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1) Define what is meant by the Wronskian of three differentiable func-
tions, y1(x), y2(x) and y3(x), on an interval I of the real line. Prove that, if
the Wronskian does not vanish on I, then y1(x), y2(x) and y3(x) are linearly
independent.

Determine the Wronskian for the three functions

y1(x) = cos2 x, y2(x) = sin2 x and y3(x) = sin x cos x.

Are these three functions linearly independent on the interval consisting
of the whole real line (−∞,∞)?

2) i) Explain briefly what is meant by the term self-adjoint as applied
to a linear second order ordinary differential equation. Prove that any two
eigenfunctions for such an equation with periodic boundary conditions, cor-
responding to distinct eigenvalues, are orthogonal.

ii) Find a particular solution of the equation
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where Pn(x) are Legendre polynomials, with eigenvalues −n(n + 1).



3) Show that Laplace’s equation in spherical polar co-ordinates(
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u(r, θ) = 0

for a differentiable function u(r, θ), which is independent of the azimuthal
angle φ, can be split into two ordinary differential equations using separation
of variables.

Solve this equation inside a sphere of radius a with the boundary condi-
tions

u(a, θ) = cos θ + sin2 θ.

Note: the first three Legendre polynomials are

P1(cos θ) = 1, P1(cos θ) = cos θ, P2(cos θ) =
1
2
(3 cos2 θ − 1).

4) Explain briefly what is the difference between a Laurent expansion
and a Taylor expansion of a complex function about a point z0 and define
what is meant by a simple pole.

Determine the poles and residues of the function
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where 0 < a < 1 is real constant. Hence, or otherwise, show that∫ 2π
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Note: you may assume the residue theorem for the integral of a complex
function f(z) around a closed contour, C, in the complex z-plane,∮
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where the sum is over all residues a−1(zi), of poles zi of f(z), enclosed by the
contour C.


