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e AdS/CFT : various guises

1) AdS/CFT maps a weakly coupled string theory (supergravity solutions) to
strongly coupled field theory, and vice versa; most confident when
supersymmetry present - powerful non-renormalisation theorems; many
non-trivial checks over 10 years.

2) Original incarnation AdSs x S5 < N =4 SYM, since extended to less
supersymmetry, running couplings = study theories with qualitative similarity to
QCD via weak-strong duality; many successes, #/s, meson spectra, overlap with
lattice data.

3) However, only one QCD, finding gravity dual for QCD ~ manned Mars mission?
Large motivation for hunt for holographic dual shifting to CM; odds much better -

many pre-existing materials and may be possible to engineer a dual experimentally.
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o AdS/CMT

1) Computational tool to model strongly coupled systems, in particular quantum

critical points; only alternative is Lattice (less suited to dynamics)

2) Chances of finding an experimental set-up much greater; many effective
Hamiltonians and an increasing number may be engineered via optical lattices.

3) Tantalisingly, if an experimental set-up was realised, face prospect of a
laboratory experiment describing quantum gravity = richer understanding of black
holes?

4) In general for CM need z # 1 e.g. z = 2, symmetry group of free Schrodinger
equation; dilute gas of lithium-6 or potassium-40 with fermionic interaction
strength tuned by external B, approximate z = 2. Symmetry group of NRABJM.
Clear motivation - first example of NR “AdS/CFT".
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@ Review NR ABJM

@ Geometric realisation of NR symmetry
o Killing spinor equation, G-structures

@ Solution

@ Conclusion
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NR ABJM

e ABJM

1) ABJM : A/ = 6 supersymmetric Chern-Simons-matter theory,

U(N)y x U(N)_x gauge group with gauge fields A, and A, with Chern-Simons
levels (k, —k). The matter fields consist of bi-fundamental complex scalars Z* and
fermions ¥, (¢ =1, ..., 4), transform under global SU(4)g x U(1)g as 4 and 4,
respectively. The U(1)g charge < number operator - counts bosons and fermions.
Also exists Zp-symmetry (parity) Zy, ¥%, Ay, Ay — Z%, Vo, Ay, Ay

2) Theory dual to M-theory on AdSy x S”/Z,. Can regard S as circle-fibre over
CIP3; Z, acts on fibre; breaks SO(8) of S7 to SU(4)r x U(1)g. U(1)g ~
M-theory circle, can reduce to IIA on AdS,; x CP3.
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NR ABJM

@ Mass-deformation
3)ABJM Lagrangian has several parts

L = Lcs + Liin + Lyukawa + ['potent-ial )

where (for example)
Lygn = —Tr(DyZ D Zy + i¥oey' D YY) ,

with Dy, Z, = B,,Za —iAuZy + iZaZ\y. Lagrangian invariant under A = 6
(Poincaré) supersymmetry. Theory admits (equal) mass deformation

B = fTr(M"‘AYMEZﬁZa + M) + - (1)

which breaks the SU(4)g down to SU(2) x SU(2) x U(1) through the choice

M = %diag(l, 1,-1,-1). )

Preserves N = 6 once 6, ¥* contribution added. Hosomichi et al., Gomis et al.
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NR ABJM

@ NR Limit
Given the mass-deformed theory, many possible non-rel systems; preserved

symmetries and supersymmetry depend on limit i.e. (anti)-particles, or both.

1) Example: Begin with scalar Lagrangian

1. = m?c? _
——— thZ“DtZ,X —D;Z*D; Z, — 22 z%Z, 3)
Taking just particle modes
Zy = ———z e Mt/ (4)
get in ¢ — oo limit (correction terms suppressed O(1/c?))

scalar

712
o = (i'th 4 —D,?) Z
2m
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NR ABJM

o Full NR Lagrangian

Following process through, one finds...

h?

2
Locatar = Tr[ 2" Deza — ;—mD,-z”‘ Dizo — T (22 25270F, — 2222,
where Q“IS = diag(1,1, -1, -1).
Liermion = Tr[nnp Dey® — 7iD-q} Dip® + L (Pa Frof — Frotp ¢ﬁ)]
fermion allt om iYaldi om p\Ya 1 o ’

7T772 S T 1@ Toahl SO (a7 i

Lyukava T[22 (P - F) + 22 (97— )
~2(2:2°9* P + 2°259°) +2(2i2 Y + 2 zpiy))
72€ab€ij (Zaljlbffl[)j + zawfzjwb) _ peabeii (zatllbz,-lﬁj + Zalﬁizjlﬁb)] E
kh 2i N T

L = e Tr(Ad,A, - S AAAy = A Ap + gA,,AVAp),

2) Lagrangian is invariant under full Schrédinger algebra, e.g. D

(t,x; z,p) — (/\72t,)\71x; Az, Ap).
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NR ABJM

@ Preserved Symmetries
1) R-symmetry SU(4)s — SU(2)1 x SU(2)2 x U(1)g. Retain original U(1)p.

