

OUTLINE

Introductory Material

- Primer on 2+1 D Topological Quantum Field Theories

Rough Definition of Topological Quantum Field Theory:

TQFT =
Mapping from worldlines of particles in a 3d spacetime manifold M to an output that depends only on topology of input.

Ex: Chern-Simons Theory (Pick a gauge group, and a "level")

Wilson Loop Operator: particle type (rep) = b along curve P_{2}

$$
Z_{C S}[M, \operatorname{Link}] "=" \int \mathcal{D}[A] W_{a}\left(P_{1}, A\right) W_{b}\left(P_{2}, A\right) e^{i S_{C S}[A, M]}
$$

Topological invariant (generalized Jones polynomial of "colored" link in manifold M)
Can also have vacuum partition function an invariant of M

Some more properties of TQFTs
Particles can come together to form other particles. Can calculate a "value" for any branched link ("graphs")

Other things:
antiparticles $\quad f^{a}=\psi \bar{a}$
"identity particle"
= "vacuum particle"

here \boldsymbol{a} and \bar{a} fuse to the vacuum
= no particle

The ω-strand

$$
\omega /=\frac{1}{\mathcal{D}} \sum_{a} d_{a} \not \subset a
$$

$$
d_{a}=\mathbf{a} 0
$$

Killing property:

OUTLINE

Introductory Material

- Primer on 2+1 D Topological Quantum Field Theories
- Nontrivial TQFTs probably Exist! (Fractional Quantum Hall + ...)
- Could enable "topological" quantum computers
- Just Interesting

- Can we construct a TQFT in "experiment" ?
- Can we regularize Chern-Simons theory?

OUTLINE

Introductory Material

- Primer on 2+1 D Topological Quantum Field Theories
- Topological Lattice Models

Levin-Wen approach - based on Toric code

Levin-Wen Approach to Chern-Simons Theory

$$
H=-\sum_{\text {vertices }=i} V_{i}-\sum_{\text {plaquettes }=j} P_{j}
$$

All V, P commuting projectors

- Bonds labeled with particle types (quantum \#s) from the Chern-Simons theory
- Vertex term - Gives energy penalty unless the quantum numbers coming into the vertex "fuse to identity".
- Plaquette term - flips plaquette quantum numbers so ground state is a weighted sum of all configurations admissible to vertex term
- Each plaquette term is product of 6 F matrices each with 6 (or 10) indices coupling 12 bonds.
- (Hidden) Vertex-Plaquette Duality
- Quasiparticle Excitations: "Violations" of a vertex term, a plaquette term, or both.

Results in the Double of the original Chern-Simons theory (two copies with opposite chiralities)

$$
\begin{aligned}
& B_{p, g h i j k l}^{s, g^{\prime} h^{\prime} j^{\prime} k^{\prime} k^{\prime} l^{\prime}}(\text { abcdef })
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{g^{\prime} h^{\prime} i^{\prime} j^{\prime} k^{\prime} l^{\prime}} F_{s^{*} h^{\prime} g^{\prime *}}^{b g^{*} h} F_{s^{*} i^{\prime} h^{\prime *}}^{c h^{*} i} F_{s^{*} j^{\prime} i^{\prime *}}^{d i^{*} j} F_{s^{*} k^{\prime} j^{\prime * *}}^{e j^{*} k} F_{s^{*} l^{\prime} k^{\prime *}}^{f k^{*} l} F_{s^{*} g^{\prime} l^{\prime *}}^{a l^{*} g} \\
& 1: n_{1,0}=1, \quad n_{1,1}=0, \quad \Omega_{1,000}^{0}=1, \quad \Omega_{1,001}^{1}=1, \\
& 2: n_{2,0}=0, \quad n_{2,1}=1, \quad \Omega_{2,110}^{1}=1, \\
& \Omega_{2,111}^{0}=-\gamma_{+}^{-1} e^{\pi i / 5}, \quad \Omega_{2,111}^{1}=\gamma_{+}^{-1 / 2} e^{3 \pi i / 5}, \\
& 3: n_{3,0}=0, \quad n_{3,1}=1, \quad \Omega_{3,110}^{1}=1, \\
& \Omega_{3,111}^{0}=-\gamma_{+}^{-1} e^{-\pi i / 5}, \quad \Omega_{3,111}^{1}=\gamma_{+}^{-1 / 2} e^{-3 \pi i / 5}, \\
& 4: n_{4,0}=1, \quad n_{4,1}=1, \quad \Omega_{4,000}^{0}=1, \quad \Omega_{4,110}^{1}=1, \\
& \Omega_{4,001}^{1}=-\gamma_{+}^{-2}, \quad \Omega_{4,111}^{0}=\gamma_{+}^{-1}, \quad \Omega_{4,111}^{1}=\gamma_{+}^{-5 / 2}, \\
& \Omega_{4,101}^{1}=\left(\Omega_{4,011}^{1}\right)^{*}=\gamma_{+}^{-11 / 4}\left(2-e^{3 \pi i / 5}+\gamma_{+} e^{-3 \pi i / 5}\right) .
\end{aligned}
$$

