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Frustration meets topology: 
from C>1 fractional Chern insulators  

to tilted Weyl semimetals



Today, I will

1) Fractional Chern insulators

Briefly introduce two frontiers of condensed matter physics
2) Weyl semimetals

Interactions and topology combined

Macroscopic number of almost degenerate states
- Interactions/quantum fluctuations determine ‘everything’

Interactions and Topology in Quantum Matter:
From frustrated magnets to fractional topological insulators

1 State of the art and preliminary work

Beyond local order: topological order and emergent degrees of freedom. Landau provided an
amazingly successful way of understanding different forms of matter in terms of the symmetries they
break. For instance, the atoms in a solid break the translational symmetry and, at low enough tem-
peratures, the local magnetic moments (spins) spontaneously order into a magnetic state that breaks
the rotational and translational symmetries of the underlying Hamiltonian. During the last few decades
it has become clear that Landau’s characterization is not exhaustive. There are in fact fundamentally
new phases of matter where the ground state breaks no symmetries of the Hamiltonian. The order in
such systems is highly non-local and is usually termed ”topological order” [1]. The understanding of
this new kind of order is far less satisfying and has been a main topic of research in theoretical physics
for the past few decades. More recently, it has been realized that the understanding of this new or-
der may have fundamental technological implications—the dream is to be able to build a topologically
protected quantum computer which would evade decoherence, the main problem of realizing quantum
computational devices, by storing the information, the q-bit, in non-local properties of the states, thus
making it robust against local perturbations [2].
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Figure 1: (a) and (b) illustrate the difference between bipartite lattices, such as the square lattice in (a), and
frustrated lattices such as the triangular case in (b). (c) shows the Néel order forming on the triangular lattice.
The highly frustrated two-dimensional kagome lattice formed by corner sharing triangles is displayed in (d) and
a unitcell of the three-dimensional analogs thereof, the hyperkagome (only fat sites and bonds) and pyrochlore
(also small sites and thin green bonds), is shown in (e). The bipartite honeycomb lattice of graphene is shown in
(f).

Conventional order is expected when the energy can be locally minimized simultaneously through-
out the system, yielding a simple ground state. When this is not the case, i.e. when there are many
almost degenerate states, subtle quantum fluctuations cannot be neglected and new exotic ground
states may appear. A simple way to visualize this contrasting behavior is to consider antiferromag-
netic Ising spins—the spins can point either up or down and prefer to do so in the opposite direction
compared to their neighbors—on the archetypical square and triangular lattices (Fig. 1(a,b)). On the
square lattice, as on any bipartite lattice, the minimization is simple and so-called Néel order results

1

Frustrated anti-ferromagnets 
(e.g., ZnCu3(OH)6Cl2)

(102)510, � = 6/17

(102)310, � = 4/11

10210, � = 2/5

(102)2m�110

� = 2m/(6m� 1)

L⇤⌅

⇥ 10 nm

2

empty one electron state

filled one electron state

Fractionally filled Landau level

5

Our focus

Key ingredient: Geometrical frustration + interactions and spin-orbit coupling

Report on related progress on both topics

New phenomena

properties mediated by all-in-all-out spin ordering. We chose Ln 5
Eu because of the total magnetic moment J 5 0 of Eu31 for among
Ln2Ir2O7 series, this compound is a sole and ideal platform for study-
ing carrier transport in the background of all-in-all-out spin struc-
ture composed of the Ir41 moment in Jeff 5 1/2 state23. The results
indicate that the magnetic domain structure is detected via peculiar
asymmetric term in themagnetoresistance (MR) and zero-field offset
in Hall resistance. These observations provide controllability of the
exotic electronic phase in this compound towards accessing WSM.

Results
Sample fabrication and structural property. In this study (111)-
oriented Eu2Ir2O7 thin films were epitaxially grown on Y-stabilized
ZrO2 (YSZ) (111) single crystal substrates by pulsed laser deposition
(see Methods and Supplementary Fig. S1). Transmission electron
microscopy (Figs. 1(c) and 1(d)) confirms the formation of a single-
crystal Eu2Ir2O7 film free from crystalline domain boundaries. The
macroscopic crystal structure was examined by X-ray diffraction
(XRD), with the high quality of the films supported by the obser-
vation of a typical rocking curve of 0.09u for the Eu2Ir2O7 (222)
peak (Fig. 1(e) and Supplementary Fig. S2). In Fig. 1(f), the recip-
rocal space mapping is shown, indicating that the lattice of the film is
elongated along [111] direction by 0.7% with respect to in-plane
lattices. The surface morphology was measured by atomic force

microscope, which showed root mean square roughness of ,1 nm
before and after post-growth annealing (Supplementary Fig. S3). The
film thickness is fixed at about 70 nm.

Longitudinal resistivity. Figure 2(a) displays the temperature
dependence of the longitudinal resistivity (rxx). For electrical
measurements, the sample was defined into a Hall-bar geometry
(inset of Fig. 2(b)) to reduce mixing of the longitudinal and Hall
resistances. A metal-insulator transition (MIT) is observed around
transition temperature (TM) of 105 K, which is close to the reported
value for bulk (120 K, Ref. 24). The absolute values of rxx and the
strength of the MIT sensitively depend on the growth conditions
(data for typical films are shown in Fig. S4(a)), likely as a result of
film-dependent Eu/Ir nonstoichiometry. Since analytical determi-
nation on the composition of thin films is challenging, we estimate
the composition of films by comparing the resistivity ratio rxx(2 K)/
rxx(300 K) with those of previously reported polycrystalline bulk
data25. The result indicates that the films are Ir-rich by 1–4% (Fig. S4
(b)). The reduction of TM compared with the bulk may also be
explained by the cation nonstoichiometry. Irrespective of quantitative
variations in rxx, we qualitatively obtain the same magnetotransport
properties discussed later for all the thin films. Hence, we focus on the
most conducting film (sample 3 in Supplementary Fig. S4) in the
structural and transport data presented. As also noted in Ref. 25 for

Figure 1 | Crystal and spin structures of the pyrochlore lattice. (a) The Ir sublattice of Eu2Ir2O7. Kagome and triangular lattices formed by Ir are located
at orange and yellow planes, respectively. (b) Two distinct all-in-all-out spin structures, named as A-domain and B-domain, in the pyrochlore lattice.
When four spins at tetrahedral vertices are consolidated at the centre of cube, they represent a magnetic octupole indicated by blue and red spheres. (c)
Phase contrast image of high-resolution TEM of a Eu2Ir2O7 (111) film on a YSZ (111) substrate. (d) Atomically resolved HAADF-STEM image at the
Eu2Ir2O7/YSZ interface. Triangular cross-sectional lattices composed of Ir and Zr are schematically shown. (e) h-2h scan of X-ray diffraction. Peaks from
the substrate are marked with asterisks. (f) The reciprocal space mapping around the YSZ (331) peak. The peak position of bulk Eu2Ir2O7 is indicated by
an open triangle. The solid line indicates that Eu2Ir2O7 is coherently grown on the substrate and expanded along [111] direction by 0.7%, which is
illustrated by the pair of tetrahedra. An ideal pyrochlore lattice with cubic symmetry obeys the theoretical curve indicated by the dashed line.
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… and intriguing first experiments (by others)

Tipping the Weyl cone

• Quantum transport in Dirac materials: Signatures of tilted and

anisotropic Dirac and Weyl cones

M. Trescher, B. Sbierski, P. W. Brouwer, and E. J. Bergholtz,

Phys. Rev. B 91, 115135 (2015) [arXiv:1501.04034]

• A new type of Weyl semimetals

A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, Z. Dai, and B. A.

Bernevig, arXiv:1507.01603

Recommended with a commentary by Carlo Beenakker, Leiden University

The Weyl cone of massless fermions is a diabolo-shaped surface in energy-
momentum space that separates electron-like states (moving in the direction
of the momentum) from hole-like states (moving opposite to the momentum).
This concept from particle physics first appeared in condensed matter in two-
dimensional structures (graphene and various layered organic compounds),
where it is more commonly referred to as a Dirac cone. Three-dimensional
realizations have now also been reported (see Vishwanath’s JCCMP contri-
bution from last February).

Conical band structure without any distortion (left), slightly tilted (center,

elliptic equi-energy contours), and tipped over (right, hyperbolic equi-energy

contours).

The counterpart of the Weyl cone in spacetime is the light cone, sepa-
rating events in the future from events in the past. The gravitational field
from a massive object tilts the light cone, and may even tip it over. For
the Weyl cone such a distortion is forbidden by particle-hole symmetry, but
that is not a fundamental symmetry in condensed matter. While in graphene
the high symmetry of the honeycomb lattice keeps the cone upright, tilting
is generic in 3D Weyl semimetals. The paper by Trescher et al. identifies
transport signatures of tilted Weyl cones, while Soluyanov et al. predict that
in WTe2 the symmetry can be broken so strongly that the Weyl cone tips
over — transforming the equi-energy contours from elliptic to hyperbolic (see
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Fractional Chern insulators — motivation
Fractional quantum Hall states in a strong 
magnetic field are truly amazing!

B

- Quantized conductance & chiral edge states
- Abelian and non-Abelian anyon excitations with 
fractional charge and statistics

Extremely low 
temperatures

�E ⇠ e2/`B /
p
B

But no “topological quantum computer” in 
service, no Nobel prize for non-Abelian 
anyons,…

Very strong magnetic 
fields

|B| ⇠ 10� 30 Tesla T . 1 Kelvin

Robust 
experiments? 
Topological 
quantum 
computation?

Fractional Chern insulators!?

Lattice scale realizations?



Fractional Chern insulators
Integer Chern insulators recently realized!

- Magnetic topological insulator slabs (2013), cold atoms (2014),… 

How about strongly interacting versions?
- Flat bands with Chern number C=1 similar to Landau levels quite 
easy to find 

- Interesting differences compared to the continuum
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here are, in a well-defined sense, closer to the idealized model
FQH wave functions than FQH states obtained for more real-
istic (Coulomb) interactions in continuum Landau level. Un-
derscoring that these results are indeed non-trivial, we also
provide an example where the interpolation between the Lan-
dau level physics and the interacting Chern band problem is
not smooth by considering fermions at ⌫ = 4/5.

The remainder of this work is organized as follows. In Sec-
tion II we give relatively detailed description of the Wannier
mapping providing a bridge between the description of Chern
bands and continuum Landau levels on a torus. Section III
contains our main results on the adiabatic continuity and the
OES studies focusing on electronic (fermonic) states [corre-
sponding results for bosons are contained in the Appendix].
Finally, we discuss our findings in Section IV.

II. MODEL AND METHODS

In this section, we put the description of fractional quantum
Hall (FQH) systems in the continuum and fractional Chern in-
sulators (FCIs) in the lattice on the same footing. First, we
discuss the lowest Landau level (LLL) on a torus29, and then
we go on to discuss a suitably adapted version of the Wannier
function mapping of Chern bands in a finite-size system23.
This provides the necessary framework for a direct quantita-
tive comparison between FCIs with FQH states despite the
fact that the two systems have different symmetries. Finally,
we give a specific kagome lattice model that we use through-
out this work to study the FQH-FCI correspondence.

A. Quantum Hall states

We consider N particles projected to the lowest Landau
level on a twisted torus spanned by two basic vectors L1 =

L1v1(↵) and L2 = L2v2, where v1(↵) = sin↵e
x

+ cos↵e
y

,
v2 = e

y

, where ↵ is the twisted angle of the torus, and L1(2) is
the length of the basic vector (in units of the magnetic length).
Assuming the number of flux quanta, N

s

, through surface of
the torus is an integer, the magnetic translation invariance in
v1 and v2 direction leads to L1L2 sin↵ = 2⇡N

s

. There are
precisely N

s

single particle states, | 
j

i, in the lowest Lan-
dau level that we choose as maximally to be localized in the
e
x

-direction (but delocalized in the e
y

-direction) as

hx, y| 
j

i =
⇣

1p
⇡L2

⌘

1
2

+1
X

n=�1
exp

n

i
⇣

2⇡j

L2
+ nL1 sin↵

⌘⇣

y

�2⇡j

L2
cot↵� nL1 cos↵

⌘

� 1

2

⇣

x � 2⇡j

L2
� nL1 sin↵

⌘2o

,

(1)

where j = 0, 1, 2, ..., N
s

� 1 is the single-particle momentum
in units of 2⇡/L2. Note that  

j

is quasi-periodic and centered
along the line x = 2⇡j/N2. We define N0 is the greatest
common divisor of N and N

s

, namely N0 ⌘ GCD(N, N
s

).
Then p ⌘ N/N0 and q ⌘ N

s

/N0 are coprime. There are
two translation operators, T

↵

(↵ = 1, 2), that commute with

t1, �1
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Figure 1. (Color online) Schematic picture of the mapping of a flat
Chern band in the lattice model to a continuum Landau level in terms
of Wannier states.

the many-body Hamiltonian (as with any translational invari-
ant operator) and obey T1T2 = e2⇡ip/qT2T1. T1 corresponds
to a e

y

-translation and T2 translates a many-body state one
lattice constant 2⇡/L2 in the e

x

-direction. At filling factor
⌫ = p/q, because T q

2 commutes with T1, we can diagonalize
certain many-body Hamiltonian HFQH in the LLL orbital ba-
sis and obtain the many-body ground states | FQH(K1, K2)i
as the common eigenstates of T1 and T q

2 with eigenvalues
e2⇡iK1/Ns and e2⇡iK2/N0 , where K1 can be regarded as the
total momentum in the e

x

-direction. It directly follows that
the degeneracy of | FQH(K1, K2)i is at least q-fold, among
which we can always pick up q-fold center-of-mass degener-
ate states with different K1 that are connected by the operator
T k

2 (k = 0, 1, ..., q � 1).
For later convenience, we also introduce an alternative de-

scription of the translational symmetry on the torus. Suppose
N

s

has two factors N1 and N2, namely N
s

= N1 ⇥ N2. Af-
ter defining N0,1 ⌘ GCD(N, N1) and q1 ⌘ N1/N0,1, we
can introduce two translation operators S1 = (T2)

q/q1 and
R2 = T q1

1 . Because S1 commutes with R2, we can make
the many-body ground states as their common eigenstates.
Within this description of the translational symmetry, the q-
fold center-of-mass degenerate states are

| FQH(s, r)i = 1p
q1

q1�1
X

m=0

e2⇡im(
sN�2
N0q1

)Sm

1 T r

2 | FQH(K1, K2)i,

(2)

where s = 0, 1, ..., q1 � 1, r = 0, 1, ..., q/q1 � 1. If we
choose N1 and N2 appropriately, we can make q1 = 1. Then
| FQH(s, r)i and | FQH(K1, K2)i reduce to the same descrip-
tion.

