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Motivation

Why revisit the role of spin at ν = 5/2?

Finite width known to be important at ν = 5/2, however, was
not considered in previous work.

Pseudopotentials in finite width w > 0 ease reversal of spins:
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[m: relative angular momentum; w : sample width]
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Introduction
Spin polarization of ν = 5/2 in the early days

Sensitivity of 5/2 state to
tilted field at first
suspected to result from
partial spin polarization

Haldane-Rezayi introduce
spin singlet (HR) state

[Eisenstein et al., PRL 61, 997 (1988)]

numerics convincingly support spin-polarized groundstate
wavefunction Morf (1998), and

explain sensitivity to tilted field by proximity to phase transition
Haldane, Rezayi (2000)
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Introduction
Spin polarization of the even denominator quantum Hall state at ν = 5/2

experimental status

direct probes of spin cannot establish polarization [current
work: Gervais, Pinczuk]

quasiparticle charge e/4, consistent with full spin polarization,
but inconclusive on its own

theoretical results

Numerous theory papers and numerical works support a spin
polarized groundstate, adiabatically connected to the
Moore-Read state

estimate of gap significantly larger than experimental value

What about spinful excitations?

[many papers...]
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Numerical studies on the sphere

Our tool: exact diagonalization on the sphere

Convenient geometry without
boundaries

Shift σ relating integer number of
flux Nφ and number of particles N
naturally separates Hilbert-spaces
of competing states

Nφ = ν−1N − σ

To study states with given spin, diagonalize Hamiltonian

H = Hint + αŜ2

in subspace of Sz = Starget.
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Are skyrmions possible? – spin-wave theory

At integer QH states and in the LLL, skyrmions are lowest
spinful excitations.

⇒ Simple energetic estimate from spin-wave dispersion

a (piece of) spin-wave

Dispersion of spinwaves is quadratic, involving spin-stiffness ρs :

EL =
8π

N
ρsL(L + 1) (on the sphere)

Use to estimate skyrmion energy Esk = 4πρs

Explicitly extract ρs from long wavelength spectrum for single
reversed spin
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Spin-waves – results

Comparing: skyrmion from spin-stiffness vs quasihole excitations
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[left: regression for ρs from EL=1, right: energetic comparison]

Skyrmions compete favourably with quasiholes in finite width

Quasielectrons are always preferred

Attention: need to compare to neutral quasiparticle energies!

[for skyrmions in finite width: Cooper ’97]
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Numerical search for unpolarized states - I
Scan of Nφ at fixed N

Search incompressible states restricted to subspace with 〈S2〉 = 0
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[Data from ED for the Coulomb Hamiltonian in a layer of width w = 3`0]

gap ∆(Nφ) = ENφ+1 + ENφ−1 − 2ENφ peaks for
Nφ = 3/2N + 1 and Nφ = 2N − 2.
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Numerical search for unpolarized states - II
Finite-size scaling of groundstate energies

Single out potential states with coherent series of groundstate
energies in S = 0 sector at different Nφ

only groundstate energies for
systems with even shift σ
align in potential series

important to eliminate
aliases with ν = 2/3 state at
σ = −1

consistent scaling of energy
for σ = −2, 0, 2, 4

⇒ (Anti-)skyrmions of
(anti-)pfaffian?
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Characterizing the state at Nφ = 2N − 2 - I
Correlation functions

Features typically associated with a homogeneous quantum liquid
not fulfilled [state discarded by Morf (’98) partly on these grounds]
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[left: correlations g↑↑, g↓↓ and gtot = g↑↑ + g↓↓ for guiding center coordinates; right: same for electrons]

The g↑↑(r) has a dip at large r , while g↑↓ becomes large

Total correlations gtot closely match those of the polarized
5/2 state at σ = 3 (length units rescaled for difference in σ)
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Characterizing the state at Nφ = 2N − 2 - II
Correlation functions, again

Compare correlations to known skyrmion states over ν = 1
and ν = 1/3, also showing f = g↑↑/gtot

ν = 1
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Trial wavefunction for skyrmion states
Skyrmion wavefunctions at ν = 1

Recapitulate known facts about skyrmions from the literature

For every fermionic LLL wavefunction, a Jastrow factor assuring
total antisymmetry can be factored out. Therefore, at ν = 1

ΨSkyrme[z , χ] =
∏
i<j

(zi − zj)×ΨB [z , χ]

= Ψν=1ΨB [z , χ],

where ΨB is a many-body state of bosons filling orbitals of an
effective flux Nboson

φ = Nφ − Nν=1
φ .