Some Tensor Calculus From Levin-Wen

$$
\begin{aligned}
& =\sum_{g^{\prime} h^{\prime} i^{\prime} j^{\prime} k^{\prime} l^{\prime}} F_{s^{*} h^{\prime} g^{\prime *}}^{b g^{*} h} F_{s^{*} i^{\prime} h^{\prime *}}^{c h^{*} i} F_{s^{*} j^{\prime} i^{\prime *}}^{d i^{*} j} F_{s^{*} k^{\prime} j^{\prime * *}}^{e j^{*} k} F_{s^{*} l^{\prime} k^{\prime *}}^{f k^{*} l} F_{s^{*} g^{\prime} l^{\prime *}}^{a l^{*} g} \\
& 1: n_{1,0}=1, \quad n_{1,1}=0, \quad \Omega_{1,000}^{0}=1, \quad \Omega_{1,001}^{1}=1, \\
& 2: n_{2,0}=0, \quad n_{2,1}=1, \quad \Omega_{2,110}^{1}=1, \\
& \Omega_{2,111}^{0}=-\gamma_{+}^{-1} e^{\pi i / 5}, \quad \Omega_{2,111}^{1}=\gamma_{+}^{-1 / 2} e^{3 \pi i / 5}, \\
& W_{i_{1} i_{2} \ldots i_{N}}^{i_{1}^{\prime} i_{2}^{\prime} \ldots i_{N}^{\prime}}\left(e_{1} e_{2} \ldots e_{N}\right)=\sum_{\left\{s_{k}\right\}}\left(\prod_{k=1}^{N} F_{\substack{e_{i} \\
e_{i}^{*} i_{k} i_{k-1} \\
s_{k} i_{k-1}^{i_{k}^{\prime}} i_{k}^{\prime *}}}\right) \operatorname{Tr}\left(\prod_{k=1}^{N} \Omega_{k}^{s_{k}}\right) \\
& \sum_{s=0}^{N} \bar{\Omega}_{r s j}^{m} F_{k j m^{*}}^{s l^{*} i} \Omega_{s t i}^{l} \frac{v_{j} v_{s}}{v_{m}}=\sum_{n=0}^{N} F_{t^{*} n l^{*}}^{j l^{*} \Omega_{r t h}^{n} F_{k r m}^{j l^{*} n}{ }^{*},} \\
& \bar{\Omega}_{s t i}^{j}=\sum_{k=0}^{N} \Omega_{s t i^{*}}^{k} F_{i^{*} s j^{*}}^{i{ }^{*} k} .
\end{aligned}
$$

This is one reason why we need another way of understanding this construction

OUTLINE

Introductory Material

- Primer on 2+1 D Topological Quantum Field Theories
- Topological Lattice Models

Levin-Wen approach - based on Toric code

Geometric Approach to Topological Lattice Models

Build Up a Lattice Model from the Continuum Piece by Piece

Chern-Simons theory is a theory of loops in $2+1 \mathrm{~d}$
How to build a lattice model from loops?

Building a Topological Lattice Model

- Pick a 2d lattice

- Pick a (chiral) Chern-Simons theory
- The quantum numbers we put on the bonds of the lattice are the quantum numbers of Chern-Simons theory
- BUT ALSO Chern-Simons theory allows us to evaluate knots

Building a Topological Lattice Model

Duplicate lattice to represent many time steps

n is a particle type in our chiral Chern-Simons theory (Chern-Simons is theory of loops and knots)

Building a Topological Lattice Model

This is how we represent the state of the system at one time step (each green loop has a label)

Building a Topological Lattice Model

This is how we represent the state of the system at all times (each green loop has a label)

Building a Topological Lattice Model

This is how we represent the state of the system at all times (each green loop has a label) We will want to sum over all possible quantum numbers at all times:
ω is a sum over quantum numbers

Building a Topological Lattice Model

Construct a Hamiltonian : H = 0 means free propagation

For $\mathrm{H}=0$. Quantum numbers should be conserved in time.
Between time slices, we want to "insert a complete set". Use an ω to do this

$$
\sum_{n}|n\rangle\langle n|
$$

This "transfers quantum numbers faithfully up in time"

Building a Topological Lattice Model

Construct a Hamiltonian: H = 0 means free propagation

Building a Topological Lattice Model

Construct a Hamiltonian: H = 0 means free propagation

This "transfers quantum numbers faithfully up in time"

The terms of the Hamiltonian (1) The vertex term

$$
H=-\sum_{\text {vertices }=i} V_{i}-\sum_{\text {plaquettes }=j} P_{j}
$$

Vertex condition: bonds must fuse to identity

Killing property : Only nonzero if all strings coming into vertex fuse to identity

The terms of the Hamiltonian (1) The vertex term

$$
H=-\sum_{\text {vertices }=i} V_{i}-\sum_{\text {plaquettes }=j} P_{j}
$$

Vertex condition: bonds must fuse to identity

Killing property: Only nonzero if all strings coming into vertex fuse to identity

$$
\left\langle\Psi^{\prime}\right| V|\Psi\rangle
$$

The terms of the Hamiltonian (1) The vertex term

The terms of the Hamiltonian (1) The vertex term

At every time slice project the vertex

The terms of the Hamiltonian (2) The plaquette term

$$
\begin{aligned}
H=-\sum_{\text {vertices }} V_{i}-\sum_{\text {plaquettes=j }} P_{j} \\
\text { No particle "flux" through any plaquette (duality) }
\end{aligned}
$$

