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What is this talk about?

i. Real singlet state of SU(2) (non-chiral).

ii. Homogeneous, translationally and rotationally invariant.

iii.With a local spin-1 representation.

iv.Unique ground state of a nearest neighbor Heisenberg-like 
hamiltonian.

We look for a 2D spin system in a square lattice with a ground state such that:
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Quantum spin liquids
What is the responsible mechanism that causes certain materials

to exhibit high-temperature superconductivity?

Spin liquids ground states believed to be related to high-temperature superconductivity 
[P. Anderson, Science, 235: 1196-1198, 1987]
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〈Ŝα
mŜα

n 〉 → const $= 0

Quantum spin liquids

Neel state and anti-ferromagnetic spin wave

What are the possible ground states of 2D Heisenberg-like models
when magnetic long-range order has been destroyed?

A spin liquid is a quantum state without magnetic long-range order.
A spin liquid is a state without any spontaneous broken symmetry.
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Quantum spin liquids
Example of 1D spin liquid.- AKLT model

[I. Affleck, T. Kennedy, E.H. Lieb, H. Tasaki. Phys. Rev. Lett. 59, 799 (1987)]

|α〉 =

{
| ↑〉
| ↓〉

|α〉εαβ |β〉 = | ↑↓〉 − | ↓↑〉

Ψαβ =
|α〉|β〉+ |β〉|α〉√

2
=






√
2| + 1〉 α = β =↑

|0〉 α $= β√
2| − 1〉 α = β =↓
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Quantum spin liquids

σ
si+1

σ
si

σ
si−1

σ
si−2 σ

sj−1
σ

sj
σ

sj+1

(Ψ · ε)αβ =
1√
3

(
σx

αβ |x〉+ σy
αβ |y〉+ σz

αβ |z〉
)

=
∑

s

As
αβ |s〉

|x〉 ∝ | ↑↑〉+ | ↓↓〉 = | + 1〉+ | − 1〉

|y〉 ∝ | ↑↑〉 − | ↓↓〉 = | + 1〉 − |− 1〉 |z〉 ∝ | ↑↓〉 + | ↓↑〉 = |0〉
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Quantum spin liquids

〈Ŝα
n Ŝβ

m〉 = δαβ (−1)m+n e−|m−n|/ξ

〈Ŝx
n〉 = 〈Ŝy

n〉 = 〈Ŝz
n〉 = 0

Antiferromagnetic spin-1 chain

No long-range order:

Singlet state:

Translationally invariant
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Quantum spin liquids
Some properties:

i) Composition rules.-

α β

s
1
2
⊗ 1

2
= 0⊕ 1

0⊗ 1
2

=
1
2

1
2
⊗ 1 =

1
2
⇒ SU(2)2

ii) Boundary conditions and degeneracy.-

Periodic boundary conditions = Unique state
Open boundary conditions = 4-fold degeneracy
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Quantum spin liquids

iii) Two-point correlation function.- Exponential decay.
Correlation length smaller than the lattice spacing

iv) Non-local order parameter.-

String order parameter and entanglement length
den Nijs, Rommelse (1989)

Cirac, Martin-Delgado, Popp, Verstraete (2005)
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Entanglement of spins
on a square lattice

2D spin-1/2 system (cuprates)

“substantial deviation” occurred at length 
scale about “distance between two sites”

deviation believed to be entanglement related

Experiment shows an anti-ferromagnetic ground state substantially different from 
“Neel order + minor QM corrections”

[N.B. Christensen et al., PNAS, 104: 15264-15269, 2007]
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2D multipartite
valence bond state

Requirements:
i) Real singlet state of SU(2) (non-chiral).

ii) Homogeneous, translationally and rotationally invariant.

iii) With a local spin-1 representation.

iv) Ground state of a nearest neighbor Hamiltonian.

Minimum spin representation: 3/2
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2D multipartite
valence bond state

1 4

3

2

Ψαβ =
|α〉|β〉+ |β〉|α〉√

2
=






√
2| + 1〉 α = β =↑

|0〉 α $= β√
2| − 1〉 α = β =↓

|α〉 =

{
| ↑〉
| ↓〉

We place the physical Hilbert space
at every link of the lattice

Local spin-1
representation
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2D multipartite
valence bond state

We need a multipartite 
bond state at every vertex
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2D multipartite
valence bond state

Real singlet state of SU(2) (non-chiral).

Homogeneous, translationally and 
rotationally invariant.

|α〉εαβ |β〉 = | ↑↓〉 − | ↓↑〉

α β

γ θ

α αβ β

γ
γ

θ
θ

= ±
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2D multipartite
valence bond state

i. The physical Hilbert space is placed at the links of the lattice.

ii. The Hamiltonian is made out of nearest neighbor Heisenberg-
like interactions.

iii. It is homogeneous, translationally and rotationally invariant.

iv.The ground state is a real singlet state of SU(2) (non-chiral).
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Ground state properties
and correlations

ψα1β1ψα3β3Γ
β1β2
β3β4

ψβ2α2ψβ4α4

〈VBS|VBS〉 =
∑

configuration

∏

lattice

Rij
lk = Z2D

−

+

=
β1 β2

β3 β4

Uncorrelated chains

Critical theory

Locally.-
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Ground state properties
and correlations