B. Chern insulators

Now we move our attention from FQH states in the con-
tinuum to the FCIs in the lattice. We consider a two-
dimensional (2D) lattice on the torus with two lattice vec-
tors v1(�) = sin�e

x

+ cos�e
y

and v2 = e
y

. The num-
ber of unit cells is N1 and N2 in respective direction and
there are s sites in each unit cell. The states in the first
Brillouin zone (1BZ) can be labelled by a 2D momentum

- But all known FCIs in C=1 bands are adiabatically 
connected to corresponding FQH states!

Theory: FQH/FCI states survive can despite strong lattice effects 

Z. Liu and E.J. Bergholtz,     
Phys. Rev. B 87, 035306 (2013)

2) Are there topologically ordered states 
qualitatively different from the FQH states? ?

- How about flat C>1 bands?

Questions:
1) Where are FCIs likely to form?



Weyl semimetals

P. Hosur and X.-L. Qi, 
Recent developments in transport phenomena in Weyl semimetals, 
arXiv:1309:4464

A.M. Turner and A. Vishwanath, 
Beyond Band Insulators: Topology of Semi-metals and Interacting Phases, 
arXiv:1301.0330 

Reviews: 



Weyl semimetal basics
Topological gapless phase in three dimensions

- half a gapless Dirac low-energy theory, linear crossing of two non-degenerate bands

C = 1

C = �1

C = sign(det(vij)) = ±1

Topological stability of a Weyl node

Correlations and entanglement in flat band models with variable Chern numbers 4

hopping range.

2.1. An instructive two band model

We start with the Hamiltonian

H =
∑

k

c†kαH(k)αβckβ, (1)

where

H(k) = (sin kx)σx + (sin ky)σy + (m + cos kx + cos ky)σz (2)

is defined on a square lattice with Nx × Ny sites and the Pauli matrices, σi, define an

internal degree of freedom at each lattice point [52]. The band structure of this model

is composed of two bands, and the Chern number C of the lower band can be classified

[53], according to the value of m, as

C =

⎧
⎪⎨

⎪⎩

1 for 0 < m < 2

−1 for − 2 < m < 0

0 otherwise

(3)

We set m = 1 throughout this paper, which will ensure that we stick to the topologically

non-trivial regime. By introducing d-vector,
⎧
⎪⎨

⎪⎩

dx(k) = sin kx

dy(k) = sin ky

dz(k) = m + cos kx + cos ky

(4)

the Bloch Hamiltonian (2) can be conveniently written as

H(k) = d(k) · σ. (5)

The d vector representation directly leads to a geometrical expression for the Chern

number:

C =
1

4π

∫
dkx

∫
dky d̂ ·

( ∂d̂

∂kx
× ∂d̂

∂ky

)
, (6)

where d̂ ≡ d(k)/|d(k)| is the unit length vector parallel to d(k). By regarding d̂ as

the mapping from Brioullion zone (BZ) to the sphere surface d̂ : [0, 2π) × [0, 2π) → S2,

the Chern number C acquires the geometrical meaning: C represents the wrapping

number of this mapping. According to (3), the d-vector chosen as (4) wraps the

sphere only one time for 0 < m < 2, while k = (kx, ky) sweeps the BZ. The integrand

B(k) ≡ d̂·
(

∂d̂
∂kx

× ∂d̂
∂ky

)
is the Berry curvature which can be interpreted as a magnetic field

in reciprocal space. Physically, the Chern number corresponds to the number of current

carrying chiral edge states, which directly gives the quantized transverse conductivity

σxy = C e2

h for a filled, hence bulk insulating, band carrying Chern number C [54, 55, 56].

In order to generate a two-band model with arbitrary Chern number from

Hamiltonian (5), let us first introduce polar coordinate and express d-vector (4) as
(
dx(k), dy(k), dz(k)

)
= |d(k)|

(
sin θk cos φk, sin θk sin φk, cos θk

)
(7)

- protected by a Chern number

Broken symmetry
- time-reversal and inversion symmetry would imply degenerate bands

- identical to the surface theory of a 4D QH state

(= d(k) · �)HWeyl =
X

i,j

vijki�j + E0(k)

Robust nodal points

- striking difference to 2d!
- there is no 4th Pauli matrix E = ±

sX

m,n,l

vmlvnlknkm + E0(k)



Global topology & Fermi arcs 

C = 1
C = 0

C = 0
C = 1

C = 0
C = 1

k
x

ky

z

Zero total Chern flux in any periodic band structure
- even number of nodes, equal number of each chirality

The topology is manifested through exotic surface states, “Fermi arcs”
- remnants of the Chern insulator edge states

X. Wan, A. M. Turner, A. 
Vishwanath, and S. Y. Savrasov, 
Phys. Rev. B 83, 205101 (2011)



Weyl semimetals: recent activity
Theory first

- early work by Volovik and others decades ago — much increased interest since ~2011

Discovery of Weyl semimetal TaAs 
 

B. Q. Lv1,*, H. M. Weng1,2,*, B. B. Fu1, X. P. Wang2,3,1, H. Miao1, J. Ma1, P. 

Richard1,2, X. C. Huang1, L. X. Zhao1, G. F. Chen1,2, Z. Fang1,2, X. Dai1,2, T. Qian1,§, and 

H. Ding1,2,§ 

 
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, 

Chinese Academy of Sciences, Beijing 100190, China 
2 Collaborative Innovation Center of Quantum Matter, Beijing, China 
3 Department of Physics, Tsinghua University, 100084, Beijing, China 

 

Abstract 

Weyl semimetals are recently predicted class of materials that can be regarded as 

three-dimensional analogs of graphene breaking time reversal or inversion symmetry. 

Electrons in a Weyl semimetal behave as Weyl fermions, which have many exotic 

properties, such as chiral anomaly and magnetic monopoles in the crystal momentum 

space. The surface state of a Weyl semimetal displays pairs of entangled Fermi arcs at 

two opposite surfaces. However, the existence of Weyl semimetals has not yet been 

proved experimentally. Here we report the experimental realization of a Weyl semimetal 

in TaAs by observing Fermi arcs formed by its surface states using angle-resolved 

photoemission spectroscopy. Our first-principles calculations, matching remarkably well 

with the experimental results, further confirm that TaAs is a Weyl semimetal. 

 

 
*"These"authors"contributed"equally"to"this"work."
§ Corresponding authors E-mail: tqian@iphy.ac.cn, dingh@iphy.ac.cn 

  

Experimental observation of Weyl points

Ling Lu1,⇤ Zhiyu Wang2, Dexin Ye2, Lixin Ran2, Liang Fu1, John D. Joannopoulos1, and Marin Soljačić1
1 Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and

2 Laboratory of Applied Research on Electromagnetics, Zhejiang University, Hangzhou, 310027, China

In 1929, Hermann Weyl derived [1] the massless solu-
tions from the Dirac equation – the relativistic wave equa-
tion for electrons. Neutrinos were thought, for decades,
to be Weyl fermions until the discovery of the neutrino
mass. Moreover, it has been suggested that low en-
ergy excitations in condensed matter[2–8] can be the
solutions to the Weyl Hamiltonian. Recently, photons
have also been proposed to emerge as Weyl particles in-
side photonic crystals [9]. In all cases, two linear dis-
persion bands in the three-dimensional (3D) momentum
space intersect at a single degenerate point – the Weyl
point. Remarkably, these Weyl points are monopoles of
Berry flux with topological charges defined by the Chern
numbers[2, 3]. These topological invariants enable mate-
rials containing Weyl points to exhibit a wide variety of
novel phenomena including surface Fermi arcs[10], chi-
ral anomaly[11], negative magnetoresistance[12], nonlocal
transport[13], quantum anomalous Hall e↵ect[14], uncon-
ventional superconductivity[15] and others [16, 17]. Nev-
ertheless, Weyl points are yet to be experimentally ob-
served in nature. In this work, we report on precisely such
an observation in an inversion-breaking 3D double-gyroid
photonic crystal without breaking time-reversal symme-
try.

Weyl points are sources of quantized Berry flux of ±2⇡ in
the momentum space. Their charges can be defined by the
corresponding Chern numbers of ±1, as shown in Fig. 1a.
So, Weyl points robustly appear in pairs and can only be re-
moved through pair annihilation. Since the Berry curvature
is strictly zero under PT symmetry, — the product of par-
ity (P, inversion) and time-reversal symmetry (T ), isolated
Weyl points only exist when at least one of P or T is broken.
In Ref. [9], frequency-isolated Weyl points were predicted in
PT -breaking DG photonic crystals. We chose to break P in-
stead of T , in the experiment, to avoid using magnetic mate-
rials and applying static magnetic fields. This also allows our
approach to be directly extended to photonic crystals at opti-
cal wavelengths. This P-breaking DG is shown in its body-
centered-cubic (bcc) unit cell in Fig. 1b. At the presence of
T , there must exist even pairs of Weyl points. The two pairs
of Weyl points illustrated in the Brillouin zone (BZ), in Fig.
1c, are thus the minimum number of Weyl points possible.
The bandstructure plotted in Fig. 1d shows two linear band-
crossings along � � N and � � H. The other two Weyl points
have identical dispersions due to T .

We work at the microwave frequencies around 10GHz for
the accessible fabrication of 3D photonic crystal. The current

⇤ linglu@mit.edu
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FIG. 1. Weyl points found in the bandstructure of a P-breaking gy-
roid photonic crystal. a) The Weyl points are monopoles of Berry
flux in the momentum space. b) The bcc cell of the DG with
a P-breaking defect on the red gyroid, where a1 = (�1, 1, 1) a

2 ,
a2 = (1,�1, 1) a

2 and a3 = (1, 1,�1) a
2 . The (101) surfaces are high-

lighted in green. c) The BZ of the DG photonic crystal in b). Four
Weyl points were illustrated on the green (101) plane along ��H and
��N, where H = (0, 1, 0) 2⇡

a and H = (�0.5, 0, 0.5) 2⇡
a . d) The photon

dispersions were plotted along the N � � � H. The Weyl points are
the linear band-touchings between the 4th-and 5th bands.

additive processes like 3D printing can hardly fulfill the ma-
terial requirement of low-loss dielectrics with high-dielectric
constants. In order to fabricate the two inter-penetrating gy-
roids with subtractive processes, we open up each gyroid net-
work by layers along the [101] direction with equal thickness
of ap

2
. The P-breaking defects are introduced in each layer of

red gyroid in Fig. 1b.
We approximate each gyroid network by three sets of hole-

drilling, as illustrated in Fig. 2a in a unit cell of the body-
centered-cubic bcc lattice. Similar methods of drilling and an-
gled etching has been used in fabrication of 3D photonic crys-
tals at microwave[18] and near infrared wavelengths[19]. The
three cylindrical air holes, of the blue gyroid, along x̂, ŷ and ẑ
go through (0, 1

4 , 0)a, (0, 0, 1
4 )a and ( 1

4 , 0, 0)a respectively. All
air holes have a diameter of 0.54a, where a is the cubic lat-
tice constant. Gyroids approximated by this drilling approach
have almost identical bandstructures as those defined by the
level-set iso-surfaces in Ref. [9].

The second (red) gyroid is the inversion counterpart of the

ar
X

iv
:1

50
2.

03
43

8v
1 

 [c
on

d-
m

at
.m

trl
-s

ci
]  

11
 F

eb
 2

01
5

- First observations reported in 2015

Lu et. al. arXiv:1502.03438  (photonic crystals @ MIT) 
Xu et. al. arXiv:1502.03807 (TaAs @ Princeton) 
Lv et. al. arXiv:1502.04684 (TaAs @ Beijing)
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Now with an avalanche of experiments!

- many intriguing transport phenomena predicted, including novel disorder induced phase 
transitions, …

B. Sbierski, G. Pohl, E. J. Bergholtz, and P. W. Brouwer
Phys. Rev. Lett. 113, 026602 (2014)
… and many others

Diffusive metalPseudoballistic 
semimetal KKc

Questions: 1) How about interaction effects?
2) Is the correspondence between bulk and surface 
one-to-one?
3) Breaking of Lorentz invariance?