Yellow ω loops are insertion of complete set (free propagation)

$$
\sum_{\Psi_{i}}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|
$$

The terms of the Hamiltonian (2) The plaquette term

$$
\begin{aligned}
H=-\sum_{\text {vertices }=i} V_{i}-\sum_{\text {plaquettes }=j} P_{j} \\
\quad \text { No particle "flux" through any plaquette (duality) }
\end{aligned}
$$

Yellow ω loops are insertion of complete set (free propagation)

$$
\sum_{\Psi_{i}}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|
$$

Becomes

$$
\sum_{\Psi_{i}, \Psi_{j}^{\prime}}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right| P\left|\Psi_{j}^{\prime}\right\rangle\left\langle\Psi_{j}^{\prime}\right|
$$

The terms of the Hamiltonian (2) The plaquette term

$$
\begin{aligned}
H=-\sum_{\text {vertices } i} V_{i}-\sum_{\text {plaquettes }=j} P_{j} \\
\quad \text { No particle "flux" through any plaquette (duality) }
\end{aligned}
$$

Yellow ω loops are insertion of complete set (free propagation)

All of these strings are ω strings
Green = sum over all bond variables

Yellow = Free propagation in absence of hamiltonian (inserting complete set)

Purple $=$ Vertex projector (all bonds coming into a vertex must fuse to I)

Blue = Turns yellow complete set into plaquette projector: No flux through a plaquette (duality)

Putting it all together

All of these strings are ω strings
Green = sum over all bond variables
Yellow = Free propagation in absence of hamiltonian (inserting complete set)

Purple $=$ Vertex projector (all bonds coming into a vertex must fuse to I)

Blue = Turns yellow complete set into plaquette projector: No flux through a plaquette (duality)

Evaluation of this link calculates
$\sum \ldots\left|\Psi_{i_{n}}\right\rangle\left\langle\Psi_{i_{n}}\right| P\left|\Psi_{i_{n-1}}\right\rangle\left\langle\Psi_{i_{n-1}}\right| V\left|\Psi_{i_{n-2}}\right\rangle\left\langle\Psi_{i_{n-2}}\right| P\left|\Psi_{i_{n-3}}\right\rangle\left\langle\Psi_{i_{n-3}}\right| V \mid \ldots$
$\Psi_{i_{1}}, \Psi_{i_{2}}, \ldots$
$=$ Trotter decomposition of Levin-Wen partition function (of the ground state sector).

Chainmail

Roberts '95 for "SU(2) ${ }_{\mathrm{k}}$ " models =Turaev-Viro State Sum Invariant

Evaluation of this link calculates
$\sum \ldots\left|\Psi_{i_{n}}\right\rangle\left\langle\Psi_{i_{n}}\right| P\left|\Psi_{i_{n-1}}\right\rangle\left\langle\Psi_{i_{n-1}}\right| V\left|\Psi_{i_{n-2}}\right\rangle\left\langle\Psi_{i_{n-2}}\right| P\left|\Psi_{i_{n-3}}\right\rangle\left\langle\Psi_{i_{n-3}}\right| V \mid \ldots$
$\Psi_{i_{1}}, \Psi_{i_{2}}, \ldots$
$=$ Trotter decomposition of Levin-Wen partition function (of the ground state sector).

Chainmail

Chainmail in

Modern Fashion (Google will show you more which I can't)

Chainmail
Roberts '95 for "SU(2) ${ }_{k}$ " models =Turaev-Viro State Sum Invariant
$\sum \ldots\left|\Psi_{i_{n}}\right\rangle\left\langle\Psi_{i_{n}}\right| P\left|\Psi_{i_{n-1}}\right\rangle\left\langle\Psi_{i_{n-1}}\right| V\left|\Psi_{i_{n-2}}\right\rangle\left\langle\Psi_{i_{n-2}}\right| P\left|\Psi_{i_{n-3}}\right\rangle\left\langle\Psi_{i_{n-3}}\right| V \mid \ldots$
$\Psi_{i_{1}}, \Psi_{i_{2}}, \ldots$
$=$ Trotter decomposition of Levin-Wen partition function (of the ground state sector).

Chainmail
Roberts ' 95 for " $\mathrm{SU}(2)_{\mathrm{k}}$ " models =Turaev-Viro State Sum Invariant

$$
\underset{\text { original }}{Z_{C S}[M, \text { ChainMailLink }]}=\underset{\substack{\text { mirror }}}{\left.Z_{C S}[M] Z_{C S}[\bar{M}]\right]}=\text { Turaev-Viro Invariant }
$$

Note : Result is achiral
Even though the Chainmail Link is evaluated within a Chiral Chern-Simons theory.