2) Poincaré symmetry replaced by Galilean {H, P;, J, G;}.
3) Though mass-deformation breaks rel. conformal symmetry, NR conformal

symmetry is restored {D, C}.

4) Generalisation as super-Schrodinger algebra, 2 types of supercharges (dynamical
{Q, @} ~ H, kinematical {g, g} ~ M). Also have another set of conformal
supercharges S [C, Q] ~ S. Q, g can be identified by expanding the susy

transformations:
2mc h
0z =14/ ——96 \/ =——0pz.
“ h Kzt 2mc e

5) Identifies 12 original susy parameters split into 10 kinematical and 2 dynamical.
4 singlets under SU(2) x 5&(%) and 8 “spectators” that transform in (2,2).
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NR ABJM

@ Super-Schrodinger symmetry (Bosonic part)

The Schrodinger algebra Sch(d) contains an SO(2, 1) subalgebra among the
time-translation (H), dilatation (D) and special conformal (C) generators.

[D,H]=+2H, [D,C]=-2C, [H,C]=-D,
as well as the SO(d) subalgebra,
M, MK = 5k Mt 4 5 ik — skl — 7! ppik
The remaining generators are space-translations (P’) and Galilean boosts (G'). They are
vectors under the SO(d),
M, PK) = yoikpi —stkpi (MU, GK) = 4ok G — sk G,
and satisfy the following commutation relations:

[D, P =+P', [D, G| = -G,
[HPl=0, [C.P]=+G", [H,G']=—P', [C,G']=0.

Finally, we have the central extension with the “rest-mass” or the particle number,

[P, G/ =—6M.
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NR ABJM

@ Super-Schrodinger symmetry (Global frame)

Can also introduce Virasoro-like notation (Blau et al.),
Lo=3iD, Ly=H, Ly=C, P ,=P, P ,=G6, M=M.
Then, the commutation relations can be compactly written as
(L Ln] = (m—n)Lmsn, [Lo Pi] = (mer) Py [PLPI = (r—s)0M, .

The operator-state map naturally introduces the following recombination of generators:

Lo = %(7iH7iC), Iy = %(—iHJriC:tD),
Plim= %(—m" FG, My=—iMy.
The new generators also satisfy Virasoro-like commutation relations,

L Lol = (m=n)Lmsn, [Lm Pl = (3m—r) Phy, . [PLPI = (r=5)6 My s,
as well as the conjugation relations

(Zm)Jr =L.m, (ﬁ;)+ = Pi,, (MO)f = AA/’O-
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NR ABJM

e N = 2 super-Sch. algebra

1) N = 2 refers to the supersymmetry of the rel. parent theory - kinematical
(g,§), dynamical (Q, @) and conformal (S, 5) supercharges (Poincaré frame).

2) Virasoro-like notation the supercharges are denoted by q, Q_1,2 = Q,
@+1/2 = S and their conjugates. They transform under the
50(2,1) x U(1), x U(1)R subalgebra as

tm. @ = (3m=r) @, [Lm.q] =0,
U@l=+3Q. [RQI=+Q., [g=+3q. [Ral=—q.

[Pr,Qs] = (r—s)g, [Pr.ql =0,
and anti-commutators among supercharges give

{Orst}:Lr+s+%(’_5>(J_%R)’ {q. @} =Pr, ek =20
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NR ABJM

e N = 6 super-Sch. algebra
1) The additional eight spectator supercharges satisfy the following:
[Lm, Gasl =0, [Pr,qas] =0= [Prxqaé]v
{@rG2a} =0={Qr.qas}, {9,925} =0=1{3,qas},
[J,d28) = +3 a5, [R.qas] =0,
[R%b. qce] = =85 ape + 303ace,  [R%p, dce] = —02a,, + 303dce .

{@ ap} = %ggangngéBHgRab,
where R?;,, R?; are the SU(2) generators defined by
[R%, RSy] = 65R7y —63R .  (R%)" = RP..