Topology meets frustration
References: 

M. Trescher and E.J. Bergholtz,
Flat bands with higher Chern number in pyrochlore slabs
Phys. Rev. B 86, 241111(R) (2012)

Z. Liu, E.J. Bergholtz, H. Fan, and A. M. Läuchli, 
Fractional Chern Insulators in Topological Flat bands with Higher Chern Number
Phys. Rev. Lett. 109, 186805 (2012)  

E.J. Bergholtz, Z. Liu, M. Trescher, R. Moessner, and M. Udagawa,
Topology and Interactions in a Frustrated Slab: Tuning from Weyl Semimetals to C > 1 
Fractional Chern Insulators
Phys. Rev. Lett. 114, 016806 (2015)

Emil J. Bergholtz 
FU Berlin 

Overview lecture/tutorial on the 
Third annual workshop of the Virtual Institute “New States of Matter 

and their Excitations”, Berlin-Adlershof, June 16-19, 2015.

Chern insulators 
and their relatives

1

B

+ =

Interactions and topology combined

Macroscopic number of almost degenerate states
- Interactions/quantum fluctuations determine ‘everything’

Interactions and Topology in Quantum Matter:
From frustrated magnets to fractional topological insulators

1 State of the art and preliminary work

Beyond local order: topological order and emergent degrees of freedom. Landau provided an
amazingly successful way of understanding different forms of matter in terms of the symmetries they
break. For instance, the atoms in a solid break the translational symmetry and, at low enough tem-
peratures, the local magnetic moments (spins) spontaneously order into a magnetic state that breaks
the rotational and translational symmetries of the underlying Hamiltonian. During the last few decades
it has become clear that Landau’s characterization is not exhaustive. There are in fact fundamentally
new phases of matter where the ground state breaks no symmetries of the Hamiltonian. The order in
such systems is highly non-local and is usually termed ”topological order” [1]. The understanding of
this new kind of order is far less satisfying and has been a main topic of research in theoretical physics
for the past few decades. More recently, it has been realized that the understanding of this new or-
der may have fundamental technological implications—the dream is to be able to build a topologically
protected quantum computer which would evade decoherence, the main problem of realizing quantum
computational devices, by storing the information, the q-bit, in non-local properties of the states, thus
making it robust against local perturbations [2].

?
(a) (b) (c)

(d) (e) (f)

Figure 1: (a) and (b) illustrate the difference between bipartite lattices, such as the square lattice in (a), and
frustrated lattices such as the triangular case in (b). (c) shows the Néel order forming on the triangular lattice.
The highly frustrated two-dimensional kagome lattice formed by corner sharing triangles is displayed in (d) and
a unitcell of the three-dimensional analogs thereof, the hyperkagome (only fat sites and bonds) and pyrochlore
(also small sites and thin green bonds), is shown in (e). The bipartite honeycomb lattice of graphene is shown in
(f).

Conventional order is expected when the energy can be locally minimized simultaneously through-
out the system, yielding a simple ground state. When this is not the case, i.e. when there are many
almost degenerate states, subtle quantum fluctuations cannot be neglected and new exotic ground
states may appear. A simple way to visualize this contrasting behavior is to consider antiferromag-
netic Ising spins—the spins can point either up or down and prefer to do so in the opposite direction
compared to their neighbors—on the archetypical square and triangular lattices (Fig. 1(a,b)). On the
square lattice, as on any bipartite lattice, the minimization is simple and so-called Néel order results

1

Frustrated anti-ferromagnets 
(e.g., ZnCu3(OH)6Cl2)

(102)510, � = 6/17

(102)310, � = 4/11

10210, � = 2/5

(102)2m�110

� = 2m/(6m� 1)

L⇤⌅

⇥ 10 nm

2

empty one electron state

filled one electron state

Fractionally filled Landau level

5

Our focus



Materials motivation
Perovskite materials, ABO3, routinely grown in 
sandwich structures in the [100] direction

D. Xiao, W. Zhu, Y. Ran, N. Nagaosa, and S. Okamoto, 
Nature Commun. 2,  596 (2011).

2

2nd order SOC

B

O

B’ B AO3

AB’O3 ABO3 ABO3 AB’O3

x y

z

X

Y

B

a~

a0A

a b c

d e
eg

t2g

j=1/2

j=3/2

10Dq
a1g

eg’

λ λ&∆ ∆

FIG. 1: Formation of the honeycomb lattice in a (111) bilayer in the cubic lattice. (a) Perovskite structure ABO3.
(b) A (111) bilayer consisting of the top layer indicated by red circles and the bottom layer indicated by blue circles. The lattice
constant is a0. The bilayer shown as solid lines in (b) forms the honeycomb lattice when projected on the [111] plane with
the lattice constant ã =

√

2/3a0 (c). The real space coordinates are labeled by (x, y, z) in the original cubic lattice, while it is
labeled by (X,Y ) in the [111] plane. (d) Level structure of TM d orbital. In the cubic environment, d orbitals split into eg and
t2g manifolds. With the SOC, t2g manifold further splits into two levels characterized by the effective total angular momentum
j = 1/2 and 3/2. With the trigonal crystal field, t2g manifold splits into two levels denoted by a1g and e′g. With both the SOC
and the trigonal field, t2g manifold splits into three levels and eg manifold splits into two levels, i.e., all the degeneracies are
lifted except the Kramers doublets. (e) ABO3 monolayer is grown on AO3 terminated AB′O3 substrate capped by AB′O3.
The direction of crystal growth is indicated by an arrow.

the Brillouin zone without the SOC, and then examine
whether an energy gap can be opened at those points
with the SOC turned on. If an energy gap does open,
combined with proper filling the resulting state could
be a TI. In an ideal perovskite structure, the TM ions
sit on a simple cubic lattice, with the octahedral crys-
talline field splitting the TM d orbitals into two-fold
degenerate eg(d3z2−r2 , dx2−y2) and three-fold degenerate
t2g(dyz, dzx, dxy) levels, well separated by so-called 10Dq
on the order of 3 eV. Such a lattice geometry usually does
not support Dirac points. Instead, we consider bilayers
of the perovskite structure grown in the [111] direction.
As shown in Fig. 1, the TM ions in the (111)-bilayer are
located on a honeycomb lattice consisting of two trig-
onal sublattices on different layers. This lattice geom-
etry has three consequences: Firstly, it is well known
from the study of graphene that electrons hopping on
a honeycomb lattice generally give rise to Dirac points
in the band structure; secondly, A layer potential differ-
ence can be easily created by applying a perpendicular
electric field or by sandwiching the bilayer between two
different substrates, which allows experimental control
of the band topology; and, thirdly, the honeycomb lat-
tice further reduces the symmetry of the crystalline field
from octahedral (Oh) to trigonal (C3v), and introduces
additional level splitting of the d-orbitals. The last point
turns out to be crucial for realizing the topologically in-
sulating phase.
We first consider the t2g manifold, in which the on-site

SOC is active. In our modeling, only nearest-neighbor

hopping of d electrons between the TM sites via oxy-
gen p orbital is included. Since we are interested in the
band topology, which is robust against small perturba-
tions as long as the band gap remains open, our model
is justified and allows us to capture the essential ingredi-
ents with minimal parameterization. The tight-binding
Hamiltonian is given by

H = −t
∑

rr′ττ ′

T ττ ′

rr′ d†rτdr′τ ′ + λ
∑

r
lr · sr

+∆
∑

rτ ̸=τ ′

d†rτdrτ ′ +
V

2

∑

rτ
ξrd

†
rτdrτ , (1)

where r and τ label the lattice sites and the t2g orbitals,
respectively. The first term is the hopping term rep-
resented by a single amplitude t and the dimensionless
structural factor T ττ ′

rr′ . The second term is the on-site
SOC, which splits the t2g levels into a j = 1/2 doublet
with energy λ and a j = 3/2 quadruplet with energy
−λ/2. lr and sr are the angular momentum and spin
operators. The third term is the trigonal crystalline field
with which the a1g-e′g splitting is given by 3∆/2. V in the
last term is the layer potential difference, and ξr = ∓1
when r is in the top or bottom layer. The explicit form
of the Hamiltonian is presented in the Supplementary
Method.
The large number of orbitals (6 per TM site) involved

in our model give rise to a very rich behavior of the topo-
logical band structure in the parameter space. Depend-
ing on the strength of the SOC, the system falls into two
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FIG. 4: Bulk dispersion relations of the (111) bilayer of eg model with the Zeeman splitting. (a) Small Zeeman
splitting with B = 0.3t, and (b) large Zeeman splitting with B = 2t. Here we used λ̃ = 0.5t. Bands with the majority
(minority) spin component are indicated as red (blue) lines. Band dependent Chern number is also indicated.

bulk modes. In further thicker islands of (111) TMO lay-
ers, metallic state would be realized inside the sample. In
addition to (111) bilayers, we have studied model (111)
trilayers and found that the TI states are robust without
the even-odd oscillation between TI and trivial insulator,
as predicted for the bismuth thin films50. Structurally, a
(111) trilayer forms a so-called dice lattice, which could
also bring about interesting quantum effects character-
ized by the Chern number C = ±251. Of course, if the
layer structure is too thick then the bulk cubic symme-
try is restored and the system is no longer a TI. So far,
we did not mention the correlation effects and compet-
ing ground states except for the previous section. For
limiting cases, we have performed unrestricted Hartree-
Fock calculations for multi-orbital Hubbard models de-
fined on (111) bilayers. We found that the TI states
are rather robust for e2g systems and become unstable
against antiferromagnetic insulating states when the in-
teraction strength is comparable to the full bandwidth
as in the two-dimensional Hubbard model on the honey-
comb lattice52. For e1g or e3g systems, the QAH insulating
states could be generated dynamically by correlation ef-
fects without the SOC53,54, yet trivial insulating states
due to the Jahn-Teller effect would also be stabilized de-
pending on the relative balance between the Coulomb
interaction and the Jahn-Teller coupling. In this paper,
we focused on the perovskite-type TMOs. Thus, our de-
sign principle for the TI state works only for the [111]
plane because other planes such as [001] and [110] do not
support a honeycomb lattice. However, this approach is
not limited to the perovskite systems. For example, the
[0001] plane of corundum Al2O3, i.e., sapphire, involves
a honeycomb lattice formed by Al atoms. Such a sys-
tem could also be utilized as the substrate material to
artificially create the TI state.
Methods
Tight-binding models in the real space. First, we
consider a general multiband tight-binding (TB) model
on a cubic lattice given by

Hband = −
∑

⟨rr′⟩σ

∑

µµ′

{
tµµ

′

rr′d
†
rµσdr′µ′σ + h.c.

}
, (5)

where r labels the transition-metal sites, σ spin, and µ

orbitals. tµµ
′

rr′ is a transfer matrix which depends on the
pair of orbitals but not on the spin; its detail will be
presented shortly.
For t2g electron systems, the trigonal crystal field di-

rectly couples with the local t2g level. In addition, the
angular momentum is not quenched, and therefore the
spin-orbit coupling (SOC) is active. Including these
two effects, a TB model for t2g systems is written as
Ht2g = Hband +HSO +Htri with HSO and Htri given by
the second and the third terms of Eq. (1), respectively.
The explicit form of HSO for the t2g-alone model is given
by

HSO = λ
∑

r
lr · sr =

λ

2

∑

rσσ′

∑

ττ ′τ ′′

iεττ ′τ ′′d†rτσσ
τ ′′

σσ′drτ ′σ,

(6)
with the use of the following convention for the orbital
index: |a⟩ = |dyz⟩, |b⟩ = |dzx⟩, and |c⟩ = |dxy⟩. στ with
τ = a, b, c is the Pauli matrix, and εττ ′τ ′′ is the Levi-
Civita antisymmetric tensor.
The dependence of transfer matrices on the orbital and

direction is given by the Slater-Koster formula55 as fol-
lows:

taar,r±ŷ(ẑ) = tbbr,r±ẑ(x̂)
= tccr,r±x̂(ŷ)

= tπ, (7)

taar,r±x̂ = tbbr,r±ŷ = tccr,r±ẑ = tδ′ , (8)

for the nearest-neighbor (NN) hopping and

taar,r±ŷ±ẑ = tbbr,r±ẑ±x̂ = tccr,r±ŷ±ẑ = tσ′′ (9)

tabr,r±(x̂+ŷ)
= tbcr,r±(ŷ+ẑ) = tcar,r±(ẑ+x̂)

= tπ′ , (10)

tabr,r±(x̂−ŷ)
= tbcr,r±(ŷ−ẑ) = tcar,r±(ẑ−x̂)

= −tπ′ , (11)

for the second-neighbor (SN) hopping. Here, x̂, ŷ, and
ẑ are the unit vector along the x-, y-, and z-direction,
respectively. Although it is via weak π hybridization tπpd
between a transition-metal ion and an oxygen ion, the NN
hopping tπ ∝ (tπpd)

2/∆pd is the largest parameter in this
model, thus, taken as the unit of energy t. ∆pd is the level

- Instead (111) slabs would be 
good for topological physics 
(relatively flat C=1 bands). 

- But [111] is not a natural cleavage/growth direction...
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Epitaxial growth of (111)-oriented LaAlO3/LaNiO3 ultra-thin superlattices
S. Middey,1, a) D. Meyers,1 M. Kareev,1 E. J. Moon,1 B. A. Gray,1 X. Liu,1 J. W. Freeland,2 and J. Chakhalian1
1)Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701,
USA
2)Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439,
USA

The epitaxial stabilization of a single layer or superlattice structures composed of complex oxide materials on
polar (111) surfaces is severely burdened by reconstructions at the interface, that commonly arise to neutralize
the polarity. We report on the synthesis of high quality LaNiO3/mLaAlO3 pseudo cubic (111) superlattices
on polar (111)-oriented LaAlO3, the proposed complex oxide candidate for a topological insulating behavior.
Comprehensive X-Ray diffraction measurements, RHEED, and element specific resonant X-ray absorption
spectroscopy affirm their high structural and chemical quality. The study offers an opportunity to fabricate
interesting interface and topology controlled (111) oriented superlattices based on ortho-nickelates.