Chainmail
Roberts ' 95 for " $\mathrm{SU}(2)_{\mathrm{k}}$ " models =Turaev-Viro State Sum Invariant

Independent of lattice and decomposition of manifold

$$
\left.\underset{\text { original }}{Z_{C S}[M, \text { ChainMailLink }]}=\underset{\sim}{Z_{C S}}[M] Z_{C S}[\bar{M}]\right]=\text { mirror }
$$

Note : Result is achiral
Even though the Chainmail Link is evaluated within a Chiral Chern-Simons theory.

Chainmail
Roberts ' 95 for " $\mathrm{SU}(2)_{\mathrm{k}}$ " models =Turaev-Viro State Sum Invariant

Independent of lattice and decomposition of manifold

$$
\left.\underset{\text { original }}{Z_{C S}[M, \text { ChainMailLink }]}=\underset{\sim}{Z_{C S}}[M] Z_{C S}[\bar{M}]\right]=\text { mirror }
$$

Note : Result is achiral
Even though the Chainmail Link is evaluated within a Chiral Chern-Simons theory.

Quasiparticles

Quasiparticles are a violation of the vertex term, or the plaquette term (or both).
Want partition function in presence of violation

How to "force flux" through a vertex or plaquette

ω
ω Killing property :
Group must fuse to vacuum

Group must fuse to quantum Number "a" to cancel " $\overline{\mathrm{a}}$ " and create vacuum

"Vertex" Quasiparticles

"Vertex" Quasiparticles

Forces the bonds entering this vertex to fuse to quantum number "a" at three consecutive time steps.

Knot evaluation give ground state partition function in the presence of a "vertex" quasiparticle whose world line follows the specified path

"Vertex" Quasiparticles

This gives the ground state partition function in the presence of a quasiparticle at this vertex site.

"Vertex" Quasiparticles

This gives the ground state partition function in the presence of a quasiparticle at this vertex site.

"Vertex" Quasiparticles

This gives the ground state partition function in the presence of a quasiparticle at this vertex site.

"Vertex" Quasiparticles

This gives the ground state partition function in the presence of a quasiparticle at this vertex site.

"Vertex" Quasiparticles

This gives the ground state partition function in the presence of a quasiparticle at this vertex site.

"Vertex" Quasiparticles

This gives the ground state partition function in the presence of a quasiparticle at this vertex site.

"Plaquette" or "Mirror" Quasiparticles

Forces the bonds entering this vertex to fuse to quantum number "a" at three consecutive time steps.

"Plaquette" or "Mirror" Quasiparticles

Forces the bonds entering this vertex to fuse to quantum number "a" at three consecutive time steps.

Also forces Flux "a" Through These plaquettes

Mirror quasiparticles must go through plaquettes when they cross between cells.

Proofs By Handlesliding

- The Vertex and Mirror particles are two independent sectors
- Vertex particles have the statistics of the original Chern-Simons model that defines our link evaluation
- Mirror particles have the opposite chirality

Mirror Quasiparticles

Vertex and Mirror can pass through each other freely

Mirror Quasiparticles

Vertex and Mirror can pass through each other freely

Mirror Quasiparticles

Vertex and Mirror can pass through each other freely

Mirror Quasiparticles

Vertex and Mirror can pass through each other freely
They are independent sectors !

Proofs By Handlesliding

- The Vertex and Mirror particles are two independent sectors
- Vertex particles have the statistics of the original Chern-Simons model that defines our link evaluation
- Mirror particles have the opposite chirality

Proofs By Handlesliding

- The Vertex and Mirror particles are two independent sectors
- Vertex particles have the statistics of the original Chern-Simons model that defines our link evaluation
- Mirror particles have the opposite chirality

Proofs By Handlesliding

- The Vertex and Mirror particles are two independent sectors
- Vertex particles have the statistics of the original Chern-Simons model that defines our link evaluation
- Mirror particles have the opposite chirality

Proofs By Handlesliding

- The Vertex and Mirror particles are two independent sectors
- Vertex particles have the statistics of the original Chern-Simons model that defines our link evaluation
- Mirror particles have the opposite chirality

Proofs By Handlesliding

- The Vertex and Mirror particles are two independent sectors
- Vertex particles have the statistics of the original Chern-Simons model that defines our link evaluation
- Mirror particles have the opposite chirality

"Vertex" Quasiparticles
Can handleslide everything to a single plane - but must keep track of over and undercrossings

"Vertex" Quasiparticles
Can handleslide everything to a single plane - but must keep track of over and undercrossings

"Vertex" Quasiparticles
Can handleslide everything to a single plane - but must keep track of over and undercrossings

"Vertex" Quasiparticles
Can handleslide everything to a single plane - but must keep track of over and undercrossings

"Vertex" Quasiparticles
Can handleslide everything to a single plane - but must keep track of over and undercrossings

"Vertex" Quasiparticles
Can handleslide everything to a single plane - but must keep track of over and undercrossings

"Vertex" Quasiparticles
Can handleslide everything to a single plane - but must keep track of over and undercrossings

"Vertex" Quasiparticles
Can handleslide everything to a single plane - but must keep track of over and undercrossings

"Vertex" Quasiparticles
Can handleslide everything to a single plane - but must keep track of over and undercrossings

"Vertex" Quasiparticles
Can handleslide everything to a single plane - but must keep track of over and undercrossings

"Vertex" Quasiparticles
Can handleslide everything to a single plane - but must keep track of over and undercrossings

"Vertex" Quasiparticles
Can handleslide everything to a single plane - but must keep track of over and undercrossings

"Vertex" Quasiparticles

Can handleslide everything to a single plane - but must keep track of over and undercrossings

Knot can be handleslid off the chainmail scaffolding
The vertex particles have the same statistics as the Chern-Simons theory we used to define the link evaluation !

