Anyonic/FQH-Interferometry

the current status
Joost Slingerland
Maynooth, September 2009

Mostly not my work, but: partly based on joint work with
Parsa Bonderson, Kirill Shtengel, Waheb Bishara, Chetan Nayak

- Bishara, Bonderson, Nayak, Shtengel, JKS, arXiv:0903.3108 (PRB)
- Bonderson, Shtengel, JKS. Ann. Phys. 323:2709-2755 (2008)
- Bonderson, Shtengel, JKS. PRL 98, 070401 (2007)
- Bonderson, Shtengel, JKS. PRL 97, 016401 (2006)
- Bonderson, Kitaev, Shtengel. PRL 96, 016803 (2006)

The Quantum Hall Effect

Eisenstein, Stormer, Science 248, 1990

Some more quantum Hall background follows... (4/5 slides)

The one particle problem (notation and some scales)

$$
H=\frac{1}{2 m}\left(\left(p_{x}-\frac{e}{c} A_{x}\right)^{2}+\left(p_{y}-\frac{e}{c} A_{y}\right)^{2}\right)
$$

$$
\mathbf{B}=(0,0, B), \quad \mathbf{A}=\left(-\frac{B}{2} y, \frac{B}{2} x, 0\right) .
$$

Note:
we are ignoring

- Disorder (plateaus...)
- Interactions (fractions...)
- Spin (assume polarized...)
- Finite size (for now)

Introduce dimensionless complex coordinates (units of magnetic length)

$$
z=(x+i y) / \ell \quad \text { with } \quad \ell=\sqrt{\frac{\hbar c}{e B}} \approx 10 \mathrm{~nm}
$$

Then Hamiltonian, angular momentum become

$$
\begin{aligned}
H & =\frac{1}{2} \hbar \omega_{c}\left(-4 \partial_{z} \partial_{\bar{z}}-z \partial_{z}+\bar{z} \partial_{\bar{z}}+\frac{1}{4} z \bar{z}\right) \\
L & =\hbar\left(z \partial_{z}-\bar{z} \partial_{\bar{z}}\right)
\end{aligned}
$$

$\omega_{c}=e B / m c, \hbar \omega_{c} \approx 100 K$

- H is 'similar' to a harmonic oscillator
- L counts powers
- cyclotron frequency comes out naturally note: fractional plateaus appear at T of order 1 K

Landau levels

$$
\begin{array}{lll}
a=-\partial_{\bar{z}}-\frac{z}{4} & a^{\dagger}=\partial_{z}-\frac{\bar{z}}{4} & \text { Solve the 1-particle problem algebraically } \ldots \\
b=-\partial_{z}-\frac{\bar{z}}{4} & b^{\dagger}=\partial_{\bar{z}}-\frac{z}{4}, & {\left[H, a^{\dagger}\right]=\hbar \omega_{c} a^{\dagger}}
\end{array}
$$

This gives

$$
\psi_{m, n}(z)=\left(\partial_{\bar{z}}-\frac{z}{4}\right)^{m}\left(\partial_{z}-\frac{\bar{z}}{4}\right)^{n} e^{-z \bar{z} / 4}=e^{z \bar{z} / 4} \partial_{\bar{z}}^{m} \partial_{z}^{n} e^{-z \bar{z} / 2}
$$

$$
E_{n}=\hbar \omega_{c}\left(n+\frac{1}{2}\right)
$$

Independent of m , so infinitely degenerate.

$$
\begin{array}{ll}
\begin{array}{l}
\text { With finite surface area A } \\
\text { have Landau level degeneracy }
\end{array} & \frac{e B A}{h c}=N_{\Phi}
\end{array}
$$

Now can define the filling fraction $\quad v=\frac{N_{e}}{N_{\Phi}}$
Note: lowest LL wave functions are holomorphic (polynomial) times gaussian

Landau levels and filling fractions
(stolen firom Ivan Rodriguez)

Laughlin's 'variational' wave function

Want variational ansatz for ground state wave functions on the plateaus Reasonable/Necessary requirements:

- Lowest LL approximation, i.e. holomorphic function times exponential
- Antisymmetry (electrons are fermions)
- Polynomial part is homogeneous (eigenstate of total angular momentum)

Need to put in interaction (repulsion), try Jastrow form:

$$
\Psi\left(z_{1}, \ldots, z_{N}\right)=\prod_{i<j} f\left(z_{i}-z_{j}\right)
$$