2) The N = 2 subalgebra still holds, except generator R replaced by
R(4/3)R — (2/3)%. From commutation relations, the shift is needed to make ga;
neutral under J — %R’, which should hold because g,; commutes with Q.
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NR Geometric duals

@ Realising Schrodinger geometrically

1) Embed Sch(d) C O(d + 2,2) rel. conformal group in d + 2.
Son;Balasubramanian, McGreevy

2)Analogy: massless KG in (d 4+ 1) + 1)-dim Minkowski spacetime
00 =-020+?®=0, i=1,..,d+1
3) Define LC coords x* = \%(t + x9t1). Get
2iM34® + 9?P =0

Identified — = —iM, Sch(d) with x™ playing the role of time. Compactification

of x~ direction — M takes discrete values.
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NR Geometric duals

@ Realising Schrodinger geometrically

4) Deformation of AdS metric in Poincaré

ds? = —2r%(dx™)? + r?(2dx™ (dx~ + C) + dx;dx’),

5) z dynamical exponent. scaling symmetry
(x+,x_,xi, r) — ()\Zx+,)\2_zx_,Axi,/\_1r)
6) Toy model: gravity, massive vector, negative c.c.

1 1 m?
S= /dd+2xdr¢fg (ER —A— ZFWF’” — 7A,,Aﬂ)
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NR Geometric duals

@ Recap : Sch(d) supergravity solutions

1) Discrete light-cone quantisation (DLCQ). Identifying x~ direction, if p_

sufficiently large, gravity system can be trusted.

2) Generating gravity solutions. 2 approaches i) TsT ii) Consistent truncation.

Both seen in work of Maldacena, Martelli, Tachikawa.

3) TsT: 2 commuting isometries x ™, @, T-dualise ¢, shift along x™ — x~ + 0§,
T-dualise back. Simple. AdSs x SEs breaks susy.

4) Consistent truncations. Truncate higher-dim theory to lower-dim toy model of
Son. Gives embedding in string theory (more than just holography). Examples
AdSy, x SE7 Gauntlett et al.; AdSs x KEg EéC, Varela, Yavartanoo.

5) Other work - Hartnoll, Yoshida, Donos, Gauntlett SEs and CY cones over SEs.
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NR Geometric duals

@ Deformation of AdSs x Mg (Ooguri-Park)

1) Begin with the most general warped AdSs x Mg solutions dual to N' = 1; Mg is
topologically CIP-bundle over base M, € {KEs,C1 x C2}; Replace AdSs with NR
metric

+y2 F = dx! 2
ds§:—f(y)(di4) = 2dx (dx +i\2)+dx,dx +dr.

2) Solve dGy) = d * G4 — %6(24) =0= JAdA=0,(dA= —*4dA) . Einstein
= f(y) = By
3) Supersymmetry: Original 4 Poincaré and 4 SC. Get two conditions:
Brte = F@e =0. Effect of ["e = 0 seen through

Y2y =t P2 4 i V2 (i = x Py T —x Ty )yg =0

B = 0 6 susy, otherwise 2.
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e BW/LLM and NR limit:

1) Gravity dual of the ABJM is AdS, x S7/Z,; need to carry over the mass
deformation and NR limit to the gravity side.

2) Gravity dual of mass deformed theory is well known - Bena, Warner (later LLM,
see also Pope et. al); BW stack of M2, turn on transverse 4-form flux; in process
breaks R-symmetry from SO(8) to SO(4) x SO(4)

3) Example of Myers dielectric effect where M2 polarised into M5 wrapping S3.

4) Approach: Reminiscent of DLCQ (also BMN), but LC momentum must be

taken transverse to M2.
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e BW/LLM and NR limit:

5) In principle, one may be able to proceed as follows: modify the BW/LLM
solution by adding the particle number M; in lIA, it amounts to turning on the flux
counting the D0-brane charge; perform standard coordinate change of the DLCQ
procedure:

p=¢—at, t=t
= H=idg=ide —a(—idg) =H—aM, M=—id;=—idy=M.

6) With suitable constant « and an appropriate scaling limit, the LC Hamiltonian
is identified with the Hamiltonian of the NR theory. Unfortunately, hindered by a

technical difficulty; not clear how to turn on DO-charge and get back-reacted
solution; the U(1)p circle is fibered non-trivially along the CIP® base. Need other
approach.
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@ Ansatz
1) Recall R-symmetry breaking,

S0(8) > U(1)5 x SU(4) D U(1)g x SU(2); x SU(2)2 x U(1)g.

2) To see how these R-symmetries are realised geometrically, consider S7 as a
warped product of S3's,

ds§7 = da? + cos® a dOZ + sin® x dO3 .

3)Use Euler-angle coordinates (6, ¢, ) for each S3:

d0? = % [d6? + sin? 0;d¢p? + (dp; — cos@;dp;)?] (i =1,2, no sum).