Proofs By Handlesliding

- The Vertex and Mirror particles are two independent sectors
- Vertex particles have the statistics of the original Chern-Simons model that defines our link evaluation
- Mirror particles have the opposite chirality

Mirror Quasiparticles

Mirror Quasiparticles

Mirror Quasiparticles

Mirror Quasiparticles

Mirror Quasiparticles

Mirror Quasiparticles

Mirror Quasiparticles

Mirror Quasiparticles

Pulling knot off scaffolding flips chirality!

Mirror Quasiparticles

Pulling knot off scaffolding flips chirality!
"Vertex" Quasiparticles
"Mirror" Quasiparticles

On scaffolding

Off scaffolding

Pulling "Vertex" knot off scaffolding leaves knot unchanged

Pulling mirror knot off scaffolding flips chirality!

"Vertex Quasiparticles

"Mirror" Quasiparticles

$$
Z_{C S}\left[M ; \text { ChainMail }+L_{\text {mirror }}\right]=Z_{C S}[M] Z_{C S}\left[\bar{M} ; \overline{L_{\text {mirror }}}\right]
$$

Why Does this Work?: The Geometric Story

$$
Z_{C S}[M, \operatorname{Link} \cup \omega]=Z_{C S}\left[M^{\prime}, \operatorname{Link}\right]
$$

An ω can be removed from a Link at the price of changing the manifold by SURGERY

A link made entirely of ω 's (ex, chainmail) living in manifold M is equivalent to the vacuum partition function of some other manifold \tilde{M}

$$
\text { Roberts: For the Chainmail Link } \quad \tilde{M}=M \# \bar{M}
$$

$$
Z_{C S}[M ; \text { ChainMail }]=Z_{C S}[M \# \bar{M}]=Z_{C S}[M] Z_{C S}[\bar{M}]
$$

The Mirror World is Real

I69Я гi blyoW rorriM 9dT

If there are quasiparticle world lines inserted in the Chainmail, one only needs to figure out where they end up in $M \# \bar{M}$

Results

Put Levin-Wen Topological Lattice Models in a New and (Hopefully) Clearer Context (No Tensor Algebra)

Lattice Independent Framework
Topological Invariance is Manifest

Clarify Connection to:
Chern-Simons Theory
ChainMail
Turaev-Viro State Sums

Understand why/how we get left and right handed sectors
By just handle-sliding we get:
How sectors decouple
How we get left and right handed particles

Real Geometry: Surgery on chainmail produces $M \# \bar{M}$

Thoughts About 3+1 D (in progress)

There is a generalization of Turaev-Viro to 4D known as Crane-Yetter, which can also be described with Chain Mail.

Can we construct a nontrivial topological theory in $3+1$ this way?

Unfortunately, $\mathrm{CY}\left[\mathrm{M}^{4}\right]$ is almost trivial - sensitive to only the "signature" of M^{4}

However, if M^{4} has a boundary

$$
C Y\left[M^{4}\right] \sim Z_{C S}\left[\partial M^{4}\right]
$$

This is a very nontrivial "topological insulator"
Two chiralities are separated on the opposite surfaces

Results

Put Levin-Wen Topological Lattice Models in a New and (Hopefully) Clearer Context (No Tensor Algebra)

Lattice Independent Framework
Topological Invariance is Manifest

Clarify Connection to:
Chern-Simons Theory
ChainMail
Turaev-Viro State Sums

Understand why/how we get left and right handed sectors
By just handle-sliding we get:
How sectors decouple
How we get left and right handed particles

Real Geometry: Surgery on chainmail produces $M \# \bar{M}$
Thoughts About 3+1 D (in progress)

Killing

Why is chainmail independent of lattice geometry?

CAUTION

> Physics Ends Math Begins

I am going to try to make this comprehensible

Why Does this Work?: The Geometric Story

$$
Z_{C S}[M, \operatorname{Link} \cup \omega]=Z_{C S}\left[M^{\prime}, \operatorname{Link}\right]
$$

An ω can be removed from a Link at the price of changing the manifold by SURGERY

A link made entirely of ω 's (ex, chainmail) living in manifold M is equivalent to the vacuum partition function of some other manifold \tilde{M}

$$
\text { Roberts: For the Chainmail Link } \tilde{M}=M \# \bar{M}
$$

$$
Z_{C S}[M ; \text { ChainMail }]=Z_{C S}[M \# \bar{M}]=Z_{C S}[M] Z_{C S}[\bar{M}]
$$

The Mirror World is Real

Іє9Я гi blyoW rorriM 9rT

If there are quasiparticle world lines inserted in the Chainmail, one only needs to figure out where they end up in $M \# \bar{M}$

What is Surgery?

Start with a simple manifold (ex S^{2})
Adds a handle to the solid ball.