This eliminates all continuous parameters!
Result 'predicts' filling fractions $1,1 / 3,1 / 5,1 / 7, \ldots$ (power counting)

$$
\Psi_{N}^{m}\left(z_{1}, \ldots, z_{N}\right)=\prod_{i<j}\left(z_{i}-z_{j}\right)^{2 m+1} e^{-\left(\frac{1}{4} \sum_{i} z_{i} \bar{z}_{i}\right)}
$$

Can insert fractionally charged quasiholes by piercing the sample with extra flux quanta.

$$
\Psi_{\nu=\frac{1}{3}}=\prod_{i<j}^{N_{e}}\left(z_{i}-z_{j}\right)^{3} \prod_{k, l}^{N_{e}, N_{h}}\left(z_{k}-w_{l}\right) \prod_{m<n}^{N_{h}}\left(w_{m}-w_{n}\right)^{1 / 3} e^{-\sum_{p} \frac{\left|z_{p}\right|^{2}}{4}}
$$

An Unusual Hall Effect

Filling fraction 5/2: even denominator!
Now believed to have

- electrons paired in ground state (exotic p-wave 'superconductor')
- halved flux quantum
- charge e/4 quasiholes (vortices) which are
Non-Abelian Anyons
(exchanges implement non-commuting unitaries)
Moore, Read, Nucl. Phys. B360, 362, 1991
Can use braiding interaction for Topological Quantum Computation (not universal for $5 / 2$ state, but see later)

Some interesting papers

(a small and unfair selection, papers up to some time in 2006)
> Proposals for Hall States with non-Abelian anyons
Moore, Read, Nucl. Phys. B360, 1990 (trial wave functions from CFT, filling 5/2, not universal)
Read, Rezayi, PRB 59, 1999, cond-mat/9809384 (filling 12/5, universal for QC, clustered)
Ardonne, Schoutens, PRL 82, 1999, cond-mat/9811352 (filling 4/7, universal, paired)
Others: Wen, Ludwig, van Lankvelt, ...
> Work on Braiding interaction in these states
Nayak, Wilczek, Nucl. Phys. B479, 529, 1996 (filling 5/2, n-quasihole braiding, from CFT) JKS, Bais, Nucl. Phys. B612, 2001, cond-mat/0104035 (filling 12/5, algebraic framework/Qgroups)
Ardonne, Schoutens cond-mat/0606217 (filling 4/7),
Freedman, Larsen, Wang, Commun. Math. Phys., 227+228, 2002 (universality)
> Non-Abelian Interferometry papers
Fradkin, Nayak, Tsvelik, Wilczek, Nucl. Phys. B516, 1998, cond-mat/9711087 (idea, filling 5/2)
Overbosch, Bais, Phys. Rev. A64, 2001, quant-ph/0105015 (importance of setup, decoherence)
Das Sarma, Freedman, Nayak, PRL 94, 2005, cond-mat/0412343 (+bit +NOT, filling 5/2)
Stern, Halperin, PRL 96, 2006, cond-mat/0508447 (filling 5/2)
Bonderson, Kitaev, Shtengel, PRL 96, 2006, cond-mat/0508616 (filling 5/2)
Bonderson, Shtengel, JKS, PRL 97, 2006 (all fillings, role of S-matrix)
Bonderson, Shtengel, JKS, quan-ph/0608119 (decoherence of anyonic charge)
Also: Hou-Chamon, Chung-Stone, Kitaev-Feldman (2x), all 2006

Experimental Progress

Pan et al. PRL 83, 1999 Gap at $5 / 2$ is 0.11 K

Xia et al. PRL 93, 2004,
Gap at $5 / 2$ is 0.5 K , at $12 / 5: 0.07 \mathrm{~K}$

Quantum Hall Interferometry

Note: current flows along the edge, except at tunneling contacts. We get

$$
\begin{aligned}
\sigma_{x x} & \propto\left|t_{1}\right|^{2}+\left|t_{2}\right|^{2}+2 \operatorname{Re}\left\{t_{1}^{*} t_{2}\left\langle\Psi_{a b}\right| U_{1}^{-1} U_{2}\left|\Psi_{a b}\right\rangle\right\} \\
& =\left|t_{1}\right|^{2}+\left|t_{2}\right|^{2}+2\left|t_{1} t_{2}\right|\left|M_{a b}\right| \cos \left(\beta+\theta_{a b}\right)
\end{aligned}
$$

Interference suppressed by |M|: effect from non-Abelian braiding! (This should actually be easier to observe than the phase shift from Abelian braiding....)