Over the past few years, complex oxide superlattices
(SL) with correlated carriers have been widely stud-
ied owing to the range of exciting phenomena emerg-
ing at the interface which are unattainable in the bulk
constituents.1,2 Recently, active experimental investiga-
tions3–7 on the class of SLs consisting of paramagnetic
metal LaNiO3 (LNO) and LaAlO3 (LAO) were initiated
after the prediction of a possible high Tc superconduc-
tivity in the LaNiO3/LaMO3 heterostructures (where
LaMO3 is a wide band-gap insulator).8,9 The experimen-
tal realization of LNO/LAO SLs grown on a (001)10 sur-
face of SrTiO3 (STO), however, revealed the presence
of an unexpected transition to Mott insulating ground
state with antiferromagnetic order due to quantum con-
finement and the effect of d-orbital polarization by the
interface.4,6 Inspired by this approach, several recent
theory proposals have been put forward regarding the
physics which may emerge in a bilayer of LaNiO3 sand-
wiched between LaAlO3 layers grown along the [111]
crystallographic direction. Specifically, the theory pre-
dicts the appearance of exotic topological phases (e.g.
Dirac half-semimetal phase, quantum anomalous Hall in-
sulator phase or ferromagnetic nematic phase) modulated
by the strength of electron-electron correlations.11–14 To
date, very little experimental work have been done to
develop such heterojunctions along the [111] direction to
verify the theoretical predictions about this class of arti-
ficial materials with interesting electronic and magnetic
ground states.
One of the main challenges in developing growth

along [111] is that commonly used substrates such as
LaAlO3 (or SrTiO3) consist of alternating LaO3−

3 Al3+

(or SrO4−
3 Ti4+) charged planes stacked along the [111] di-

rection. The epitaxial thin film growth along this highly
polar direction15–17 is far less understood due to the pos-
sible occurrence of complex surface reconstructions that
act to compensate for the polar mismatch. For example,
recently it has been demonstrated that for the systems
with strong polarity mismatch e.g. BiFeO3 on STO or

a)Electronic mail: smiddey@uark.edu

CaTiO3 on LAO, the epitaxial stabilization is possible
only if a “screening” buffer layer is grown first on the po-
lar surface.18 On the other hand, the polarity matching
at the interface can have strong influence on the epitax-
ial growth, defects formation and overall stoichiometry
of the layers as observed by the marked interfacial elec-
tronic reconstruction for polar LNO film grown on the top
of charge neutral STO vs. polar LAO (001) surface.19

In this letter, we present the results of artificial layer-
by-layer growth of an unique class of (111)-oriented
2LNO/mLAO heterostructures (with m = 2, 3, and 4
unit cells) on LAO (111) single crystal (see Fig. 1(a)).
The LAO substrate was selected to eliminate the effects
of lattice mismatch (i.e. strain) between the layers, which
otherwise may hinder the quality of growth. The exten-
sive characterization using reflection high energy electron
diffraction (RHEED), atomic force microscopy (AFM),
X-ray diffraction (XRD), and synchrotron based reso-
nant X-ray absorption spectroscopy (XAS) confirm the
high structural, chemical and electronic quality of these
superlattices designed to facilitate the realization of the
geometry driven electronic and magnetic phases.
Fully epitaxial 2LNO/mLAO SLs were grown by laser

MBE operating in interval deposition mode on commer-
cially available high-quality mixed terminated LAO (111)
substrates.20 The in-situ growth was monitored by high-
pressure RHEED. The growth was carried out under 50
mTorr of partial pressure of oxygen at a deposition rate of
20-30 Hz; the substrate temperature was set at 670◦C. To
maintain correct oxygen stoichiometry the grown samples
were subsequently post annealed in-situ for 30 minutes
in 1 Atm of ultra pure oxygen. Electrical d.c. trans-
port was performed in a commercial physical properties
measurement system using the van der Paw geometry.
In order to elucidate how the formally polar (111) sur-

faces of LAO substrate neutralizes the charge, we have
investigated the as-received LAO substrate by combina-
tion of atomic force microscopy (AFM) and X-ray pho-
toelectron spectroscopy (XPS) obtained at the different
core states at both the grazing and normal orientation
between the detector and the sample surface. The de-
tailed characterization has revealed that the substrate
possesses mixed termination (i.e. Al3+ and (LaO3)3−)

arXiv:1212.0590v1  [cond-mat.mtrl-sci]  4 Dec 2012
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- Fractional Chern insulators!?

- Natural cleavage/growth direction!

Our suggestion: Consider (111) slabs of 
pyrochlore transition metal oxides, in particular 
A2Ir2O7 iridate thin films
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(a) (b)

FIG. 3. Pyrochlore lattice structure showing the Ir (blue) tetrahedra. Trigonally compressed cages of
oxgyens (small & red) surround each Ir. The rare earth R ions are in green. The box is aligned along the
[100], [010] and [001] directions. In b), the light spheres would correspond to the position of oxygen ions
in an ideal octahedron, expected for a larger R3+ ion. All pyrochlore iridates show trigonal compression
of the oxygen cages along the [111] directions.

show a diverging ⇢ at su�ciently low temperature, except Pr-227.23,24,84 For the compounds with a

larger R3+ ion such as Eu-, Sm- and Nd-227 the resistivity goes from being “metallic” (d⇢/dT > 0)

at large temperatures T > T
c

to “non-metallic” (d⇢/dT < 0) at smaller temperatures T < T
c

. This

is illustrated for Eu-227 in Figure 4(a). Pr-227 lies at the end of the spectrum in that it has the

largest ionic radius, and does not show a major resistivity upturn down to the lowest temperatures,

in agreement with the above trend. For compounds with smaller R3+ ions such as for R = Lu,

Yb, Ho, Y, etc the slope does not change sign and the resistivity is “non-metallic” throughout. In

that case, the upturn at T
c

is smoother. One can tentatively explain this trend according to which

a larger R3+ cation leads to a more metallic ⇢ as follows: Larger R3+ ions lead to a decreased

trigonal compression of the octahedra (Figure 3(b)), which increases the Ir-O orbital-overlap and

thus facilitates the hopping of the Ir electrons.96

A variety of sharp features in the magnetic properties occur at the same temperature as the

resistivity upturn, T
c

, which support its interpretation as a true phase transition. Most notably,

the field cooled (FC) and zero-field cooled (ZFC) magnetic susceptibilities branch away from each

other,24,82 as shown in Figure 4(a) for Eu-227. In addition, µSR experiments, which have been

performed on Eu-,86 Nd-92,97 Yb-,93 and Y-227,93 show the continuous rise of a well-defined muon-

precession frequency directly below T
c

(illustrated in Figure 4(a) for Eu-227). This is indicative of

[111] is a natural cleavage/
growth direction

Pyrochlore iridates, A2Ir2O7

Time-reversal symmetry is absent, e.g., due to an orbital
field or spontaneous ferromagnetism.
Band structure and surface wave functions.—

Independently of the form of the Bloch states of a single
kagome layer, three bands of theN-layer system are exactly
described by

jψ iðkÞi ¼ N ðkÞ
XN

m¼1

ðrðkÞÞmjϕiðkÞim; ð1Þ

where jϕiðkÞim, i ¼ 1; 2; 3 are the single layer Bloch states
localized toKm andN ðkÞ ensures proper normalization. The
coefficients rðkÞ are determined by demanding that the
amplitudes for hopping to the triangular layers vanish by inter-
fering destructively (Fig. 1): rðkÞ ¼ −½ϕi

1ðkÞ þ ϕi
2ðkÞþ

ϕi
3ðkÞ&=½e−ik2ϕi

1ðkÞ þ eiðk1−k2Þϕi
2ðkÞ þ ϕi

3ðkÞ&, where
ϕi
nðkÞ, n ≤ 3, are the components of the Bloch spinor

for the pertinent state jϕiðkÞi in a single kagome layer, and
k1;2 ¼ k · a1;2. While ϕi

nðkÞ, n ≤ 3, can be analytically
obtained by diagonalizing 3 × 3 Hermitian matrices,
the full Bloch spinor is fully known via ψ i

4mðkÞ ¼ 0,
ψ i
nþ4ðm−1ÞðkÞ ¼ N ðkÞ½rðkÞ&mϕi

nðkÞ for all k; n; m, with
EðkÞ of the states (1) equal to those of the single layer case.
Let us emphasize that, first, the states on the slab are

exponentially localized to either the top or bottom layers,
except in high symmetry cases where jrðkÞj ¼ 1. And
second, if periodic boundary conditions are applied also in
the [111] direction, there are no generic eigenstates of the
form (1), underscoring their surface nature.
In the following, we consider the case of single layer

kagome bands carrying nonzero Chern number [36–38], say
C ¼ 1. Then, the multilayer state (1) has Chern number N:

jψC¼NðkÞi ¼ N ðkÞ
XN

m¼1

ðrðkÞÞmjϕC¼1ðkÞim; ð2Þ

where jϕC¼1ðkÞim is the state localized to Km. The states
(2) play a prominent role in this work, and their corre-
sponding energies are highlighted in bold orange through-
out this work (not shown are the two related states
with C ¼ 0;−N).
Figure 2 illustrates the finite t⊥ transition between

weakly coupled Chern insulators and the Weyl semimetal
regime with linear band touching points described by

HWeyl ¼
X

i

viσiki þ E0ðkÞI; ð3Þ

where σi are Pauli matrices and I is the identity matrix.
Precisely at the transition, the valence and conduction
bands exhibit a twofold degenerate touching at the M
points, which split into three pairs of (nondegenerate) Weyl
cones that travel towards the Γ point where they meet as
t⊥ → ∞. Remarkably, the states (2) are entirely indepen-
dent of the value of t⊥; in each case they describe states
localized to the surfaces perpendicular to the [111] cleav-
age, cut, or growth direction, while at the same time their
interpretation fundamentally changes. Note also that the
dispersion of the states (2) always traverses the Weyl point.
At fixed chemical potential, which may be fixed at

the Weyl node due to stoichiometric considerations, the
states (2) precisely describe Fermi arcs. In Fig. 3 we
illustrate the momentum dependence of the surface locali-
zation of the states (2). Most saliently, we find that the
penetration depth diverges along the lines connecting Γ and
M. Crossing these lines, the localization changes between
the bottom and top surfaces, which is the hallmark behavior
of Fermi arcs. More specifically, a typical Fermi “circle”
splits into six Fermi arcs which switch between top and

FIG. 1 (color online). The pyrochlore slab. The left panel shows
the [111] pyrochlore slab with N ¼ 4 kagome layers (dark blue)
separated by (yellow) sites of N − 1 ¼ 3 triangular layers. A
practical labeling of the 4N − 1 ¼ 15 sites in the unit cell and
the basis vectors, a1; a2, of the Bravais lattice are also indicated.
The top right panel indicates the considered nearest-neighbor
processes. The lower right panel shows the local environment of a
triangular (yellow) site for which the local constraint of destruc-
tive interference directly leads to the surface states (1).
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FIG. 2 (color online). Weakly coupled Chern insulators versus
Weyl semimetals. As t⊥ is increased there is a transition from a
weakly coupled regime to a distinct phase where Weyl nodes
occur on the line connecting Γ and M. In the top left panel we
show the phase diagram in the case of nearest-neighbor hopping
only (we set t1 ¼ −1 throughout) [39]. The other panels show
example band structures with fixed λ1 ¼ 0.5 and varying t⊥ ¼
1; 2; 3 for a slab with N ¼ 300 kagome layers along the crucial
Γ − K −M − Γ path through the projected 2D Brillouin zone
(BZ) (cf. top right inset). Note that, remarkably, the band
highlighted in orange corresponding to the surface states (2),
is independent of t⊥.
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Effective lattice model

- Even richer physics…? M. Trescher and E.J. Bergholtz,
Phys. Rev. B 86, 241111(R) (2012)
E.J. Bergholtz, Z. Liu, M. Trescher, R. Moessner, and M. Udagawa,
Phys. Rev. Lett. 114, 016806 (2015)

- Strong spin-orbit coupling



Conceptual motivation
Why did nobody report on fractional Chern insulators in C>1 bands? 
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- It is the obvious thing to look for as they would be unique 
to the lattice setting: Landau levels always have C=1!

1 + 1 ! 2 + 0?

Is it possible to make N C=1 bands hybridize so that one band absorbs all 
the topology (C=N) while the others become trivial (C=0)? 

?
Frustrated lattices are especially promising

- Frustrates the main FCI competitors such as CDWs 
- Natural platform for flat bands 

Interactions and topology combined

Macroscopic number of almost degenerate states
- Interactions/quantum fluctuations determine ‘everything’

Interactions and Topology in Quantum Matter:
From frustrated magnets to fractional topological insulators

1 State of the art and preliminary work

Beyond local order: topological order and emergent degrees of freedom. Landau provided an
amazingly successful way of understanding different forms of matter in terms of the symmetries they
break. For instance, the atoms in a solid break the translational symmetry and, at low enough tem-
peratures, the local magnetic moments (spins) spontaneously order into a magnetic state that breaks
the rotational and translational symmetries of the underlying Hamiltonian. During the last few decades
it has become clear that Landau’s characterization is not exhaustive. There are in fact fundamentally
new phases of matter where the ground state breaks no symmetries of the Hamiltonian. The order in
such systems is highly non-local and is usually termed ”topological order” [1]. The understanding of
this new kind of order is far less satisfying and has been a main topic of research in theoretical physics
for the past few decades. More recently, it has been realized that the understanding of this new or-
der may have fundamental technological implications—the dream is to be able to build a topologically
protected quantum computer which would evade decoherence, the main problem of realizing quantum
computational devices, by storing the information, the q-bit, in non-local properties of the states, thus
making it robust against local perturbations [2].