Can construct full spin spectrum, but in particular, there is a
unique state ΨB with L = S = 0 for Nboson

φ = 1.

MacDonald, Fertig and Brey, Phys. Rev. Lett. 76, 2153 (1996)
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Trial wavefunction for skyrmion states
Explicit form of bosonic state for ΨB

For Nboson
φ = 1, space with two bosonic orbitals, and two

spin-states spanned by normalized vectors |n− 1
2
↑, n− 1

2
↓, n 1

2
↑, n 1

2
↓〉.

Constraint Lz = Sz = 0 entails that

|ΨB〉 =

N/2∑
i=0

ci |i ,N/2− i ,N/2− i , i〉

Requiring Ŝ2|ΨB〉 = (Ŝ+ + Ŝ−)|ΨB〉 = 0, ⇒ ci = [N
2 + 1]−

1
2 (−1)i .

General states with different angular momentum / spin quantum
numbers can be easily generated by diagonalising L̂2 + Ŝ2 in this
(very small) bosonic Hilbert-space.

Likewise, it is easy to express ΨB in position space:

ΨB({zi}) =
∑

i ci per

[
{Φ− 1

2
(z↑k )}ik=1 {Φ 1

2
(z↑k )}

N
2
k=i+1

]
× per [(↓)]
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Trial wavefunction for skyrmion states
Generalization to general polarized states

Generalize to different filling factors using the same Ansatz,
but starting from general polarised states |Ψpol〉

ΨSkyrmion({zi}, Lz ,Sz) = Ψpol({zi})×ΨB({zi}, Lz , Sz)

Unlike for the ν = 1 case, the wavefunction is not required
mathematically to be separable into these specific factors ⇒
test for ν = 1/3 as a reference case

Evaluate overlap O = |
∫

d(z1, . . . , zN)Ψ∗skyrmionΨexact|2 by
Monte-Carlo sampling in position space.

N Nφ d(Hpol) d(Hfull) O
6 16 338 16k 0.95(1)
8 22 8512 1.76M 0.95(2)
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Trial wavefunction for skyrmion states
Skyrmions at ν = 5/2

Using our Ansatz, we can now write

Ψ
ν=5/2
Skyrmion({zi}, Lz ,Sz) =ΨMR({zi})×ΨB({zi}, Lz ,Sz)

=
∏
i<j

(zi − zj)
2Pf

[
1

zi − zj

]
×ΨB({zi}, Lz ,Sz)

But...
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Digression: weakly paired states
The Moore-Read state: one of many representatives in the weakly paired phase

Moore-Read:
ΨMR = Pf

[
1

zi−zj

]∏
i<j(zi − zj)

2

want explicit expression for general paired
state in same universality class!
(see Read & Green, PRB 2000)

start from BCS state: |BCS〉 =
∏′

k(uk + vkc†kc†−k)|0〉
[variational parameters uk , vk → gk = vk/uk ]

in position space: 〈{ri}|BCS〉 = Pf
[∑

k gke
ik·(rl−rm)

]
Composite-fermionize BCS: [φ̃(zi ) = J−1

i PLLLJiφ(zi )]

ΨCF-BCS = Pf
[∑

k gk φ̃k(zi ) φ̃−k(zj)
]∏

i<j(zi − zj)
2.