Torus surface is boundary of solid torus.

Surgery in 2d is handle in $3 d$
Mark a manifold with boundary to be removed Two disks $=D^{2} \times S^{0}$

Consider the boundary of the region to be removed (Two circles $=S^{1} \times S^{0}$)

Replace the removed region with a manifold that has the same boundary as what we removed (Hollow Cylinder $=S^{1} x$ Interval)

For 3-manifolds: cut out a solid torus $=S^{1} \times D^{2}$

The boundary of the solid torus is the torus surface $S^{1} \times S^{1}$

Replace the removed solid torus with $D^{2} \times S^{1}$ which has the same surface as what we removed
Switching which way we fill in the torus: Surgery in $3 d$ is adding a handle in $4 d$

Why Does this Work?: The Geometric Story

$$
Z_{C S}[M, \operatorname{Link} \cup \omega]=Z_{C S}\left[M^{\prime}, \operatorname{Link}\right]
$$

An ω can be removed from a Link at the price of changing the manifold by SURGERY

WHY IS THIS TRUE?

A link made entirely of ω 's (ex, chainmail) living in manifold M is equivalent to the vacuum partition function of some other manifold \tilde{M}

$$
\text { Roberts: For the Chainmail Link } \tilde{M}=M \# \bar{M}
$$

$$
Z_{C S}[M ; \text { ChainMail }]=Z_{C S}[M \# \bar{M}]=Z_{C S}[M] Z_{C S}[\bar{M}]
$$

The Mirror World is Real

ІбяЯ гi blyoW rorriM gnt

If there are quasiparticle world lines inserted in the Chainmail, one only needs to figure out where they end up in $M \# \bar{M}$

What is (Dehn) Surgery? (part 2)

Can do surgery on a torus embedded in some nontrivial way

Can do multiple surgeries too

Lickorish-Wallace Theorem: Every Closed 3-Manifold can be obtained this way * But surgery-presentation is not unique

Kirby: Two 3-manifolds are the same if their link presentations differ by handleslides and blow-ups

Defining $Z_{\text {CS }}$ as a Link Invariant (Reshitikhin-Turaev/ Lickorish)

- First describe the 3-manifold M with Surgery presentation (a link in S^{3})
- Take that link, and put ω 's on it, then evaluate the link.

Since it is made of ω 's it is invariant under handleslides (adding a normalizing prefactor to fix blowups) This gives an invariant of the manifold

This invariant is known as $\quad Z_{W R T}[M]$
It is believed this is the same as $\quad Z_{C S}[M] "=" \int \mathcal{D}[A] e^{i S_{C S}[A, M]}$
In fact, path integral is only properly defined by surgery construction!

Why Does this Work?: The Geometric Story

$$
Z_{C S}[M, \operatorname{Link} \cup \omega]=Z_{C S}\left[M^{\prime}, \operatorname{Link}\right]
$$

An ω can be removed from a Link at the price of changing the manifold by SURGERY

WHY IS THIS TRUE? (It is true by definition of Chern-Simons partition function)

A link made entirely of ω^{\prime} (ex, chainmail) living in manifold M is equivalent to the vacuum partition function of some other manifold \tilde{M}

$$
\text { Roberts. For the Chainmail Link } \tilde{M}=M \# \bar{M}
$$

$$
Z_{C S}[M ; \text { ChainMail }]=Z_{C S}[M \# \bar{M}]=Z_{C S}[M] Z_{C S}[\bar{M}]
$$

The Mirror World is Real

ІsяЯ ci blyoW rovriM 9rTT

If there are quasiparticle world lines inserted in the Chainmail, one only needs to figure out where they end up in $M \# \bar{M}$

- Chain Mail is Handle decomposition of skeleton of M

Plaquette loops are attaching curves for 2 handles (thick disks Chain Mail loops are meridians of 1 handles (2-thick edges) +3 handles (cells) not included.

Links in S^{3} can be thought of as surgery construction of M^{3} or as attaching curves for handles of M^{4} where $\mathrm{M}^{3}=\partial \mathrm{M}^{4}$

What is Surgery?

Start with a simple manifold (ex S^{2})
Adds a handle to the solid ball.

Torus surface is boundary of solid torus.

Surgery in 2d is handle in $3 d$
Mark a manifold with boundary to be removed Two disks $=D^{2} \times S^{0}$

Consider the boundary of the region to be removed (Two circles $=S^{1} \times S^{0}$)

Replace the removed region with a manifold that has the same boundary as what we removed (Hollow Cylinder $=S^{1} x$ Interval)

For 3-manifolds: cut out a solid torus $=S^{1} \times D^{2}$

The boundary of the solid torus is the torus surface $S^{1} \times S^{1}$

Replace the removed solid torus with $D^{2} \times S^{1}$ which has the same surface as what we removed
Switching which way we fill in the torus: Surgery in 3d is adding a handle in $4 d$

Plaquette loops are attaching curves for 2 handles (thick disks) Chain Mail loops are meridians of 1 handles (2-thick edges) +3 handles (cells) this is a "Handle decomposition" of M

