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From this we can read off the components E and B in the unprimed frame and express
them in terms of unprimed co-ordinates using the Lorentz transformation

x′ = γ(x− vt), y′ = y, z′ = z

,

E1 = E1′ =
Q

4πǫ0

x′

(r′)3
=

Q

4πǫ0

γ(x− vt)

{γ2(x− vt)2 + y2 + z2}3/2

E2 = γE2′ =
Q

4πǫ0

γ y′

(r′)3
=

Q

4πǫ0

γy

{γ2(x− vt)2 + y2 + z2}3/2

E3 = γE3′ =
Q

4πǫ0

γ z′

(r′)3
=

Q

4πǫ0

γz

{γ2(x− vt)2 + y2 + z2}3/2

B1 = 0

B2 = −βγ

c
E3′ = − Qv

4πǫ0c2
γz

{γ2(x− vt)2 + y2 + z2}3/2

B3 =
βγ

c
E2′ =

Qv

4πǫ0c2
γy

{γ2(x− vt)2 + y2 + z2}3/2 .

Since Q is moving with velocity v = vx̂ in the unprimed frame these can be more concisely
written as

E =
Q

4πǫ0

γ(r− vt)

{γ2(x− vt)2 + y2 + z2}3/2 , B =
Q

4πǫ0c2
γ(v× r)

{γ2(x− vt)2 + y2 + z2}3/2 . (40)

At t = 0 the electric field is reduced in the x-direction by a factor 1/γ2 relative to the
usual spherically symmetric Coulomb field of a stationary charge and increased in the y−z
plane by a factor of γ,

v

E
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and this picture moves to the right with constant speed v. There is a non-zero magnetic
field in the unprimed frame, because Q is moving in that frame and therefore generating
an electric current, which is everywhere perpendicular to E since E.B = 0.

Lorentz co-variance of Maxwell’s equations.

Maxwell’s equations are symmetric under Lorentz transformations, indeed this is how
Lorentz transformations were first discovered, but nevertheless E and B, and so Fµν ,
change — they are not invariant. Maxwell’s equations are said to be co-variant under
Lorentz transformations because their from is preserved even though the individual compo-
nents change. To see what this means consider the relativistic form of Maxwell’s equations
in the unprimed frame

3∑

µ=0

∂µF
µν = −µ0J

ν , ∂[µFνρ] = 0.

In the primed frame

∂µ′ =

3∑

ν=0

(
L−1

)ν
µ′
∂ν , Jµ′

=

3∑

ν=0

Lµ′

νJ
ν , and Fµ′ν′

=

3∑

ρ,σ=0

Lµ′

ρL
ν′

σF
ρσ

so
3∑

µ′=0

∂µ′Fµ′ν′

=
3∑

µ,σ=0

Lν′

σ∂µF
µσ = −µ0

3∑

σ=0

Lν′

σJ
σ = −µ0J

ν′

(a factor of L has canceled a factor L−1 in the first equation here) and

∂[µ′Fν′ρ′] =

3∑

τ,σ,ρ=0

(
L−1

)τ
[µ′

(
L−1

)σ
ν′

(
L−1

)λ
ρ′]
∂τFσρ

=
3∑

τ,σ,ρ=0

(
L−1

)τ
µ′

(
L−1

)σ
ν′

(
L−1

)λ
ρ′
∂[τFσρ] = 0.

Hence, in the primed frame, Maxwell’s equations are

3∑

µ′=0

∂µ′Fµ′ν′

= −µ0J
ν′

, ∂[µ′Fν′ρ′] = 0,

exactly the same from as in the unprimed frame, even though the individual components
are different. This is what is meant by co-variance and the statement above that Lorentz
transformations are a symmetry of Maxwell’s equations.

Since the components are different in different reference frames, it can sometimes be
difficult to see symmetries when the individual components are written out, as in equation
(40) for example. It is often useful to construct quantities that are genuinely invariant,
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i.e. they are the same in every reference frame. Such quantities can be evaluated in any
inertial reference frame and we know that we would get the same answer in any other
frame and sometimes calculations are easier in one particular frame so it is clearly easiest
to use that frame. One way of constructing invariants is to ‘contract’ indices so that there
are no free indices on our expressions. For example

3∑

µ=0

∂µJ
µ = 0 =

3∑

µ′=0

∂µ′Jµ′

is an invariant, it is the same in all reference frames (it happens to be zero).*
We can make an invariant out of E and B by considering the following quadratic

expression in F ,

3∑

µ,ν=0

FµνF
µν = 2

3∑

i=1

F0iF
0i +

3∑

i,j=1

FijF
ij = − 2

c2
E.E+

3∑

i,j,k,l=1

(
ǫijkB

k
)(
ǫijlBl

)
.

Now
∑3

i,j=1 ǫijkǫ
ijl = 2δk

l, so the combination

1

4

3∑

µν=0

FµνF
µν =

1

2

(
B.B− E.E

c2

)
=

1

2

(
B′.B′ − E′.E′

c2

)

is an invariant under Lorentz transformations, it is the same in all inertial references
frames.† As an exercise you should check this for (39) and (40).