Some generalization.-

Ψ = a(s)σ0|0〉 + a(t) (σx|x〉 + σy|y〉 + σz|z〉)

a(s) =
√

1 + 3Λ
2

a(t) = i

√
1− Λ
2

α β

γ θ

α αβ β

γ
γ

θ
θ

= ±
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Ground state properties
and correlations

Any expectation value is obtained 
via a mapping of the 2D quantum 
state to a 2D classical statistical 

model and from there to a 1d 
quantum mechanical problem 

using a transfer matrix defined 
from the 2D quantum state.
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Ground state properties
and correlations

First analysis: Continuum limit.-

H =
∑

µ={x,y,z} Hmt [ǎµ] + Hms [ǎ0]

H = iveff
2

∫
dx (ǎL∂xǎL − ǎR∂xǎR) + im

∫
dx (ǎLǎR)

[A.M. Tsvelik . Phys. Rev. B42, 10499 (1990)]

The ladder problem is equivalent to four Ising models.
The only relevant operator is a mass term.

21Saturday, September 19, 2009



Ground state properties
and correlations

Relevance of the parameters:

Inverse of the gap in the ladder = Correlation length in the 2D VBS.

D.M.R.G. results with a sample of 100 points
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Ground state properties
and correlations

g(!ri − !rj) = 〈0|!Si · !Sj |0〉 $ e−
|!ri−!rj |

ξ

2 4 6 8
scale

-6

-4

-2

0

2

LOG!2,!"

∆ ! 1
ξ
! N−θ θ ! 0.99(4)

Numerical results obtained from CORE calculations
Data, fitted curve and 95% confidence interval

Two points correlation function: Exponential or algebraic decay?
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Ground state properties
and correlations

Results from D.M.R.G., C.O.R.E and exact diagonalization of the first energy gap as a 
function of the length and scale. All plots show a clear linear dependence of the gap 

with the inverse of the length of the ladder.

Two points correlation function: Exponential or algebraic decay?
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Ground state properties
and correlations

Two points correlation function: Relevance of the parameters

The plots does not show a linear dependence of the gap with the perturbation
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Antiferromagnetic
Mott-Hubbard insulator.

Bi2Sr2CanCun+1O2n+6

Copper oxide
Universal
structure.-

Cu2+ d9

O2− p6

Ionic
configuration.-

26Saturday, September 19, 2009



Antiferromagnetic
Mott-Hubbard insulator.

Super-exchange mechanism: Anderson 1950

Hybridisation of ionic orbital by covalent mixing

Ep = 〈σp|H|σp〉 Ed = 〈σd|H|σd〉

λ ! 〈σp|H|σd〉
Ep − Ed

Orbital energies:

Covalent mixing amplitude:
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Antiferromagnetic
Mott-Hubbard insulator.

| ↓p〉 covalent-mixing
−−−−−−−−−−−→

| ↓p〉+ λ| ↓dL〉+ λ| ↓dR〉√
1 + 2λ2

| ↑p〉 Pauli principle
−−−−−−−−−−→

| ↑p〉.

E↑↑ !
1

1 + 2λ2
[(〈↓p |+ λ〈↓dL |+ λ〈↓dR |) 〈↑p |H| ↑p〉 (| ↓p〉+ λ| ↓dL〉+ λ| ↓dR〉)]

= 2Ep +
2λ2

1 + 2λ2
(Ep − Ed).

Triplet (parallel) configuration
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Antiferromagnetic
Mott-Hubbard insulator.

| ↓p〉 covalent-mixing
−−−−−−−−−−−→

| ↓p〉+ λ| ↓dR〉√
1 + λ2

| ↑p〉 covalent-mixing
−−−−−−−−−−−→

| ↑p〉+ λ| ↑dL〉√
1 + λ2

.

E↓↑ = 2Ep +
2λ2

1 + λ2
(Ep − Ed)

Singlet (anti-parallel) configuration

E↑↑ − E↓↑ "
2λ4(Ed − Ep)

(1 + 2λ2)(1 + λ2)Super-exchange splitting.-
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Antiferromagnetic
Mott-Hubbard insulator.

Ĥeff = J
∑

n,m

!Sn
!Sm1)

Interpretations.-

2)
The structure of the state at the link describes the 
splitting in the amplitude of probability of finding 

the system in a triplet or singlet configuration.
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Neutron scattering experiment
Structure factor:

The structure factor can be measured by neutron scattering.

S(!q) =
1
N

∑

i,j

〈0|!Si · !Sj |0〉 exp (i!q · (!ri − !rj))

0

2

4

6 0

2

4

6

0.1

0.2

0.3

0.4
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Neutron scattering experiment

Features of the predictions of linear spin wave theory, multipartite valence bond 
state and the experimental data. G. Aeppli’s group provided the experimental data.

[PNAS 104 (39) (2007) 15264-15269]
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Non-local properties of the state.

Low energy excitations.

Relation with integrable models.

Application for quantum information tasks.

2D multipartite
valence bond state

Conclusions and Outlook:
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