Links in S^{3} can be thought of as surgery construction of M^{3} or as attaching curves for handles of M^{4} where $\mathrm{M}^{3}=\partial \mathrm{M}^{4}$,
$\ln \mathrm{M}^{4}$:

Plaquette loops attach 2 handles $=2$-thick disk
ChainMail loops attach 1 handles $=3$-thick edge
The handle structure M^{4} is identical to that of M^{3} but thickened into one more dimension, so it "looks like" $\mathrm{M}^{3} \mathrm{x}$ Interval

$$
\partial\left(\mathrm{M}^{3} \mathrm{x} \text { Interval }\right)=\mathrm{M}^{3} \cup \overline{\mathrm{M}}^{3} .
$$

But we did not add any 3-handles, so we get $\mathrm{M}_{\text {skeleton }} \mathrm{x}$ Interval instead.
$\partial\left(\mathrm{M}_{\text {skeleton }} \times\right.$ Interval $)=\mathrm{M}^{3} \# \overline{\mathrm{M}}^{3} \ldots$ the connect sum because of the missing 3-handle.
$M_{\text {skeleton }}=M$ without the "largest" handle filling in the center
$\partial\left(\mathrm{M}_{\text {skeleton }} \mathrm{x}\right.$ Interval $)=\mathrm{M} \# \mathrm{M} \ldots$ the connect sum because of the missing 3-handle.

0,1 handles of T^{2}--- This is a skeleton, 2-handle is missing

Same handles up one dimension $=2$ hole solid torus

Boundary of that is the two holed torus surface $=T^{2} \# \mathrm{~T}^{2}$

Plaquette loops are attaching curves for 2 handles
Chain Mail loops are meridians of 1 handles
Define a Heegard splitting: $\mathrm{H}+=(0$ and 1$)$-handles $=$ thickened edge lattice, $\mathrm{H}-=(2$ and 3$)$ handles = plaquettes and 3-cells. (Attaching curves are same as above)

Thicken 2d Heegard surface (boundary between edge lattice and rest) into two layers $\Sigma+, \Sigma$ pull chain mail loops into Σ - , plaquette loops into $\Sigma+$

It.

Consider decomposition:

Now perform surgery on the loops living in $\Sigma+$ and Σ - separately

A chiral quasiparticle line (blue) lives in $\mathrm{H}+$, lands unchanged in M after surgery A mirror quasiparticle line (red) snakes between $\Sigma+$ and Σ - therefore lives in \bar{M} after surgery.

Quantum numbers $a, b, c, \ldots \quad \neq \boldsymbol{a}=\psi \bar{a} \quad a r=d_{a}$

Fusions

F-matrices (6-j)

Levin-Wen (and Turaev-Viro) is defined with any tensor category - but if we add

R-matrix

For safety want modular, and no pseudo-real fields

Until we specify R, we do not know ex, the chirality

The Turaev Viro State Sum

Take a triangulated 3 manifold M

Color edges with the quantum numbers from the anyon model.

Construct the sum

$$
T V[M]=\mathcal{D}^{\# \text { vertices }} \sum_{\text {colorings }} \prod_{\text {edges }=a} d_{a} \prod_{\text {faces }=a b c} N_{a b c} \prod_{\text {tetrahedra=abcdef }} F_{a b c}^{d e f}
$$

- Independent of triangulation (topological invariant)

$$
\begin{gathered}
T V[M]=Z_{W R T}[M] Z_{W R T}[\bar{M}] \\
" \quad Z_{W R T}=\int_{M} \mathcal{D} A e^{i S_{C S}(A)} "
\end{gathered}
$$

No concept of a "quasiparticle" in TV yet

Why is Chain-Mail = TV [M]

$$
T V[M]=\mathcal{D}^{\# \text { vertices }} \sum_{\text {colorings }} \prod_{e d g e s=a} d_{a} \prod_{f a c e s=a b c} N_{a b c} \prod_{\text {tetrahedral }=a b c d e f} F_{a b c}^{\text {def }}
$$

Uses
(1)

(2)

If abc can fuse to zero. Otherwise $=0$

Chain Mail (J. Roberts)

Take a triangulated 3 manifold M

Add omega loops around all plaquettes

Each edge has several omegas running along it

Bind them together with another omega loop
This is the Chain Mail Link.

Evaluate this knot

Roberts: The value of this link is just TV[M]

Comment: You have to choose an R matrix to "define the knot invariant" But the end result is independent of the R matrix you choose!

About 3+1 D (in progress)

There is a generalization of Turaev-Viro to 4D known as Crane-Yetter

$$
\begin{gathered}
T V\left[M^{3}\right]=\mathcal{D}^{\# \text { vertices }} \sum_{\text {colorings }} \prod_{\text {edges }=a} d_{a} \prod_{\text {faces }=a b c} N_{a b c} \prod_{3-\text { cells }} 6 j \\
C Y\left[M^{4}\right]=\mathcal{D}^{\# \text { vertices }} \sum_{\text {colorings }} \prod_{\text {edges }} d_{a} \prod_{\text {faces }} N_{a b c} \prod_{3-\text { cells }} 6 j \prod_{4-\text { cells }} 15 j
\end{gathered}
$$

And it can be reduced to a similar chain mail.