There is in fact a second quadratic invariant that can be constructed from Fµν . To
show this we first need a 4-dimensional version of ǫijk, which we denote by ǫµνρσ. This
is defined to be zero if any of the 4 indices µ, ν, ρ or σ are the same so, of the 44 = 256
possibilities, 212 vanish and only 4! = 24 are non-zero. The non-zero ones are all defined
to be ±1 and for these {µ, ν, ρ, σ}must be some permutation of the four indices {0, 1, 2, 3}.
The permutation is called even if the sequence {µ, ν, ρ, σ} can be obtained {0, 1, 2, 3} by
an even number of interchanges of pairs and odd if {µ, ν, ρ, σ} must be obtained {0, 1, 2, 3}
by an odd number of interchanges of pairs. For example {0, 1, 2, 3}, {1, 0, 3, 2}, {0, 2, 3, 1}
and {2, 0, 1, 3} are even permutations (there are 12 in all) while {1, 0, 2, 3}, {0, 1, 3, 2},
{2, 0, 3, 1} and {1, 2, 3, 0} are odd (again there are 12 of these). Equivalently one and only
one index must be 0 for a non-zero value and

ǫ0ijk = −ǫi0jk = ǫij0k = −ǫijk0 = ǫijk,

* It is crucial that one index is up and one is down here, because only then do we get
a cancellation between L and L−1 in the primed expression

∑3
µ′=0 ∂µ′Jµ′

. If both indices
were sub-scripts, or both super-scripts, there would be no such cancellation, for example∑3

µ′=0 ∂µ′Jµ′ is not Lorentz invariant.
† This is reminiscent of the energy density stored in the electro-magnetic field, w =

1
2µ0

(
E.E
c2

+B.B
)
, but it is not the same, because of the sign difference. Energy is not

Lorentz invariant.
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with i, j, k = 1, 2 or 3, exhausts all possibilities. An important of consequence of this defi-
nition of ǫµνρσ is that it is Lorentz invariant. To see this consider the Lorentz transformed
quantity

ǫ0
′1′2′3′

=

3∑

µ,ν,ρ,σ=0

L0′

µL
1′

νL
2′

ρL
3′

σǫ
µνρσ .

The right hand side of this equation is nothing other than the definition of the determinant
of the 4× 4 matrix L, which evaluates to one

ǫ0
′1′2′3′

= detL = 1,

hence
ǫ0

′1′2′3 = ǫ0123

and all the other components of ǫµ
′ν′ρ′σ′

follow from the usual properties of determinant
(interchange two rows or two columns changes a sign, the determinant vanishes if any two
rows or columns are identical). We conclude that

ǫµ
′ν′ρ′σ′

=
3∑

τ,λ,η,ζ=0

Lµ′

τL
ν′

λL
ρ′

ηL
σ′

ζǫ
τληζ

has exactly the same components in every inertial reference frame, ±1 or 0. Note that
lowering the indices introduces minus sign, since one of them is necessarily the index 0,
and ǫ0123 = −ǫ0123 = −1.

Now the combination
∑3

µ,ν,ρ,σ=0 FµνFρσǫ
µνρσ has no free indices and is a Lorentz

invariant, again because the four factors of L−1 cancel against the four factors of L in∑3
µ′,ν′,ρ′,σ′=0 Fµ′ν′Fρ′σ′ǫµ

′ν′ρ′σ′

. Expanding this in terms of E and B

3∑

µ,ν,ρ,σ=0

FµνFρσǫ
µνρσ = 4

3∑

i,j,k=1

F0iFjkǫ
ijk = −4

c

3∑

i,j,k=1

Ei
( 3∑

l=1

ǫjklB
l
)
ǫijk

= −4

c

3∑

i,l=1

EiBl
(
2δil

)
= −8

c

3∑

i=1

EiBi = −8

c
E.B.

So

−1

8

3∑

µ,ν,ρ,σ=0

FµνFρσǫ
µνρσ =

E.B

c

has the same value in all inertial reference frames.
It is convenient to define

F̃µν :=
1

2

3∑

ρ,σ=0

ǫµνρσFρσ,
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called the dual of Fµν , which has components

F̃µν =




0 B1 B2 B3

−B1 0 −E3/c E2/c
−B2 E3/c 0 −E1/c
−B3 −E2/c E1/c 0


 ,

so Ei/c → Bi and Bi → −Ei/c, the operation of taking the dual essentially interchanges
E and B. In terms of the dual

−1

4

3∑

µν=0

Fµν F̃
µν =

E.B

c

and
3∑

ν=0

∂µF̃
µν =

1

2

3∑

µ,ρ,σ=0

ǫµνρσ∂µFρσ =
1

2

3∑

µ,ρ,σ=0

ǫµνρσ∂[µFρσ] = 0.

Maxwell’s equations are now succinctly written as

3∑

ν=0

∂µFµν = −µ0Jν ,
3∑

ν=0

∂µF̃µν = 0.

When Jµ = 0 Maxwell’s equations are symmetric under the interchange

F̃µν ↔ Fµν ,

and in modern attempts to unify the fundamental forces of nature, such as string theory,
this kind of duality symmetry plays a very important rôle. The symmetry is not there
when Jµ 6= 0 but it can be re-instated by postulating a dual current J̃µ such that

3∑

ν=0

∂µF
µν = −µ0J

ν ,
3∑

ν=0

∂µF̃
µν = −µ0J̃

ν .

Since the duality operation interchanges electric and magnetic fields and Jµ is a current
arising from electric charges J̃µ is a current arising from magnetic charges — re-instating
full duality symmetry necessitates introducing magnetic monopoles. Such particles have
never been observed, if they exist they must be both very rare, because we do not see
any that may have been produced in high energy astrophysical processes, and very heavy,
because we have not been able to produce any in the laboratory. If magnetic monopoles
exist they may be as heavy as 1016 times the mass of a proton.
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