G. Möller and S. H. Simon, Phys. Rev. B 77, 075319 (2008).
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Digression: weakly paired states
Apply concept of general pair wavefunctions for skyrmion states

Make use of variational degrees of
freedom in the pair wavefunction of the
polarized weakly paired wavefunction

g(r)

Moore-Read skyrmion state with generalized pair wavefunction:

⇒ Ψ
ν= 5

2
Skyrme [gk ] = Pf

[∑
k gk φ̃k(zi ) φ̃−k(zj)

]∏
i<j(zi − zj)

2ΨL=S=0
B ,

with the projected CF orbitals φ̃(zi ) = J−1
i PLLLJiφ(zi ),

and on the sphere, φ̃k → Ỹ
− 1

2
l ,m are the CF monopole harmonics in

negative flux.

G. Möller and S. H. Simon, Phys. Rev. B 77, 075319 (2008).
G. Möller and S. H. Simon, Phys. Rev. B 72, 045344 (2005).
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Trial wavefunction for skyrmion states
Results for overlaps

Overlaps for skyrmion wavefunctions at ν = 5/2 are found to be
moderately large

N d(Hpol) d(Hfull) OMR OCF-BCS OMR OCF-BCS

w = 0 w = 3`0

8 151 67k 0.788(9) 0.802(9) 0.81(2) 0.84(3)
10 1514 3.47M 0.51(3) 0.54(3) 0.71(1) 0.72(1)

Overlaps smaller than for ν = 1/3, but still non-trivial
agreement

Small overlap mostly related to discrepancy of paired trial
state and exact Coulomb groundstate → see ‘Model
Hamiltonians’
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Skyrmions at partial spin polarization - I
Generic behaviour for skyrmion state

Having identified the spin-singlet state at Nφ = Npol
φ + 1, analyze

sequence of states with successively higher spin: generic case
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[ν = 1: energy of skyrmion/quasiparticle states versus spin S ]

as polarization increases, a charging correction is required:

δE (S) = [S/Smax]3 δEqp; ν = 5
2 : δEqp = 3

32
√

N
e2

ε`0
(Morf 2002)

roughly quadratic dispersion; the localized qp has the highest
correlation energy (correction negligible at ν = 1)
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Skyrmions at partial spin polarization - II
Behaviour for the skyrmion states over ν = 5/2

Spin dependent energy at ν = 5/2
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[ν = 5/2: energy of skyrmion/quasiparticle states versus spin S ]

Kink separating skyrmion-like quadratic dispersion at small S
and drop-off towards fully polarized state

e/2 skyrmion formed by binding two e/4 quasi-particles,
unlike ν = 1 or ν = 3 where qskyrmion = qqp (→ low L)

N = 10: A. Feiguin et al., Phys. Rev. B 79, 115322 (2009)
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Skyrmions at partial spin polarization - III
Behaviour for the skyrmion states over ν = 5/2

With appropriate charging correction, Skyrmion has lower
correlation energy than pair of qh’s, especially in finite width
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Skyrmion might be favourable up to fields B ∼ 6.5T

caveat: finite size effects for large skyrmions
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Skyrmions at partial spin polarization - IV
Mechanisms to nucleate skyrmions

at low field / Zeeman coupling, skyrmions are likely the lowest
energy excitations

Mechanisms to nucleate skyrmions

non-zero density of quasiparticles: tuning magnetic field away
from center of Hall plateau induces quasiparticles → if qp’s
are close enough they may be susceptible to bind

might be better to work at low end of Hall plateau as
quasielectrons have less pronounced tendency to bind into
skyrmions

disorder: if two pinning sites are at short separation, mutual
binding and introducing a spin-texture may be the
energetically most favourable way to accommodate pinned
quasiparticles
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Skyrmions at partial spin polarization - V
Phase diagram for skyrmions vs quasiholes

localized e/2 fermions may be preferred over 2× e/4 CST by
confining disorder potential
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Model Hamiltonians - I
A different angle on trial states: towards exact model Hamiltonians

Analyse correlations on the basis of the amplitudes for pairs /
triplets with given relative angular momentum