4) We choose the orientations of the 3-spheres such that the U(1)g acts
diagonally on 912 and the U(1)g acts with an opposite relative sign.
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@ Metric
1) Begin with AdS4 x S7/Z, and imagine mass deformation and then NR limit,
preserving R-symmetry and fibration of U(1)g and U(1)g angles over the two

S5 w= } (1 + ), v = (91~ y2). Dw =
dw — 3 (cosf1d@1 + cosbagp), Dv = dv — 3(cos61dgp1 — cos fa).

2) Led to general ansatz

2 2 o

2dt(Dv + c3Dw) + + 4 4

ds? — 261 ( o di‘ dt(Dv + c3 2) dr? + dx geZhZ(Dw)2> 41 (e—zhz dy? 3e2h1(e+2h3 dew? + 234, %>> ;
r r

3) (c1,2,3, ho1.2,3) depend only on y, which is the only coordinate not constrained

by symmetries; numerical factors 4/9 and 4/3 for later convenience.
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@ Orthonormal frame

The metric ansatz admits a natural orthonormal frame,

ech o
et = —5-dt, e =——5dt+Dv+cDw,
r 2r2
el el el
el = ——dx!, &= —"——dx?, e7:%ecl+h2Dw, e ="dr,
r r

ie—2cl+h1 <e+h3 ((71,02) : e—h3 (T1v72)>

69 — e—2c17h2 dy,

3 o4 o5 6) —
(e’ e e’ e) 7

Here, 04, Ta are invariant one forms of S3’s.
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@ Flux

F — e 3cets8 {e—2c1 kpel? 4 ta—2h (e—2h3 k4,1e34 4+ et2hs k4,2e55)]
+ehneto [e’2°1 kpel? 4 ghei—2h (e—2h3 k5,1€34 4+ eT2h3 k5,2656)}
+e%1e97 [e—3c1 k3e+8 4 efe—2h (e—2h3 k6,1634 4+ et2m k6,2956)]
4801 —4h1 . g3456

Earlier compensating factors in metric lead to simple for of Bianchi identity
(dF = 0)

Ki+4ky =0, ky;+2ks1—ks=0, kjo+2kso—ks=0, ky— (ke1+ks2)=0. (6)

There is a discrete Zy symmetry exchanging the two 2-spheres, acts as a parity
Yy = -y

Even : ci, ¢, h1, ho ki, (kay+ ka2), (ks1— ks2), (ke + ke.2) -

Odd : c3,h3 ke, k3, (ka1 — ka2), (ks,1 + ks2), (ke — ke2), k7 -
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KSE

o Methods

1) Approach hinges upon two techniques: spinorial Lie derivative, G-structure.

2) Lie derivative of a spinor € w.r.t. a Killing vector K
m 1 ab
£K€ =K Vm€+ Z (VaKb)l" Go
spinorial Lie derivative gives a geometric realisation of algebra,
(K, Q1] = @ <= L£xeq, =€q, -

3) From metric, write out all £xe€ associated with Killing directions; super
Schrodinger algebra determines coordinate dependence of dynamical supercharges
Q(y) ; with @ determined, g and S follow from algebra.

4) From {e€;} can construct differential forms

1
=1 (e_irabcdeej ) eabcde

(e‘,-I‘abej)eab Z,‘j = 50

N =

K,'J' = (e‘;I’aej)ea, Q,’j =
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KSE

@ Killing spinors
1) Use spinorial Lie derivative. Find from algebra that

Lreq = Lpeq = Ly, 6q = £\//’4€Q =0, Lpeq=€q = €q= ?W(Y)r
Q smglet under SU(2) x SU(2) also implies @ independent of “three-sphere”
2)Next, use [G, Q] = g to get
€q = r+ (y) 7,
where 7€ denotes charge conjugation. Note F*eq = 0 automatic.
3) Use [C, Q] = S to get

€5 = {;eq - %F+(x,-l"i 4 rl"s)] 7.

Note all independent of (v, w, 6;, ¢;) coordinates.
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o Methods
1) Want to ensure ansatz admits 6 supercharges of A = 2 super-Sch : kin (q, §)
[null]; dyn (Q, @) [time-like]; see Gauntlett et al. “The geometry of D=11 (null)
Killing spinors”.