Graphical calculus for Anyonic interferometry

 or: where does the M-matrix come from?Fusion vs. Splitting histories correspond to states, bra vs. ket. can build up multiparticle states, inner products, operators ("computations") etc.

$$
\underbrace{b}_{c \uparrow}=|a, b ; c, \mu\rangle \in V_{c}^{a b}
$$

Braiding, R-matrix

$$
R_{a b}=\lambda_{a}
$$

$$
R_{a b}^{-1}=
$$

$$
>_{a}
$$

$N_{c}^{a b}$

Fusion rules:

$a \times b=\sum_{c} N_{c}^{a b} c$

S-matrix and M-matrix

Interferometer superimposes over- and undercrossings. Topological Interference term proportional to:

Closely related to Verlinde S-matrix:

- Well known for most CFTs/TQFTs (can do all proposed Hall states)
- Determines fusion rules, in fact, almost determines the anyon model completely

Normalized monodromy matrix important for interferometry: $\quad M_{a b}=\frac{S_{a b} S_{11}}{S_{a 1} S_{b 1}}$
Note $\left|M_{a b}\right| \leq 1$ and $M_{a b}=1$ signals trivial monodromy
$v=5 / 2$ topological order is believed to be $\mathrm{MR}=\mathrm{U}(1)_{4} \times$ Ising
$\mathrm{U}(1)$ is an Abelian factor due to electric charge (Aharonov - Bohm)
Ising particle types: $I, 0, \psi$
Fusion rules: $\sigma \times \sigma=I+\psi, \sigma \times \psi=\sigma, \psi \times \psi=I$
Monodromy: $M=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 1\end{array}\right]$
Note especially $\mathrm{M}_{\sigma \sigma}=0$. interference totally suppressed!
quasiholes carry anyonic charge : ($e / 4,0$)
electrons carry anyonic charge : $(-e, \psi)$
n quasiholes carry anyonic charge : (ne/4,0) for n odd

$$
\text { (ne } / 4, I \text { or } \psi \text {) for } n \text { even }
$$

2008: Charge e/4

(2009: charge $x / 4$?)

Noise: Dolev et al., Nature 452, 829 (2008) (LEFT)

$$
S^{i}(0)_{T=0}=2 e^{*} V \Delta g_{i} t_{v_{1}-v_{t-1}}\left(1-t_{v_{i}-v_{-1}-1}\right)
$$

Also, Tunneling: Radu et al., Science 320, 899 (2008) (was charge $\mathrm{x} / 4$ from the start...)

Of course charge e/4 does not prove non-Abelian statistics....

2009: Willett's Wiggles

Willett et al. arXiv:0807.0221, PNAS 2009
With some good will, see

- e/2 and e/4 charges tunneling at low T
- e/2 only at intermediate T
- nothing at "high" T (no good will necessary)

What does it all mean?

Remember the interference term:

$2\left|t_{1} t_{2}\right|\left|M_{a b}\right| \cos \left(\beta+\theta_{a b}\right)$

Naïve idea of the experiment: vary $\beta=\left(q_{t} / e\right)\left(\Phi_{\text {dot }} / \Phi_{0}\right)$ (in effect, just $\Phi_{\text {dot }}$)
This should give

- cosine with period $\sim \mathrm{e} / 4$ when there is an even number of σ-s in the interferometer
- no interference when there is an odd number of σ-s (since $M_{o \sigma}=0$)

Complication 1 (actually, Feature) :
If we vary β enough, we might shrink/grow the interferometric loop enough to exclude/include An extra (pinned) σ. Then the behavior changes between the alternatives above (on/off interference).

Complication 2:
The e/2 quasiparticle may tunnel in addition to the e/4 quasiparticle This would explain the half-period oscillations in the "off" regions, (the e/2 interference does not switch off)

Complication 3:
The contributions of e/2 and e/4 tunneling scale differently with temperature and device size.
This could explain that only e/2 is seen at intermediate T, and also that e/2 is seen at all.
For this must calculate t_{1}, t_{2} - use CFT rather than TQFT.