?
(a) (b) (c)

(d) (e) (f)

Figure 1: (a) and (b) illustrate the difference between bipartite lattices, such as the square lattice in (a), and
frustrated lattices such as the triangular case in (b). (c) shows the Néel order forming on the triangular lattice.
The highly frustrated two-dimensional kagome lattice formed by corner sharing triangles is displayed in (d) and
a unitcell of the three-dimensional analogs thereof, the hyperkagome (only fat sites and bonds) and pyrochlore
(also small sites and thin green bonds), is shown in (e). The bipartite honeycomb lattice of graphene is shown in
(f).

Conventional order is expected when the energy can be locally minimized simultaneously through-
out the system, yielding a simple ground state. When this is not the case, i.e. when there are many
almost degenerate states, subtle quantum fluctuations cannot be neglected and new exotic ground
states may appear. A simple way to visualize this contrasting behavior is to consider antiferromag-
netic Ising spins—the spins can point either up or down and prefer to do so in the opposite direction
compared to their neighbors—on the archetypical square and triangular lattices (Fig. 1(a,b)). On the
square lattice, as on any bipartite lattice, the minimization is simple and so-called Néel order results

1

Frustrated anti-ferromagnets 
(e.g., ZnCu3(OH)6Cl2)
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Our focus

t1,�1

t2,�2

t?

Consider frustrated systems with a 
layered structure!



Tight binding results: bulk 
dispersion and Chern numbers

For N kagome layers we find an almost flat band with C=N!

M. Trescher and E.J. Bergholtz, 
Phys. Rev. B 86, 241111(R) (2012)
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Does local interactions give new FCI phases 
within the C>1 bands?

⌫b = 1/(C + 1)Bosonic FCIs at

Z. Liu, E.J. Bergholtz, H. Fan, A. M. Läuchli 
Phys. Rev. Lett. 109, 186805 (2012)  

⌫f = 1/(2C + 1)Fermionic FCIs at but absent at higher filling fractions! 

Strong evidence also for C>1 generalizations of 
non-Abelian FQH states found in this model!

E.J. Bergholtz, Z. Liu, M. 
Trescher, R. Moessner, and M. 
Udagawa, Phys. Rev. Lett. 114, 
016806 (2015)

A. Sterdyniak, C. Repellin, 
B.A. Bernevig, and N. 
Regnault, Phys. Rev. B 
87, 205137 (2013) 
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9-fold topological degeneracy (Fig. 5), its non-trivial entan-
glement spectra [36] as well as its provenance from a three-
body interaction (see [36] for details). We note that, given
the flat band is not located at the bottom of the spectrum, this
state is indeed naturally suited to fermions at an appropriate
density.

Figure 5. Topological degeneracy in the C = 2 bilayer system.
(a) The energy spectra of the interaction H =

P
hi,j,ki ninjnk in-

teraction projected to the flatbandfor Ne = 8 and Ne = 10 elec-
trons in lattices with N1 ⇥ N2 = (Ne/2) ⇥ 6 unit cells yielding
a filling fraction of ⌫ = 1/3. Each energy level is labeled by the
conserved many-body momentum (K1,K2). The shaded area indi-
cates the 9 quasi-degenerate states. (b) The y-direction spectral flow
for 8 electrons under twisted boundary conditions  (rj +N2a2) =

exp(i�2) (rj) of the ground state  (rj). The red, green and blue
dots represent the 9 quasi-degenerate states in different momentum
sectors, and the gray dots represent the excited states. The parame-
ters are t1 = �1,�1 = 0.9, t2 = �2 = 0.

Gapless bulk.– Next, we argue that generically, a flat sur-
face band will not be gapped by interactions within it for thick
slabs. This happens because of the – topologically stable – lo-
cations on lines in reciprocal space where the states of the
band switch the surface at which they are localised. At these
points, the inverse penetration depth ⇠�1

(k) = log(|r(k)|)
(cf. Fig. 3) vanishes. Matrix elements V C=N

k1k2k3k4
involving

n{ki} momenta on these lines vanish as
�

1p
N

�n{ki} , reflect-
ing the spatial spread of the wavefunctions.

This is borne out by our numerics, where the absence of
a FCI is indicated by an inhomogeneous electron distribu-
tion n(k) in reciprocal space, reminiscent of a Fermi sur-
face (Fig. 6). This is analogous to the compressible states
at high filling fractions in C = 1 bands, where an effec-
tive "hole-dispersion", Eh(k) [36], resulting from a particle-
hole transformation, dictates the low-energy physics [38]. In
fact, both ⇠�1

(k) and Eh(k) correlate rather well with n(k)

as illustrated for ⌫ = 1/3 with nearest neighbor repulsion,
H =

P
hi,ji ninj (Fig. 6, see the supplementary materials for

details and further examples [36]).
Discussion.— In this work, we have unraveled a striking

connection between seemingly distinct frontiers of contem-
porary condensed matter physics by explicitly demonstrating
that flat bands with Chern number C = N appearing on a slab
of pyrochlore [30], and known to harbor a rich variety of frac-
tional Chern insulators [33, 34], are in fact surface state ves-
tiges of the Fermi arcs of Weyl semimetals [13]. This result
has a bearing in the general context of the bulk-boundary cor-

Figure 6. Ground state occupation numbers. n(k) plotted against
|⇠(r(k))|�1

= | log(|r(k)|)| (left panel) and �Eh(k) (right panel,
cf. Ref. [38]) for Chern numbers C = 2 (blue diamond) and C = 100

(red square) at ⌫ = 1/3 . This illustrates a general trend: n(k) gener-
ically very inhomogenous at large C while it can remain comparably
constant for small C (and ⌫) [36].

respondence in topological matter: while it has been realized
that there can be phase transitions on the boundary while leav-
ing the bulk intact [47, 48], we find a striking example of the
converse situation with a bulk transition leaving the boundary
theory unaffected.

We note that layered structures, albeit with a rather differ-
ent alternating normal insulator-strong topological insulator
setup, have been suggested earlier as a possible platform for
Weyl semimetals [14, 49]. Weyl semi-metals have also been
predicted to occur in pyrochlore based bulk materials, in par-
ticular in A2Ir2O7 (A is a rare-earth element) iridates [13],
for which the existence of remnant Fermi arc states at cer-
tain magnetic domain walls even in the absence of bulk Weyl
nodes was recently suggested [17]. Given the experimental
advantages with finite pyrochlore slabs grown in the [111] di-
rections [30–32], as compared to other oxide interfaces such
as perovskite heterostructures (which may also harbor intrigu-
ing flat bands [50, 51]), and the generality of our exact solu-
tions for the surface states based solely on locality and lattice
geometry, our setup has its distinct advantages even before
considering intricate interaction effects.

The exact solutions (1,2) provide a generic recipe for "engi-
neering" exotic surface states: coupling Chern insulators with
a desirable, e.g. flat, dispersion [52] in a geometrically frus-
trated manner results in states with the same dispersion but
with higher Chern number and added complexity of Fermi arc
variety. While we focused on pyrochlore slabs, this procedure
generalizes to other frustrated lattices.

We have also explored the effect of interactions in these
bands and identified new fractionalized topological phases as
well as generic gapless states as C ! 1. Our work es-
tablishes that the combined fractionalization and topological
surface localization of the interacting states found here, and
in Refs. [33, 34], are impossible in strictly two-dimensional
(isotropic) models just as Fermi arcs cannot exist in purely
two-dimensional band materials. This feature distinguishes
the pyrochlore based FCIs from other C > 1 generalizations
of multilayer quantum Hall states [53–61].

The present work invites a number of interesting questions
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Figure S6. The particle-cut entanglement spectrum for Ne = 8, N1 ⇥ N2 = 4 with three-body interaction at ⌫ = 1/3 in C = 2 band. The
parameters are t1 = �1,�1 = 0.9, t2 = �2 = 0.
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Different also from conventional 
multi-layer FQH systems Yes!



Ek/t1

 “Graphene + a flat band”

H = t1
X

hi,ji

c†i cj

Example: nearest neighbor hopping on a 
kagome lattice

But these states are neither topological nor Wannier functions!

- We need a refined concept that accommodates spin-orbit coupling…
- Quadratic touching point

Localized modes explain 
the flat band

| i = 1p
6

X
(�1)n|ni

n 2

Can we understand the microscopic 
structure of the C=N states?
A brief interlude: Flat bands and localized modes on frustrated lattices



Frustrated lattices with spin-orbit coupling
Start by considering a single chain

Stack N identical chains

m = 1

m = 2

m = N

...

H(k
x

) = d(k
x

) · � E±(kx) = ±|d(k
x

)|

A suitable gauge choice making the hopping to the intermediate (green sites) real 
always exists.

F. Kunst, M. Trescher and E.J. Bergholtz, 
in preparation

- Completely generic, works for any single-chain Hamiltonian with 
spin-orbit coupling and in presence of magnetic fields

- Look for eigenstates of the form 

| ±(kx)i =
X

m

�
r±(kx)

�
m|�±(kx)im

- Local constraint, zero total hopping 
amplitude to the green sites

r±(kx) = �
�1
±(kx) + �2

±(kx)

�1
±(kx) + eikx�2

±(kx)



Exact expression for the topological edge states

With spin-orbit coupling there are two cases:

- Constraint within the unit cell
|r(k

x

)| = 1 (no edge state!)

Cylinder spectra and edge localization 

|r(k
x

)| = 1 (no edge state!)No spin-orbit coupling or magnetic fields

- The local constraint necessarily involves multiple 
unit cells |r(k

x

)| 6= 1 !



Back to Pyrochlore:  
localize in the third dimension

M. Trescher and E.J. Bergholtz, 
Phys. Rev. B 86, 241111(R) (2012)

Topology and interactions in a frustrated slab:

tuning from Weyl semi-metal to C > 1 fractional Chern insulators

E.J. Bergholtz1, Z. Liu2, M. Trescher1, R. Moessner3, and M. Udagawa4

1Dahlem Center for Complex Quantum Systems and Institut für Theoretische Physik,
Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

2Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
3Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, D-01187 Dresden, Germany and

4Department of Applied Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656
(Dated: August 19, 2014)

We show that, quite generically, a [111] slab of spin-orbit coupled pyrochlore lattice exhibits surface states
whose constant energy curves take the shape of Fermi arcs, localized to different surfaces depending on their
quasi-momentum. Remarkably, these persist independently of the existence of Weyl points in the bulk. Consid-
ering interacting electrons in slabs of finite thickness, we find a plethora of known fractional Chern insulating
phases, to which we add the discovery of a new higher Chern number state which is likely a generalization of
the Moore-Read fermionic fractional quantum Hall state. By contrast, in the three-dimensional limit, we argue
for the absence of gapped states of the flat surface band due to a topologically protected coupling of the surface
to gapless states in the bulk. We comment on generalizations as well as experimental perspectives in thin slabs
of pyrochlore iridates.

PACS numbers: 73.43.Cd, 71.10.Fd, 73.21.Ac

Introduction.— The prediction [1–5] and subsequent ex-
perimental observation [6, 7] of topological insulators has
fundamentally revolutionized the understanding of electronic
states of matter during the past decade [8–10]. New fron-
tiers in this field include gapless topological phases such as
three-dimensional Weyl semi-metals [11–15] exhibiting ex-
otic Fermi arc surface states [13, 15–17], interaction effects
on the gapless surface of topological insulators [18–22], and
strongly correlated phases akin to fractional quantum Hall
states in two-dimensional (2D) lattices (see Refs. [23, 24]
and references therein). Drawing additional inspiration from
the rapid development of growth techniques in fabricating
high quality slabs/films/interfaces of oxide materials [25], this
work provides intriguing connections between these seem-
ingly disparate frontiers.

The materials pursuit for Weyl semi-metals and its rel-
atives is rapidly broadening [26–29], with spin-orbit cou-
pled pyrochlore iridates, such as Y2Ir2O7 [13, 30–32] being
particularly promising compounds—as these are favourably
grown/cleaved in the [111] direction, and given their pre-
dicted rich variety of strongly correlated phases [33, 34], we
here study the surface bands of pyrochlore [111] slabs, where
the system can be seen as a layered structure of alternating
kagome and triangular layers [30] (Fig. 1).

Our work uncovers an intriguing dichotomy between bulk
and surface states which allows us to establish connec-
tions between apparently disparate topological phenomena.
While the bulk band structure changes drastically as a func-
tion of the inter-layer tunneling strength t?—including the
(dis)appearance of the Weyl semi-metal—the surface states,
which involve only the kagome layers, remain unchanged on
account of their essentially geometrical origin. Most saliently,
in the two distinct regimes of N weakly coupled kagome lay-
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Figure 1. The pyrochlore slab. The left panel shows the [111] py-
rochlore slab with N = 4 kagome layers (blue) separated by (yel-
low) sites of N � 1 = 3 triangular layers. A practical labeling of the
4N � 1 = 15 sites in the unit cell and the basis vectors, a1,a2, of
the Bravais lattice are also indicated. The top right panel indicates the
considered nearest neighbor processes. The lower right panel shows
the local environment of a triangular (yellow) site for which the lo-
cal constraint of destructive interference directly leads to the surface
states (1) at the heart of this work.

ers, each with unit Chern number, at small t?, and the gen-
uinely three-dimensional Weyl semi-metal at large t?, identi-
cal surface states carrying Chern number C = N are localized
at opposite surfaces depending on their momentum. Constant
energy contours in reciprocal space are Fermi arcs, which thus
exist also in absence of Weyl nodes in the bulk!

