Wednesday, September 16th

Valence bond states: link models

Quantum Information and Condensed Matter Physics

NUI MAYNOOTH

Enrique Rico Ortega

Collaborators and References

What is this talk about?

We look for a 2D spin system in a square lattice with a ground state such that:

- i. Real singlet state of SU(2) (non-chiral).
- ii. Homogeneous, translationally and rotationally invariant.
- iii. With a local spin-1 representation.
- iv. Unique ground state of a nearest neighbor Heisenberg-like hamiltonian.

Contents

* Motivation.

- Quantum spin liquids. (Why are VBS interesting?).
- Example of spin liquids in 1D (AKLT model)
- Entanglement of spins on a square lattice.
- * 20 multipartite valence bond states.
- * Ground state properties and correlations.
 - Field theory: bosonization
 - Numerical methods: P.M.R.G., C.O.R.E, exact diagonalization
- * Antiferromagnetic Mott-Hubbard insulator. Neutron scattering

What is the responsible mechanism that causes certain materials to exhibit high-temperature superconductivity?

Saturday, September 19, 2009

Metal

 $\langle \hat{S}_m^{\alpha} \hat{S}_n^{\alpha} \rangle \to \text{const} \neq 0$

Neel state and anti-ferromagnetic spin wave

What are the possible ground states of 2D Heisenberg-like models when magnetic long-range order has been destroyed?

*A spin liquid is a quantum state without magnetic long-range order. *A spin liquid is a state without any spontaneous broken symmetry.

Example of 1D spin liquid- AKLT model

[I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki. Phys. Rev. Lett. 59, 799 (1987)]

$$\alpha = \beta = \hat{\alpha}$$
$$\alpha \neq \beta$$

$$\alpha = \beta =$$

No long-range order:

Singlet state: $\langle \hat{S}_n^x \rangle = \langle \hat{S}_n^y \rangle = \langle \hat{S}_n^z \rangle = 0$

Translationally invariant

Some properties:

i) <u>Composition rules</u>.-

S

ii) Boundary conditions and degeneracy.-

Periodic boundary conditions = Unique state Open boundary conditions = 4-fold degeneracy

iii) <u>Two-point correlation function.</u>- Exponential decay. Correlation length smaller than the lattice spacing

iv) Non-local order parameter.-

String order parameter and entanglement length den Nijs, Rommelse (1989) Cirac, Martin-Delgado, Popp, Verstraete (2005)

Entanglement of spins on a square lattice

Experiment shows an anti-ferromagnetic ground state substantially different from "Neel order + minor QM corrections" [N.B. Christensen et al., PNAS, 104: 15264-15269, 2007]

* 20 spin-1/2 system (cuprates)

* "substantial deviation" occurred at length scale about "distance between two sites"

* deviation believed to be entanglement related

20 multipartite valence bond state

Requirements:

i) Real singlet state of SU(2) (non-chiral).

ii) Homogeneous, translationally and rotationally invariant.

iii) With a local spin-1 representation.

iv) Ground state of a nearest neighbor Hamiltonian.

20 multipartite valence bond state

* Real singlet state of SU(2) (non-chiral).

* Homogeneous, translationally and rotationally invariant.

- i. The physical Hilbert space is placed at the links of the lattice.
- ii. The Hamiltonian is made out of nearest neighbor Heisenberglike interactions.
- iii. It is homogeneous, translationally and rotationally invariant.

iv. The ground state is a real singlet state of SU(2) (non-chiral).

of the lattice. or Heisenberg-

nally invariant) (non-chiral).

Critical theory

Some generalization:

Saturday, September 19, 2009

 θ

b1 b2 b3 b4 b5 b6 c3 c5 c1 c4 c6 c1 c2 a2 a3 a5 a4 a1 a6

Any expectation value is obtained via a mapping of the 2D quantum state to a 2D classical statistical model and from there to a 1d quantum mechanical problem using a transfer matrix defined from the 2D quantum state.

 $H = \beta_1 \left((\vec{S}_1 \cdot \vec{S}_2) + (\vec{S}_3 \cdot \vec{S}_4) \right) + \beta_2 \left((\vec{S}_1 \cdot \vec{S}_3) + (\vec{S}_2 \cdot \vec{S}_4) \right) + \beta_3 \left((\vec{S}_1 \cdot \vec{S}_4) + (\vec{S}_2 \cdot \vec{S}_3) \right)$ $+\beta_4 \left((\vec{S}_1 \cdot \vec{S}_2) (\vec{S}_3 \cdot \vec{S}_4) \right) + \beta_5 \left((\vec{S}_1) \right)$

$$(\vec{S}_{3})(\vec{S}_{2}\cdot\vec{S}_{4})) + \beta_{6}\left((\vec{S}_{1}\cdot\vec{S}_{4})(\vec{S}_{2}\cdot\vec{S}_{3})\right)$$

First analysis: Continuum limit-

[A.M. Tsvelik. Phys. Rev. B42, 10499 (1990)]

$$H = \sum_{\mu = \{x, y, z\}} H_{m_t}[\check{a}^{\mu}] + H_{m_s}[\check{a}^{0}]$$

$$H = \frac{iv_{\text{eff}}}{2} \int dx \, \left(\check{a}_L \partial_x \check{a}_L - \check{a}_R \partial_x \check{a}_R\right) + im \int$$

The ladder problem is equivalent to four Ising models. The only relevant operator is a mass term.

Saturday, September 19, 2009

$dx (\check{a}_L \check{a}_R)$

Relevance of the parameters:

Inverse of the gap in the ladder = Correlation length in the 2D VBS.

Two points correlation function: Exponential or algebraic decay?

Exponential or algebraic decay?

Two points correlation function:

Results from P.M.R.G., C.O.R.E and exact diagonalization of the first energy gap as a function of the length and scale. All plots show a clear linear dependence of the gap with the inverse of the length of the ladder.

Two points correlation function: **Relevance of the parameters**

The plots does not show a linear dependence of the gap with the perturbation

Saturday, September 19, 2009

 $(LAMBDA)^{-1} - \Lambda^{-1} -$

Antiferromagnetic Mott-Hubbard insulator.

Copper oxide

Antiferromagnetic Mott-Hubbard insulator.

Super-exchange mechanism: Anderson 1950

Hybridisation of ionic orbital by covalent mixing

 $\lambda \simeq \frac{\langle \sigma_p | \mathcal{H} | \sigma_d \rangle}{E_n - E_d}$

$E_p = \langle \sigma_p | \mathcal{H} | \sigma_p \rangle \qquad E_d = \langle \sigma_d | \mathcal{H} | \sigma_d \rangle$ **Orbital energies:**

Covalent mixing amplitude:

Structure factor:

20 multipartite valence bond state

Conclusions and Outlook:

- * Non-local properties of the state.
- * Low energy excitations.
- * Relation with integrable models.
- * Application for quantum information tasks.

Collaborators and References