0 2 4 6 8 10 12
pair angular momentum

0

4

8

12

pa
ir 

am
pl

itu
de

thick: w=0;  thin: w=3

N=12, 2l=19 (ν=2/3)
Coulomb, LL1

N=12, 2l=22 (ν=1/2)
Coulomb, LL1

1 3 5 7 9 11

N=12, 2l=19 (ν=2/3)
model H=V   0+V   2

S=0, L=0

0.0

1.0

2.0

3.0

tr
ip

le
t a

m
pl

itu
de

thick: w=0;  thin: w=3

N=12, 2l=19 (ν=2/3)
Coulomb, LL1

N=12, 2l=22 (ν=1/2)
Coulomb, LL1

3 4 5 6 7 8
triplet angular momentum

N=12, 2l=19 (ν=2/3)
model H=V   0+V   2

S=0, L=0

0 2 4 6 8
m

0 2 4 6 8
m

0.8

1.2

1.6

2.0

U

(a) n=0

(b) n=1

w=0

w=3

w=0

w=3

three-body spin:
S=1/2 (dashed) and 3/2 (solid)

[left: pair-amplitudes for relative angular momentum m; right: triplet amplitudes for S = 3/2]

Pair amplitudes suppressed in V0 and V2 channel

Triplet amplitude suppressed in VS=3/2
3,3 channel for ν = 5/2



Introduction Spin-waves Search Characterization Trial wavefunctions Partial polarization Model Hamiltonians Conclusions

Model Hamiltonians - II
Evolution of pair / triplet amplitudes with Nφ

Plot select pair amplitudes of the respective groundstate for V0, V2

and triplet amplitude VS=3/2
3,3 as a function of Nφ
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[Amplitudes 〈X̂〉Ψ calculated for the groundstate of
Coulomb interactions in 2nd LL]

Pair amplitudes decrease
with Nφ until Hilbert space
is large enough that the GS
(nearly) avoids pairs.

A low background value of
the pair amplitude remains
for the Coulomb
Hamiltonian

Relation to exact model
Hamiltonians evident
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Model Hamiltonians - III
Approximate model Hamiltonians for unpolarized ν = 2/3, ν = 1/2 states

Need to include both pair and triplet amplitudes:

Hmodel(x) = (1− x)[V0 + V2] + xVS=3/2
3,3

ν = 5/2: groundstate of pure 3-body interaction is highly
degenerate → admixture of V0 + V2 to split deg.

yields high overlap with GS of Coulomb interaction (→ MR)
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Conclusions

We find series of states with Nφ = 2N − 2 and Nφ = 2N − 4
on the sphere; these are the unique candidates with L=S=0.

We identify these series as (anti-)skyrmions of Moore-Read,
and show how to construct explicit trial states (good overlap)

At ν = 5/2 the skyrmion has twice the charge of qp’s

Appearance of skyrmion can be interpreted as binding of qp’s;
binding becomes favourable at finite width w ∼ 3`0; and
might occur spontaneously at moderate fields / qp density

The physics of ν = 5/2 is that of a spin polarized quantum
liquid. The groundstate is in the non-abelian weakly paired
phase, but its quasielectrons/-holes compete with skyrmions
to be the lowest lying excitations

Skyrmions could be observed at ν = 5/2 in samples with low
Zeeman energy, and be a mechanism to deplete spin pol.

A. Wójs, G. Möller, N.R. Cooper, to be published.
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Charging correction for localized quasiparticle

Localized charge causes net energy with respect to
homogeneous backgroud

multiple quasiparticles have mutual repulsion

Etot = EMR + 2εqp−corr + Echarging + 2Vqp−bg + Vqp−qp

where the different terms signify:

EMR – energy of liquid w/o qp’s
Echarging = (e/2)2/2R – charging energy of uniformly
distributed bg charge −e/2
Vqp−bg = −(e/4)(e/2)/R – interaction of one qp with the
homogeneous background
Vqp−qp = (e/4)2/2R repulsion between two qp’s of charge
e/4 separated by diameter

⇒ convert all to same units of `0

R. Morf et al., Phys. Rev. B 66, 075408 (2002)
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