Upon adding interactions to a partially filled surface band—
even when these are made very flat by tuning hopping
parameters—we argue that interactions do not open a gap
for thick slabs, due to a leakage into the bulk along "soft"
lines related to projections of remnant Weyl nodes. How-
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Figure 2. Weakly coupled Chern insulators vs. Weyl semi-metals.
As t? is increased there is a transition from a weakly-coupled regime
to a distinct phase where Weyl nodes occur on the line connecting �

and M . In the top left panel we show the phase diagram in the case
of nearest neighbor hopping only (we set t1 = �1 throughout) [36].
The other panels show example band structures with fixed �1 = 0.5
and varying t? = 1, 2, 3 for a slab with N = 300 kagome layers
along the crucial � � K � M � � path through the projected 2D
Brillouin zone (BZ) (cf. top right inset). Note that, remarkably, the
band highlighted in orange corresponding to the surface states (2), is
independent of t?.

ever, in thin slabs we find a plethora of possible fractionalized
phases, some of which were discovered earlier [33, 34] with
the implicit assumption of sub-critical inter-layer tunneling.
Most prominently, we provide evidence for a first non-Abelian
fermionic fractional Chern insulator (FCI) in a C > 1 band,
namely a C = 2 generalization of the Moore-Read quantum
Hall phase [35]. Our work thus gives a unifying and fresh
perspective on the intriguing combination of fractionalization
and topological surface localization impossible in strictly two-
dimensional systems.

Setup.— Our tight binding model on N kagome layers, Km,
alternating with N �1 triangular layers, Tm [30] (Fig. 1), con-
siders spinless, spin-orbit coupled, fermions with interlayer
hopping amplitude t? and kagome layer (next) nearest hop-
ping amplitudes t1 ± i�1 (t2 ± i�2), where the �(+) sign ap-
plies for (anti-)clockwise hopping w.r.t. the hexagon on which
it takes place. Time-reversal symmetry is absent, e.g. due to
an orbital field or spontaneous ferromagnetism.

Band structure and surface wave functions.— Indepen-
dently of the form of the Bloch states of a single kagome layer,
three bands of the N -layer system are exactly described by

| i
(k)i = N (k)

NX

m=1

⇣
r(k)

⌘m
|�i(k)im , (1)

where |�i(k)im, i = 1, 2, 3 are the single layer Bloch
states localized to Km and N (k) ensures proper normal-
ization. The coefficients r(k) are determined by demand-
ing that the amplitudes for hopping to the triangular lay-
ers vanish by interfering destructively (Fig. 1): r(k) =

� �i
1(k)+�i

2(k)+�i
3(k)

e�ik2�i
1(k)+ei(k1�k2)�i

2(k)+�i
3(k)

, where �in(k), n  3, are
the components of the Bloch spinor for the pertinent state

Figure 3. Surface state structure and Fermi arcs. The color scale
indicates the inverse penetration depth, ⇠�1

(k) = log(|r(k)|) of
the surface states throughout the 2D BZ for the same parameters,
t1 = �1,�1 = 0.5, used in Fig. 2. The black lines illustrate Fermi
arcs for a chemical potential set at the Weyl node for a few t?-values.
When ⇠�1

(k) changes sign, the localization changes between top
(red) to bottom (blue) surfaces, hence splitting the Fermi "circle"
into six spatially disjoint arcs.

|�i(k)i in a single kagome-layer, and k1,2 = k · a1,2. While
�in(k), n  3, can be analytically obtained by diagonalizing
3⇥ 3 Hermitian matrices, the full Bloch spinor is fully known
via  i

4m(k) = 0,  i
n+4(m�1)(k) = N (k)

�
r(k)

�m
�in(k) for

all k, n, m, with E(k) of the states (1) equal to those of the
single layer case.

Let us emphasize that, firstly, the states on the slab are ex-
ponentially localized to either the top or bottom layers, except
in high symmetry cases where |r(k)| = 1. And secondly,
if periodic boundary conditions are applied also in the [111]-
direction, there are no generic eigenstates of the form (1), un-
derscoring their surface nature.

In the following, we consider the case of single layer
kagome bands carrying non-zero Chern number [37, 38], say
C = 1. Then, the multilayer state (1) has Chern number N :

| C=N
(k)i = N (k)

NX

m=1

⇣
r(k)

⌘m
|�C=1

(k)im (2)

where |�C=1
(k)im is the state localized to Km. The states (2)

play a prominent role in this work, and their corresponding
energies are highlighted in bold orange throughout this work
(not shown are the two related states with C = 0, �N ).

Fig. 2 illustrates the finite t? transition between weakly
coupled Chern insulators and the Weyl semi-metal regime
with linear band touching points described by

HWeyl =

X

i

vi�iki + E0(k)I , (3)

where �i are Pauli matrices and I is the identity matrix. Pre-
cisely at the transition, the valence and conduction bands ex-
hibit a two-fold degenerate touching at the M -points, which
split into three pairs of (non-degenerate) Weyl cones that
travel towards the �-point where they meet as t? ! 1. Re-
markably, the states (2) are entirely independent of the value

Surface bands localized to the kagome layers iff the 
total hopping amplitude to the intermediate triangular 
layer vanish.

- Local constraint, destructive interference 
- Unique solution, independent of details!

components of the single-layer Bloch spinor

- Inherits the dispersion of the single layer model — precisely what we need!

|r(k)|- Localized to top or bottom layer, depending on 

- Reminiscent of Fermi arcs…..
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Construction of eigenstates

Localization properties of this state

exponentially localized to top/bottom layer
localization length � = log(|r(k)|)�1

r(k) = � �1(k) + �2(k) + �3(k)

e�ik2�1(k) + ei(k1�k2)�2(k) + �3(k)
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|r(k)| > 1

|r(k)| < 1 state localized to the bottom 
|r(k)| = 1

state localized to the top 

state delocalized!

M. Trescher and E.J. Bergholtz, 
Phys. Rev. B 86, 241111(R) (2012)

Localized States Flat bands, Higher Chern number and FQHE Weyl semi-metal Transport Summary

Pyrochlore lattice

5

top view

Non-trivial         due to the 
twisted layer structure

r(k)

r(k) = � �i
1(k) + �i

2(k) + �i
3(k)

e�ik2�i
1(k) + ei(k1�k2)�i

2(k) + �i
3(k)

- generalizes to many other 
frustrated lattices!



Topological selection rule
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Figure 2. Weakly coupled Chern insulators vs. Weyl semi-metals.
As t? is increased there is a transition from a weakly-coupled regime
to a distinct phase where Weyl nodes occur on the line connecting �

and M . In the top left panel we show the phase diagram in the case
of nearest neighbor hopping only (we set t1 = �1 throughout) [36].
The other panels show example band structures with fixed �1 = 0.5
and varying t? = 1, 2, 3 for a slab with N = 300 kagome layers
along the crucial � � K � M � � path through the projected 2D
Brillouin zone (BZ) (cf. top right inset). Note that, remarkably, the
band highlighted in orange corresponding to the surface states (2), is
independent of t?.

ever, in thin slabs we find a plethora of possible fractionalized
phases, some of which were discovered earlier [33, 34] with
the implicit assumption of sub-critical inter-layer tunneling.
Most prominently, we provide evidence for a first non-Abelian
fermionic fractional Chern insulator (FCI) in a C > 1 band,
namely a C = 2 generalization of the Moore-Read quantum
Hall phase [35]. Our work thus gives a unifying and fresh
perspective on the intriguing combination of fractionalization
and topological surface localization impossible in strictly two-
dimensional systems.

Setup.— Our tight binding model on N kagome layers, Km,
alternating with N �1 triangular layers, Tm [30] (Fig. 1), con-
siders spinless, spin-orbit coupled, fermions with interlayer
hopping amplitude t? and kagome layer (next) nearest hop-
ping amplitudes t1 ± i�1 (t2 ± i�2), where the �(+) sign ap-
plies for (anti-)clockwise hopping w.r.t. the hexagon on which
it takes place. Time-reversal symmetry is absent, e.g. due to
an orbital field or spontaneous ferromagnetism.

Band structure and surface wave functions.— Indepen-
dently of the form of the Bloch states of a single kagome layer,
three bands of the N -layer system are exactly described by

| i
(k)i = N (k)

NX

m=1

⇣
r(k)

⌘m
|�i(k)im , (1)

where |�i(k)im, i = 1, 2, 3 are the single layer Bloch
states localized to Km and N (k) ensures proper normal-
ization. The coefficients r(k) are determined by demand-
ing that the amplitudes for hopping to the triangular lay-
ers vanish by interfering destructively (Fig. 1): r(k) =

� �i
1(k)+�i

2(k)+�i
3(k)

e�ik2�i
1(k)+ei(k1�k2)�i

2(k)+�i
3(k)

, where �in(k), n  3, are
the components of the Bloch spinor for the pertinent state

Figure 3. Surface state structure and Fermi arcs. The color scale
indicates the inverse penetration depth, ⇠�1

(k) = log(|r(k)|) of
the surface states throughout the 2D BZ for the same parameters,
t1 = �1,�1 = 0.5, used in Fig. 2. The black lines illustrate Fermi
arcs for a chemical potential set at the Weyl node for a few t?-values.
When ⇠�1

(k) changes sign, the localization changes between top
(red) to bottom (blue) surfaces, hence splitting the Fermi "circle"
into six spatially disjoint arcs.

|�i(k)i in a single kagome-layer, and k1,2 = k · a1,2. While
�in(k), n  3, can be analytically obtained by diagonalizing
3⇥ 3 Hermitian matrices, the full Bloch spinor is fully known
via  i

4m(k) = 0,  i
n+4(m�1)(k) = N (k)

�
r(k)

�m
�in(k) for

all k, n, m, with E(k) of the states (1) equal to those of the
single layer case.

Let us emphasize that, firstly, the states on the slab are ex-
ponentially localized to either the top or bottom layers, except
in high symmetry cases where |r(k)| = 1. And secondly,
if periodic boundary conditions are applied also in the [111]-
direction, there are no generic eigenstates of the form (1), un-
derscoring their surface nature.

In the following, we consider the case of single layer
kagome bands carrying non-zero Chern number [37, 38], say
C = 1. Then, the multilayer state (1) has Chern number N :

| C=N
(k)i = N (k)

NX

m=1

⇣
r(k)

⌘m
|�C=1

(k)im (2)

where |�C=1
(k)im is the state localized to Km. The states (2)

play a prominent role in this work, and their corresponding
energies are highlighted in bold orange throughout this work
(not shown are the two related states with C = 0, �N ).

Fig. 2 illustrates the finite t? transition between weakly
coupled Chern insulators and the Weyl semi-metal regime
with linear band touching points described by

HWeyl =

X

i

vi�iki + E0(k)I , (3)

where �i are Pauli matrices and I is the identity matrix. Pre-
cisely at the transition, the valence and conduction bands ex-
hibit a two-fold degenerate touching at the M -points, which
split into three pairs of (non-degenerate) Weyl cones that
travel towards the �-point where they meet as t? ! 1. Re-
markably, the states (2) are entirely independent of the value
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1 + 1 + 1 ! 3 + 0 + 0 etc.



What’s the connection to 
Weyl semimetals?
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E.J. Bergholtz, Z. Liu, M. Trescher, 
R. Moessner, and M. Udagawa,      
Phys. Rev. Lett. 114, 016806 (2015)
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t? = 1.3
Another look at the 
bulk spectrum...

Band touching described by 
a tilted Weyl Hamiltonian

- Nb. this holds in each case, also when the touching cone is nearly flat, or even “over-tilted”

Internal notes on Lindblad operators ....

Emil J. Bergholtz
(Dated: February 25, 2015)

Here we outline how to construct Lindblad operators that ”pumps” into a bands such that a
projected s-wave pairing takes the form of p-wave paring within the band. These are extremely
preliminary notes...

PACS numbers:

I. SOME SMALL INSIGHTS AND ROUGH EQUATIONS

We wish to pump into a band whose Bloch states take the form

h k | � i =
✓
↵(k)
k�(k)

◆
(1)

where the components indicate spin up or down and ↵(k),�(k) are real even functions of k. This very generic form
would turn an s-wave pairing into p-wave when projected to the band (Ville will provide details on that). To create
the suitable Lindblad operators, L, for which the targeted Bloch states are dark states, we can simply project onto
the complement as

Lk = 1 � | �ih �| =
✓

1� ↵2(k) k↵(k)�(k)
k↵(k)�(k) 1� k2�2(k)

◆
=

✓
k2�2(k) k↵(k)�(k)

k↵(k)�(k) ↵2(k)

◆
(2)

for each momentum individually. We see that the the o↵-diagonal elements are odd in k, hence the crucial linear
terms are accompanied by a spin flip. Unsurprisingly, this is very similar to the Rashba spin-orbit coupling needed
in the Hamiltonian setting.1 We also note that Pk = | �ih �| would give dark states of the same type, just using
di↵erent ↵(k),�(k).

In summary, to get the wanted Lindblad operators in reciprocal space we need (i) a spin flip term that is odd under
inversion and (ii) tune a single parameter for each momentum such that we get a dark state.