2) Use null paper results for single (real) null spinor € = 1 (g + g); satisfies

[3456¢ — —e,TTe=0

defines SU(4) € Spin(7) structure. . .
3) As we started from ansatz, we require small frame rotation to make explicit the

canonical G-structure frame.
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KSE

o G-structure
1) Geometry of Null KS. Orthonormal frame

ds? = 2ete~ + elel +e%° ,

K=e"
2) Killing spinor to satisfies

T'1234€ = T3456€ = I'se78€ = ['13s7€ = —, I'te=0.

with T'% = e by construction.
3) Spinor defines a Spin(7) structure with Q = et Ae?, Z=e" A D,

4) Our ansatz have et also I'3*%6¢ = —¢ and T'te = 0 for kin supercharges. One

finds that two frames are related by a y-dependent rotation in (89)-plane.
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KSE

@ Killing spinor equation
1) Start from KSE:

1
Spm = Vme + 75 (TmF — 3Fm)e = 0.

2) From earlier work

Tteg=0, I3, =—€;, dneq=0 (m#y).

3) Only have 1-form,2-forms,5-forms; by sandwiching deduce Q) has only two
non-zero components ()49, (Oyg. This identifies frame rotation to go to canonical

frame with only Q)¢ non-zero.

4) Using important result that €’ is constant in canonical frame = one differential

condition becomes algebraic in new frame.
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KSE

@ Dynamical supercharges
1) As {Q, @} = H, have time-like KS. General analysis - “Geometry of time-like
KS". Metric takes form
ds? = —A?(dt 4+ w)? + A Lgmpdx™dx".
2) Base manifold has SU(5) structure given by pair of spinors €4 = %(6@ +eq).

Can decompose € by e-values of T :

€4 = ﬂ(l”r +12), € —l(e +e—)—if+1
d = B ni—+1n2), k*2q q*\/i 2.

3) Proceed as before to determine (), before using G-structure equations

Q0L = —K.KP+05,°K? where K = A%(dt + w),
dQ = ixF.

4) In general KSE do not restrict every component of metric, flux. However, flux

independent of x—, so KSE determine all components.
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Solution

o Equations

Block A : The equations for (c1, h1, ha, h3) decouple from all other variables.

4y — By = —c} (2] + hy)2eb1t2h2 9c] = (9c] — 4k + hh)e?h2

2h + by = 6(h} + hh)e 01 T2h1=2haH2h3  pl cosh(2h3) = — ] sinh(2h3) .
The following auxiliary equations will also be useful,

1

cos{ =eh2, sing = — 3 (2h] + hh)e31t2h = 3 (—' cos{ +2e731).
C
1

Block B : With the solutions of Block A as an input, we can solve the equations for
(C3, kl, k2, k3).

6c3 3 / —6cy 1 — “3c) ¢
ky =—k3, ki=——=€1, 3c3=2(ke °1_—~—= —kze >Isin{
sing 2h] + hy

3¢} + kg e 01 = 6sin g (c3 cosh(2h3) — sinh(2h3))e31 21
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Solution

e Equations

Block C : The last metric component ¢, and all the remaining flux components are

determined algebraically by the

solutions of Block A and Block B.

2

= ( kle’e‘cl)
Ky =—3(cs+1)e3Lsing — Lk (2e 01 +2h12h3 _ g2ha)
kap = —3(cs—1)e3€ sin — L kg (2e76c1+2h—2h3 _ 2k
ks =—3(c3— 1)e+4h2
ksp=—3(c3+1)e*

Y +2h) +3h3 2
e CETARME

hy + 2R} — 3H;
ke — — L 2 3 2h)
02 3(M —H)
ky = 6C{e_6c1+4h1 .

O Colgain
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Solution

@ Solution

The final form of the solution may be most neatly captured in terms of two quadratic
polynomials,

a=1-y*, ;=1+}ay+y>.
The metric components are

2_—1 2 -2 -1 -2
S —glg !, o =1blg g, s = by %,
2 _ g 2hy _ 142061 ks — 1.

and the flux components are

k=—4bgyl,  kp=—bghg; %, k3 =bghg;?,

ka1 =—3y+b(2g ' —g ") kao=+3y +b(2g T — g5 1),
ks =+3 —2ybg;? ks =—3 —2ybg;

ke = ko2 =1— 4g2g1_2 0 ks = *4g£g1_1 +2g1 +385 -
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Discussion

@ Discussion

1) Solution is a one-parameter generalisation of OP solution (c3 = 0).

2) We have succeeded in finding a geometric realisation of A/ = 2 super-Sch
algebra.

3) However, we cannot realise additional 8 “spectator” charges. From algebra
~aa 1 asa a pa a pa
{q ’qbb} = §5b55M—5bR b+5L‘,R b

but only €397 ¢e,; # 0, so SU(2) x SU(2) generators cannot be produced.

4) Recent study of susy vacua of mass deformed theory Kim?: vacuum dynamically
breaks susy unless N < k. Signals holographic dual should be highly stringy as the
't Hooft coupling is small % < 1. Also (Rey,Nakayama)
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