Single and double point contacts

Single point contact, or non-oscillatory part of current in double point contact

$$
I_{b}^{(q p)} \propto \begin{cases}T^{2 g-2} V & \text { for small } e V \ll k_{B} T \\ V^{2 g-1} & \text { for small } e V \gg k_{B} T\end{cases}
$$

$$
g=g_{c}+g_{n}
$$

This goes into $\mathrm{t}_{1}, \mathrm{t}_{2}$

Double point contact: coherence factor for oscillatory term ("thermal smearing")

$$
I_{12}^{(q p)} \propto e^{-T / T^{*}(L)}=e^{-L / L_{\phi}(T)}
$$

This is not visible in TQFT, so far ignored (CFT gives it)

$$
\begin{aligned}
L_{\phi}(T) & =\frac{1}{2 \pi T}\left(\frac{g_{c}}{v_{c}}+\frac{g_{n}}{v_{n}}\right)^{-1} \begin{array}{l}
\text { Neutral and charge velocities appe } \\
\text { Note: } \mathrm{v}_{\mathrm{c}} \gg \mathrm{v}_{\mathrm{n}}
\end{array} \\
T^{*}(L) & =\frac{1}{2 \pi L}\left(\frac{g_{c}}{v_{c}}+\frac{g_{n}}{v_{n}}\right)^{-1} \begin{array}{l}
\text { So } \mathrm{g}_{\mathrm{n}} \text { determines the coherence } \\
\text { length/temperature (need small } \left.\mathrm{g}_{n}\right)
\end{array}
\end{aligned}
$$

W. Bishara and C. Nayak, Physical Review B 77, 165302 (2008)

Also: Ardonne/Kim, Fidkowski

Scaling exponents for various filling $5 / 2$ candidate states

$\nu=\frac{5}{2}$	e^{*}	$\mathrm{n}-\mathrm{A} ?$	θ	g_{c}	g_{n}	g
$\mathrm{MR}:$	$e / 4$	yes	$e^{i \pi / 4}$	$1 / 8$	$1 / 8$	$1 / 4$
	$e / 2$	no	$e^{i \pi / 2}$	$1 / 2$	0	$1 / 2$
$\overline{\mathrm{Pf}:}$	$e / 4$	yes	$e^{-i \pi / 4}$	$1 / 8$	$3 / 8$	$1 / 2$
	$e / 2$	no	$e^{i \pi / 2}$	$1 / 2$	0	$1 / 2$
$\mathrm{SU}(2)_{2}:$	$e / 4$	yes	$e^{i \pi / 2}$	$1 / 8$	$3 / 8$	$1 / 2$
	$e / 2$	no	$e^{i \pi / 2}$	$1 / 2$	0	$1 / 2$
$\mathrm{~K}=8:$	$e / 4$	no	$e^{i \pi / 8}$	$1 / 8$	0	$1 / 8$
	$e / 2$	no	$e^{i \pi / 2}$	$1 / 2$	0	$1 / 2$
$(3,3,1):$	$e / 4$	no	$e^{i 3 \pi / 8}$	$1 / 8$	$1 / 4$	$3 / 8$
	$e / 2$	no	$e^{i \pi / 2}$	$1 / 2$	0	$1 / 2$

Note 1: e/2 is always relevant for tunneling ($\mathrm{g}<1$), but usually disfavoured Note 2: $\mathrm{e} / 2$ has $\mathrm{g}_{\mathrm{n}}=0$; could dominate at "high" T or with "large" devices X. Wan, Z.-X. Hu, E. H. Rezayi, and K. Yang, PRB 77, 165316 (2008), arXiv:0712.2095.

Estimated coherence lengths/temperatures

$e / 4$	MR	$\overline{\mathrm{Pf}} / \mathrm{SU}(2)_{2}$	$\mathrm{~K}=8$	$(3,3,1)$	$\mathrm{e} / 2$
L_{ϕ} in $\mu \mathrm{m}$	1.4	0.5	19	0.7	4.8
T^{*} in mK	36	13	484	19	121

Used numerically obtained values for edge velocities
Lengths for the experimentally relevant temperature of 25 mK Temperatures for the experimentally relevant size of $1 \mu \mathrm{~m}$

The e/2 Lengths/temperatures are the same for all candidate descriptions
Notes:

- Persistence of e/2 oscillations at higher T fits well with T*
- Sample size also seems consistent with significant e/2 contribution

Discussion/Conclusions?

- Data is not conclusive (but promising) - no real conclusions
- Extra checks are needed (varying B, checking for phase slips etc.)
- Other possible explanations discussed, (and dismissed) in recent PRB
- Many theoretical questions remain...
- How about $7 / 3$ and $8 / 3$? (or more wishfully, $12 / 5$?)