What we are really after however are the Lindblad operators in real space. Switching to second quantization we
see that k

Li = c†i+1,#ci," � c†i,"ci+1,# + c†i+1,"ci,# � c†i,#ci+1," + µni. (3)

does the job for some chemical potential µ. The spin-flip hopping terms give precisely the needed odd functions
(sin(ak)) on the o↵-diagonal entires in Eq. (2).

It is not entirely clear to me if Eq. (3) can be implemented easily with optical lattices. Following the logic of Ref.
1 it should be easy to engineer e.g.

Li ⇠
⇣
c†i," + c†i,# + c†i+1," + c†i+1,#

⌘
(ci," + ci,# � ci+1," � ci+1,#) , (4)

which indeed has the wanted o↵-diagonal terms. To get proper dark we would again need to add a suitable ”chemical
potential”, which should be easy, but there is also a trickier site dependent chemical potential term generated.
Although this term would cancel on average it enlarges the unitcell and we need to check how we can get rid of
it (or find another implementation of Eq. (3)). Anyway, the general strategy looks quite promising and we indeed
need quadratic and number-conserving Lindbladians in contrast to the p-wave wire construction [1] which relies on a
somewhat shaky mean-filed decoupling.

[1] C.-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A. Imamoglu, P. Zoller, and S. Diehl, New J. Phys. 15, 085001 (2013).

1 In the Hamiltonian case we also need a magnetic field to gap the band structure. This seems to be redundant here.

HWeyl =
X

i,j

vijki�j + E0(k)



Fermi arcs in the pyrochlore slab
Constant energy lines, “Fermi circles”, are split into Fermi arcs

localized to 
top layer

localized to 
bottom layer

delocalized

Here we have an exact solutions for the Fermi arcs, and seen as a family, 
they carry a huge Chern number.
The Fermi arcs also exist in absence of Weyl nodes in the bulk!

E.J. Bergholtz, Z. Liu, M. Trescher, 
R. Moessner, and M. Udagawa,      
Phys. Rev. Lett. 114, 016806 (2015)

t? = 2

Projections of the 
Weyl points for 

(chemical potential 
at the Weyl point)

X. Wan, A. M. Turner, A. 
Vishwanath, and S. Y. Savrasov, 
Phys. Rev. B 83, 205101 (2011).



(Tilted) Weyl semimetal or 
layered Chern insulator in 
the large C limit 

Generic absence of FCIs in the 3D limit

2D -> 3D with strong interactions
E.J. Bergholtz, Z. Liu, M. Trescher, R. 
Moessner, and M. Udagawa,               
Phys. Rev. Lett. 114, 016806 (2015)

# layers

C=1 FCI

C=2 FCI

C~10 FCIIntriguing dimensional crossover

New type of fractionalization in the C>1 FCIs?

3

tion number of the ith orbital associated with the Ith
layer. There are also intrinsically multilayer non-Abelian
states38,39,41,42. In the current paper we will focus on the
(mml) states, where m ̸= l for incompressible states.

II. INTERPLAY WITH LATTICE
TRANSLATION SYMMETRY AND

DISLOCATIONS

A 2D lattice is invariant under two independent trans-
lation operations Tx and Ty. Their action on the Wannier
states defined in Eq. (2) and (6) is

Tx|W 1
K⟩ = |W 2

K⟩, Tx|W 2
K⟩ = |W 1

K+2π⟩,
Ty|W a

K⟩ = eiK |W a
K⟩. (8)

Thus Tx exchanges the two sets of Wannier states but Ty

does not.
Now consider the effect of dislocations53; these are

characterized by a Burgers vector b, which is defined
as the shift of the atom position when a reference point
is taken around a dislocation43. An x dislocation with
b = x̂ is illustrated in Fig. 2 A. Far away from a dis-
location, the lattice is locally identical to one without
a dislocation, so the dislocation is, as far as the struc-
ture of the lattice is concerned, a point defect. Now
consider a bilayer (mmn) state realized on the lattice
with a dislocation. As is shown in Eq. (8), the two
sets of Wannier states are related by translation in x di-
rection. Thus when one goes around an x-dislocation,
the two “layers” consisting of Wannier states

∣

∣W 1
K

〉

and
∣

∣W 2
K

〉

are exchanged. The map defined by the Wannier
states, which maps the C1 = 2 Chern insulator to a bi-
layer FQH system, maps the Chern insulator on a lattice
with a pair of dislocations to a bilayer FQH state defined
on a “Riemann surface” with a pair of branch-cuts, as
is illustrated in Fig. 2 B. This is the key observation
which indicates that the x-dislocations in this system
have nontrivial topological properties. By comparison,
the y-dislocations do not exchange the two layers and
thus do not correspond to a topology change in the ef-
fective bilayer description.

III. TOPOLOGICAL DEGENERACY OF
DISLOCATIONS

Although the (mml) quantum Hall state considered is
Abelian, the x-dislocation carries a nontrivial topological
degeneracy.54 To understand this, start from the simplest
case of (mm0) state, which is a direct product of two
Laughlin states. For such a state, the Chern insulator on
a torus is mapped to two decoupled tori with a Laugh-
lin 1/m state defined on each of them, with total ground
state degeneracy of m2. When a pair of x-dislocations
is introduced, the two tori are connected by the branch-
cut. If we do a reflection of the top layer according to

FIG. 2: A: Illustration of an x-dislocation. B: (Upper pan-
nel) Illustration that an x-dislocation leads to a branch cut
around which the two effective layers are exchanged. (Lower
pannel) A reflection of the top layer maps the branch cut be-
tween a pair of dislocations into a “worm hole” connecting
the two layers. C: A torus with two pairs of x-dislocations is
equivalent to two tori connected by two “worm holes”, which
is a genus 3 surface. This picture illustrates the fact that
dislocations carry nontrivial topological degeneracy.

the x axis, the branch cut becomes a “worm hole” be-
tween the two layers, as is illustrated in Fig. 2 B. Thus
the two tori are connected, resulting in a genus 2 sur-
face. For two pairs of dislocations, the two layers are
connected by two worm holes and the whole system is
topologically equivalent to a single Laughlin 1/m state
on a genus 3 surface, as is shown in Fig. 2 C. Thus the
ground state degeneracy becomes m3. In general, when
there are 2n x-dislocations on the lattice, the space is
effectively a genus n+1 surface and the ground state de-
generacy for n > 0 is mn+1. It follows that the average
degree of freedom carried by each dislocation–known as
the quantum dimension–is d =

√
m. Thus we can see

that the x-dislocation carries a nontrivial topological de-
generacy, in the same way as a non-Abelian topological
quasiparticle.

The discussion above can be generalized: for the (mml)
state, n > 0 pairs of dislocations on a torus leads to the
topological degeneracy of |m2− l2||m− l|n−1, so that the
quantum dimension of each dislocation is d =

√

|m− l|
(recall m ̸= l for incompressible FQH states). For l ̸= 0,
the system cannot be mapped to a Laughlin state on
high genus surface as the two layers are not decoupled31.
The topological degeneracy can be computed from the
bulk Chern-Simons effective theory31. In the following we
provide an alternative understanding of the topological
degeneracy using the edge states, as it is more rigorous
for l ̸= 0, and it helps to provide a clearer understanding

+ ?? M. Barkeshli and X.-L. Qi, 
Phys. Rev. X 2, 031013 (2012)  



First experiments

Very clean (111) slabs of Eu2Ir2O7 recently grown!

properties mediated by all-in-all-out spin ordering. We chose Ln 5
Eu because of the total magnetic moment J 5 0 of Eu31 for among
Ln2Ir2O7 series, this compound is a sole and ideal platform for study-
ing carrier transport in the background of all-in-all-out spin struc-
ture composed of the Ir41 moment in Jeff 5 1/2 state23. The results
indicate that the magnetic domain structure is detected via peculiar
asymmetric term in themagnetoresistance (MR) and zero-field offset
in Hall resistance. These observations provide controllability of the
exotic electronic phase in this compound towards accessing WSM.

Results
Sample fabrication and structural property. In this study (111)-
oriented Eu2Ir2O7 thin films were epitaxially grown on Y-stabilized
ZrO2 (YSZ) (111) single crystal substrates by pulsed laser deposition
(see Methods and Supplementary Fig. S1). Transmission electron
microscopy (Figs. 1(c) and 1(d)) confirms the formation of a single-
crystal Eu2Ir2O7 film free from crystalline domain boundaries. The
macroscopic crystal structure was examined by X-ray diffraction
(XRD), with the high quality of the films supported by the obser-
vation of a typical rocking curve of 0.09u for the Eu2Ir2O7 (222)
peak (Fig. 1(e) and Supplementary Fig. S2). In Fig. 1(f), the recip-
rocal space mapping is shown, indicating that the lattice of the film is
elongated along [111] direction by 0.7% with respect to in-plane
lattices. The surface morphology was measured by atomic force

microscope, which showed root mean square roughness of ,1 nm
before and after post-growth annealing (Supplementary Fig. S3). The
film thickness is fixed at about 70 nm.

Longitudinal resistivity. Figure 2(a) displays the temperature
dependence of the longitudinal resistivity (rxx). For electrical
measurements, the sample was defined into a Hall-bar geometry
(inset of Fig. 2(b)) to reduce mixing of the longitudinal and Hall
resistances. A metal-insulator transition (MIT) is observed around
transition temperature (TM) of 105 K, which is close to the reported
value for bulk (120 K, Ref. 24). The absolute values of rxx and the
strength of the MIT sensitively depend on the growth conditions
(data for typical films are shown in Fig. S4(a)), likely as a result of
film-dependent Eu/Ir nonstoichiometry. Since analytical determi-
nation on the composition of thin films is challenging, we estimate
the composition of films by comparing the resistivity ratio rxx(2 K)/
rxx(300 K) with those of previously reported polycrystalline bulk
data25. The result indicates that the films are Ir-rich by 1–4% (Fig. S4
(b)). The reduction of TM compared with the bulk may also be
explained by the cation nonstoichiometry. Irrespective of quantitative
variations in rxx, we qualitatively obtain the same magnetotransport
properties discussed later for all the thin films. Hence, we focus on the
most conducting film (sample 3 in Supplementary Fig. S4) in the
structural and transport data presented. As also noted in Ref. 25 for

Figure 1 | Crystal and spin structures of the pyrochlore lattice. (a) The Ir sublattice of Eu2Ir2O7. Kagome and triangular lattices formed by Ir are located
at orange and yellow planes, respectively. (b) Two distinct all-in-all-out spin structures, named as A-domain and B-domain, in the pyrochlore lattice.
When four spins at tetrahedral vertices are consolidated at the centre of cube, they represent a magnetic octupole indicated by blue and red spheres. (c)
Phase contrast image of high-resolution TEM of a Eu2Ir2O7 (111) film on a YSZ (111) substrate. (d) Atomically resolved HAADF-STEM image at the
Eu2Ir2O7/YSZ interface. Triangular cross-sectional lattices composed of Ir and Zr are schematically shown. (e) h-2h scan of X-ray diffraction. Peaks from
the substrate are marked with asterisks. (f) The reciprocal space mapping around the YSZ (331) peak. The peak position of bulk Eu2Ir2O7 is indicated by
an open triangle. The solid line indicates that Eu2Ir2O7 is coherently grown on the substrate and expanded along [111] direction by 0.7%, which is
illustrated by the pair of tetrahedra. An ideal pyrochlore lattice with cubic symmetry obeys the theoretical curve indicated by the dashed line.

www.nature.com/scientificreports
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Fujita et. al., arXiv:1508.01318

- Spontaneously time-reversal and shows a sizeable 
Hall effect at zero B-field!

by Arima31, which is a clear fingerprint of the all-in-all-out spin
ordering. Here, conduction electrons must be sensitive to the local
spin structure of the compound owing to spin-orbit coupling, known
as the Kondo latticemodel. Hence, our observation substantiates that

MR reflects not only the magnetic spin structure but also the mag-
netic domain structure. From these considerations, the magnetic
domain structure in Eu2Ir2O7 is robust against a magnetic field of
at least 9 T below TM. This is in marked contrast to the case of

(a)

(b) (c)

Figure 3 | Linearmagnetoresistancemediated by all-in-all-out spin structure. (a)Magnetic field dependence of longitudinal resistivity rxx withB//[111]
at 2 K after zero field cooling (left panel) and 69 T cooling (right panel). While the zero-field cooled data shows a symmetric response, rxx after field
cooling includes the linear terms indicated by dashed lines. Magnetic responses of Ir41magnetic moments corresponding to respective magnetic domain
structures are schematically shown as insets, where spins are depicted as solid arrows andmagnetic domains are symbolized by the pair of open and shaded
triangles. The initial points and the direction of the magnetic field sweeps are indicated by open circles and open arrows, respectively, for each
measurement. (b) Cooling field dependence of the linear magnetoresistance coefficient a at 2 K. a saturates above the cooling field of63 T, suggesting
that magnetic domain be uniformly aligned to A-domain or B-domain. A multi-domain structure is formed by cooling in smaller magnetic fields. (c)
Temperature dependence of a for representative cooling magnetic fields, showing that a appears only below the magnetic transition temperature TM.

(a) (b)

Figure 4 | Anomalies in Hall resistivity ryx originating from all-in-all-out spin structure. (a) Magnified view of magnetic field dependence of the Hall
resistivity ryx with B//[111] at 2 K after69 T field cooling.Dryx is defined as the difference of ryx (0 T) between19 Tand29 T field cooling. The scalar
spin chirality induced by lattice distortion is schematically shown. The inset shows the data for the entire sweep range between 69 T. (b) Temperature
dependence of Dryx. The transition temperature TM is indicted by a dashed line.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 9711 | DOI: 10.1038/srep09711 4

- Effect survives to high temperatures

- Many open questions….