Can we construct a nontrivial topological theory in $3+1$ this way?

Unfortunately, $\mathrm{CY}\left[\mathrm{M}^{4}\right]$ is almost trivial - sensitive to only the signature of M^{4} However, if M^{4} has a boundary

$$
C Y\left[M^{4}\right] \sim Z_{W R T}\left[\partial M^{4}\right]
$$

This is a very nontrivial topological insulator

Two chiralities are separated on the opposite surfaces

Example of a Topological Quantum Field Theory: Chern-Simons Theory

spacetime manifold M in the Lie algebra of G

Invariant for "small" gauge transformations
Under "large" gauge transform ations $\quad S_{C S} \rightarrow S_{C S}+2 \pi n k$

CS Vacuum
Partition Function

$$
Z_{C S}[M] *=" \int \mathcal{D}[A] e^{i S_{C S}[A, M]}
$$

$=$ topological invariant of the manifold

Example of a Topological Quantum Field Theory: Chern-Simons Theory

Chern-Simons Action

$e^{i S_{C S}}$ is gauge invariant and independent of the spacetime metric

Chern-Simons Vacuum Partition Function

$$
Z_{C S}[M] "=" \int \mathcal{D}[A] e^{i S_{C S}[A, M]}
$$

Called G_{k}
$=$ topological invariant of the manifold

Example of a Topological Quantum Field Theory: Chern-Simons Theory

Wilson Loop Operators

$$
\begin{array}{r}
W_{a}[C]=\operatorname{tr}_{a}\left[\mathcal{P} \exp \left\{i \int_{C} A\right\}\right] \\
C \text { is a directed spacetime path } \\
a \text { is a representation of the gauge group } \\
\text { or a "particle type" }
\end{array}
$$

NOTE: Only a finite set of particle types are allowed: Depending on the gauge group and level

$$
Z_{C S}[M, L i n k]=\int \mathcal{D}[A] W_{a}\left(C_{1}\right) W_{b}\left(C_{2}\right) e^{i S_{C S}[A, M]}
$$

Topological link invariant of "colored" link in manifold M

"Chiral" Quasiparticles

If the chiral particles run along the edge, they live in M not \bar{M}.

Chainmail
Roberts ' 95 for " $\mathrm{SU}(2)_{\mathrm{k}}$ " models =Turaev-Viro State Sum Invariant

Independent of lattice and decomposition of manifold
$\sum \ldots\left|\Psi_{i_{n}}\right\rangle\left\langle\Psi_{i_{n}}\right| P\left|\Psi_{i_{n-1}}\right\rangle\left\langle\Psi_{i_{n-1}}\right| V\left|\Psi_{i_{n-2}}\right\rangle\left\langle\Psi_{i_{n-2}}\right| P\left|\Psi_{i_{n-3}}\right\rangle\left\langle\Psi_{i_{n-3}}\right| V \mid \ldots$
$\Psi_{i_{1}}, \Psi_{i_{2}}, \ldots$
This is not quite the action associated with Levin-Wen's

$$
H=-\sum_{\text {vertices }=i} V_{i}-\sum_{\text {plaquettes }=j} P_{j}
$$

Partition function of the ground state sector.

$$
\begin{aligned}
& j \cdot 0 \cdot \frac{\text { Int }}{\text { IIII }}=\lambda \cdot \frac{W_{n}}{m}
\end{aligned}
$$

回

START HERE FOR SHOWING

VERTEX PARTICLE

 BEHAVIOR
"Chiral" Quasiparticles

Chiral particles cannot handle slide through each other

"Chiral" Quasiparticles

Chiral particles cannot handle slide through each other

"Chiral" Quasiparticles

Chiral particles cannot handle slide through each other

"Chiral" Quasiparticles

Chiral particles cannot handle slide through each other

"Chiral" Quasiparticles

Chiral particles cannot handle slide through each other
Chiral particles have nontrivial braid statistics

"Chiral" Quasiparticles

Can handleslide everything to a single plane - but must keep track of over and undercrossings

Chiral particles cannot handle slide through each other
Chiral particles have nontrivial braid statistics

START HERE FOR SHOWING MIRROR PARTICLE BEHAVIOR

Mirror Quasiparticles

Mirror quasiparticles must go through plaquettes when they cross between cells.

Mirror Quasiparticles

Mirror Handleslide

Mirror quasiparticles must go through plaquettes when they cross between cells.

Mirror Quasiparticles

Mirror Handleslide

Handleslide over plaquette

Mirror Quasiparticles

Mirror Handleslide

Handleslide over plaquette

Mirror Quasiparticles

Mirror Handleslide

Handleslide over plaquette... followed by slide over chainmail link

Mirror Quasiparticles

Mirror Handleslide

Handleslide over plaquette... followed by slide over chainmail link

Mirror Quasiparticles

Mirror Quasiparticles

Mirror cannot pass through mirror

Mirror
String

Mirror Quasiparticles

Mirror Quasiparticles

Mirror Quasiparticles

Mirror cannot pass through mirror

Mirror Quasiparticles

Mirror cannot pass through mirror

START HERE FOR SHOWING CHIRALITY REVERSAL