Transport and tilted Weyl cones

Suggestion: probe the controversial disorder induced phase transition by 
tilting the Weyl cones

Tilts of the Weyl cones are forbidden by 
Lorentz invariance

Tipping the Weyl cone

• Quantum transport in Dirac materials: Signatures of tilted and

anisotropic Dirac and Weyl cones

M. Trescher, B. Sbierski, P. W. Brouwer, and E. J. Bergholtz,

Phys. Rev. B 91, 115135 (2015) [arXiv:1501.04034]

• A new type of Weyl semimetals

A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, Z. Dai, and B. A.

Bernevig, arXiv:1507.01603

Recommended with a commentary by Carlo Beenakker, Leiden University

The Weyl cone of massless fermions is a diabolo-shaped surface in energy-
momentum space that separates electron-like states (moving in the direction
of the momentum) from hole-like states (moving opposite to the momentum).
This concept from particle physics first appeared in condensed matter in two-
dimensional structures (graphene and various layered organic compounds),
where it is more commonly referred to as a Dirac cone. Three-dimensional
realizations have now also been reported (see Vishwanath’s JCCMP contri-
bution from last February).

Conical band structure without any distortion (left), slightly tilted (center,

elliptic equi-energy contours), and tipped over (right, hyperbolic equi-energy

contours).

The counterpart of the Weyl cone in spacetime is the light cone, sepa-
rating events in the future from events in the past. The gravitational field
from a massive object tilts the light cone, and may even tip it over. For
the Weyl cone such a distortion is forbidden by particle-hole symmetry, but
that is not a fundamental symmetry in condensed matter. While in graphene
the high symmetry of the honeycomb lattice keeps the cone upright, tilting
is generic in 3D Weyl semimetals. The paper by Trescher et al. identifies
transport signatures of tilted Weyl cones, while Soluyanov et al. predict that
in WTe2 the symmetry can be broken so strongly that the Weyl cone tips
over — transforming the equi-energy contours from elliptic to hyperbolic (see

- but tilt is generic in Weyl semimetals
- and has striking consequences in transport!

- this could be done by applying strain or mechanical pressure! 

Diffusive metalPseudoballistic 
semimetal KKc

(disorder strength)

tilt See also 
B. Sbierski, E.J Bergholtz and P.W. Brouwer,  
Phys. Rev. B 92, 115145 (2015) 



Conclusions

- Exact solutions for topological surface bands

- Topological selection rule

Frustration & topology combine well

- Fermi arcs “for free”

- New topologically ordered states in C>1 bands

- Microscopic insight

- Fermi arcs also in absence of Weyl nodes
1 + 1 + 1 ! 3 + 0 + 0 etc.

Less symmetry gives richer physics!
- Interaction induced gapless states in flat Chern bands

- Tilted Weyl cones
- C>1 phenomena

- Novel disorder induced criticality
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contours).

The counterpart of the Weyl cone in spacetime is the light cone, sepa-
rating events in the future from events in the past. The gravitational field
from a massive object tilts the light cone, and may even tip it over. For
the Weyl cone such a distortion is forbidden by particle-hole symmetry, but
that is not a fundamental symmetry in condensed matter. While in graphene
the high symmetry of the honeycomb lattice keeps the cone upright, tilting
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transport signatures of tilted Weyl cones, while Soluyanov et al. predict that
in WTe2 the symmetry can be broken so strongly that the Weyl cone tips
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- Interaction induced topological order in the Fermi arc 
surface bands of thin Weyl semimetal slabs
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Figure 2. Weakly coupled Chern insulators vs. Weyl semi-metals.
As t? is increased there is a transition from a weakly-coupled regime
to a distinct phase where Weyl nodes occur on the line connecting �

and M . In the top left panel we show the phase diagram in the case
of nearest neighbor hopping only (we set t1 = �1 throughout) [36].
The other panels show example band structures with fixed �1 = 0.5
and varying t? = 1, 2, 3 for a slab with N = 300 kagome layers
along the crucial � � K � M � � path through the projected 2D
Brillouin zone (BZ) (cf. top right inset). Note that, remarkably, the
band highlighted in orange corresponding to the surface states (2), is
independent of t?.

ever, in thin slabs we find a plethora of possible fractionalized
phases, some of which were discovered earlier [33, 34] with
the implicit assumption of sub-critical inter-layer tunneling.
Most prominently, we provide evidence for a first non-Abelian
fermionic fractional Chern insulator (FCI) in a C > 1 band,
namely a C = 2 generalization of the Moore-Read quantum
Hall phase [35]. Our work thus gives a unifying and fresh
perspective on the intriguing combination of fractionalization
and topological surface localization impossible in strictly two-
dimensional systems.

Setup.— Our tight binding model on N kagome layers, Km,
alternating with N �1 triangular layers, Tm [30] (Fig. 1), con-
siders spinless, spin-orbit coupled, fermions with interlayer
hopping amplitude t? and kagome layer (next) nearest hop-
ping amplitudes t1 ± i�1 (t2 ± i�2), where the �(+) sign ap-
plies for (anti-)clockwise hopping w.r.t. the hexagon on which
it takes place. Time-reversal symmetry is absent, e.g. due to
an orbital field or spontaneous ferromagnetism.

Band structure and surface wave functions.— Indepen-
dently of the form of the Bloch states of a single kagome layer,
three bands of the N -layer system are exactly described by

| i
(k)i = N (k)

NX

m=1

⇣
r(k)

⌘m
|�i(k)im , (1)

where |�i(k)im, i = 1, 2, 3 are the single layer Bloch
states localized to Km and N (k) ensures proper normal-
ization. The coefficients r(k) are determined by demand-
ing that the amplitudes for hopping to the triangular lay-
ers vanish by interfering destructively (Fig. 1): r(k) =

� �i
1(k)+�i

2(k)+�i
3(k)

e�ik2�i
1(k)+ei(k1�k2)�i

2(k)+�i
3(k)

, where �in(k), n  3, are
the components of the Bloch spinor for the pertinent state

Figure 3. Surface state structure and Fermi arcs. The color scale
indicates the inverse penetration depth, ⇠�1

(k) = log(|r(k)|) of
the surface states throughout the 2D BZ for the same parameters,
t1 = �1,�1 = 0.5, used in Fig. 2. The black lines illustrate Fermi
arcs for a chemical potential set at the Weyl node for a few t?-values.
When ⇠�1

(k) changes sign, the localization changes between top
(red) to bottom (blue) surfaces, hence splitting the Fermi "circle"
into six spatially disjoint arcs.

|�i(k)i in a single kagome-layer, and k1,2 = k · a1,2. While
�in(k), n  3, can be analytically obtained by diagonalizing
3⇥ 3 Hermitian matrices, the full Bloch spinor is fully known
via  i

4m(k) = 0,  i
n+4(m�1)(k) = N (k)

�
r(k)

�m
�in(k) for

all k, n, m, with E(k) of the states (1) equal to those of the
single layer case.

Let us emphasize that, firstly, the states on the slab are ex-
ponentially localized to either the top or bottom layers, except
in high symmetry cases where |r(k)| = 1. And secondly,
if periodic boundary conditions are applied also in the [111]-
direction, there are no generic eigenstates of the form (1), un-
derscoring their surface nature.

In the following, we consider the case of single layer
kagome bands carrying non-zero Chern number [37, 38], say
C = 1. Then, the multilayer state (1) has Chern number N :

| C=N
(k)i = N (k)

NX

m=1

⇣
r(k)

⌘m
|�C=1

(k)im (2)

where |�C=1
(k)im is the state localized to Km. The states (2)

play a prominent role in this work, and their corresponding
energies are highlighted in bold orange throughout this work
(not shown are the two related states with C = 0, �N ).

Fig. 2 illustrates the finite t? transition between weakly
coupled Chern insulators and the Weyl semi-metal regime
with linear band touching points described by

HWeyl =

X

i

vi�iki + E0(k)I , (3)

where �i are Pauli matrices and I is the identity matrix. Pre-
cisely at the transition, the valence and conduction bands ex-
hibit a two-fold degenerate touching at the M -points, which
split into three pairs of (non-degenerate) Weyl cones that
travel towards the �-point where they meet as t? ! 1. Re-
markably, the states (2) are entirely independent of the value



Outlook

Tilted Weyl cones:  

Higher Chern number generalizations of Weyl cones: transport, defects, …

Frustrated layer construction in other dimensions and symmetry classes

“Second generation” of fractionalization in C>1 FCIs — phenomenology 
essentially unexplored — how about proximity effects?

3

tion number of the ith orbital associated with the Ith
layer. There are also intrinsically multilayer non-Abelian
states38,39,41,42. In the current paper we will focus on the
(mml) states, where m ̸= l for incompressible states.

II. INTERPLAY WITH LATTICE
TRANSLATION SYMMETRY AND

DISLOCATIONS

A 2D lattice is invariant under two independent trans-
lation operations Tx and Ty. Their action on the Wannier
states defined in Eq. (2) and (6) is

Tx|W 1
K⟩ = |W 2

K⟩, Tx|W 2
K⟩ = |W 1

K+2π⟩,
Ty|W a

K⟩ = eiK |W a
K⟩. (8)

Thus Tx exchanges the two sets of Wannier states but Ty

does not.
Now consider the effect of dislocations53; these are

characterized by a Burgers vector b, which is defined
as the shift of the atom position when a reference point
is taken around a dislocation43. An x dislocation with
b = x̂ is illustrated in Fig. 2 A. Far away from a dis-
location, the lattice is locally identical to one without
a dislocation, so the dislocation is, as far as the struc-
ture of the lattice is concerned, a point defect. Now
consider a bilayer (mmn) state realized on the lattice
with a dislocation. As is shown in Eq. (8), the two
sets of Wannier states are related by translation in x di-
rection. Thus when one goes around an x-dislocation,
the two “layers” consisting of Wannier states

∣

∣W 1
K

〉

and
∣

∣W 2
K

〉

are exchanged. The map defined by the Wannier
states, which maps the C1 = 2 Chern insulator to a bi-
layer FQH system, maps the Chern insulator on a lattice
with a pair of dislocations to a bilayer FQH state defined
on a “Riemann surface” with a pair of branch-cuts, as
is illustrated in Fig. 2 B. This is the key observation
which indicates that the x-dislocations in this system
have nontrivial topological properties. By comparison,
the y-dislocations do not exchange the two layers and
thus do not correspond to a topology change in the ef-
fective bilayer description.

III. TOPOLOGICAL DEGENERACY OF
DISLOCATIONS

Although the (mml) quantum Hall state considered is
Abelian, the x-dislocation carries a nontrivial topological
degeneracy.54 To understand this, start from the simplest
case of (mm0) state, which is a direct product of two
Laughlin states. For such a state, the Chern insulator on
a torus is mapped to two decoupled tori with a Laugh-
lin 1/m state defined on each of them, with total ground
state degeneracy of m2. When a pair of x-dislocations
is introduced, the two tori are connected by the branch-
cut. If we do a reflection of the top layer according to

FIG. 2: A: Illustration of an x-dislocation. B: (Upper pan-
nel) Illustration that an x-dislocation leads to a branch cut
around which the two effective layers are exchanged. (Lower
pannel) A reflection of the top layer maps the branch cut be-
tween a pair of dislocations into a “worm hole” connecting
the two layers. C: A torus with two pairs of x-dislocations is
equivalent to two tori connected by two “worm holes”, which
is a genus 3 surface. This picture illustrates the fact that
dislocations carry nontrivial topological degeneracy.

the x axis, the branch cut becomes a “worm hole” be-
tween the two layers, as is illustrated in Fig. 2 B. Thus
the two tori are connected, resulting in a genus 2 sur-
face. For two pairs of dislocations, the two layers are
connected by two worm holes and the whole system is
topologically equivalent to a single Laughlin 1/m state
on a genus 3 surface, as is shown in Fig. 2 C. Thus the
ground state degeneracy becomes m3. In general, when
there are 2n x-dislocations on the lattice, the space is
effectively a genus n+1 surface and the ground state de-
generacy for n > 0 is mn+1. It follows that the average
degree of freedom carried by each dislocation–known as
the quantum dimension–is d =

√
m. Thus we can see

that the x-dislocation carries a nontrivial topological de-
generacy, in the same way as a non-Abelian topological
quasiparticle.

The discussion above can be generalized: for the (mml)
state, n > 0 pairs of dislocations on a torus leads to the
topological degeneracy of |m2− l2||m− l|n−1, so that the
quantum dimension of each dislocation is d =

√

|m− l|
(recall m ̸= l for incompressible FQH states). For l ̸= 0,
the system cannot be mapped to a Laughlin state on
high genus surface as the two layers are not decoupled31.
The topological degeneracy can be computed from the
bulk Chern-Simons effective theory31. In the following we
provide an alternative understanding of the topological
degeneracy using the edge states, as it is more rigorous
for l ̸= 0, and it helps to provide a clearer understanding

M. Barkeshli and X.-L. Qi, 
Phys. Rev. X 2, 031013 (2012)  

Dislocations as non-Abelian wormholes? Microscopic picture?

Experiments!
- Several groups are presently studying thin [111] slabs of pyrochlore iridates

- Possible relevance for “titanic magnetoresistance” in WTe2 
- Gravitational analogues, Hawking radiation?


