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Kitaev's honeycomb lattice model:
A.Y. Kitaev, Annals of Physics, 321:2, 2006

* An exactly solvable 2D spin model on a honeycomb lattice

« Known to support non-Abelian Ising anyons based on Chern
number and CFT arguments
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Kitaev's honeycomb lattice model:
A.Y. Kitaev, Annals of Physics, 321:2, 2006

* Arl exactly solvable RD spin model on a honeycomb lattice

« Knownto s
number and

ort non-Abelian Ising anyons based on Chern
T arguments

/We can do more:

Demonstrate the fusion rules from the spectrum

Calculate the non-Abelian statistics from the eigenstates

Understand the non-Abelian behavior microscopically

Provide methods and predictions for future experiments
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To demonstrate the Ising anyons, one needs to demonstrate:

(1) Ising fusion rules
1orWy

|a XU=1+LIJ. DONE!
X0 =0 VL et al., Ann. Phys. 323, 9 (2008)

UxyY =1
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To demonstrate the Ising anyons, one needs to demonstrate:

(1) Ising fusion rules
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» The Hamiltonian

Z Z J;U% Z Kijroy U'Uk

ve{x,y,z} (i,7)€r-links (i,7,k)
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» The Hamiltonian

S v UV UV r Y _z
H = — E E Joiof — E Kijpo; 050y
I/E{I*y*z} (%J)Eu—llnks \W*k)

[Anisotropic nearest neighbour couplings
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» The Hamiltonian

- E E v v __ E xr Y _z

ve{x,y,z} (i,7)€r-links (i,7,k)

x Yz z Y _x xr _z Y Yy _x _z
E Kijro; 050, = K930[0505 + Ko34050504 + K345030, 05

| Effective magnetic field gives
(.5.k)€EP

K456(TZO§O%: + K5610§O'g(7% + Kﬁlgogafa;
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» The Hamiltonian

- E E v v v E o xr Yy _z

ve{x,y,z} (i,7)€r-links (i,7,k)

Represent Pauli operators by Majorana fermions
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» The Hamiltonian

- E E v v v E o xr Yy _z

ve{x,y,z} (i,7)€r-links (i,7,k)

Represent Pauli operators by Majorana fermions

» Static background Z2 gauge field living on every link
@ [H 'ﬂ?;j] = 0

» Fixing u fixes the gauge and the physical sector
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» The Hamiltonian

S v UV UV r Y _z
H = — E E Joiof — E Kijpo; 050y

ve{x,y,z} (i,7)€r-links (i,7,k)

Represent Pauli operators by Majorana fermions

» The physical sectors are labeled by the plaquette

operators (Wilson loops):  @Wp = |1 jye, Ui

» Eigenvalue w = -1: a vortex at plaquette p
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» The Hamiltonian

S v UV UV r Y _z
H = — E E Joiof — E Kijpo; 050y

ve{x,y,z} (i,7)€r-links (i,7,k)

Represent Pauli operators by Majorana fermions

» The physical sectors are labeled by the plaquette

operators (Wilson loops):  @Wp = |1 jye, Ui

» Eigenvalue w = -1: a vortex at plaquette p
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Asolve the model:

s Choose the system size and fix the boundary
conditions (we work on torus).
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Asolve the model:

s Choose the system size and fix the boundary
conditions (we work on torus).

» Fix the physical sector (the vortex configuration) by
fixing the gauge field u.

» Choose the parameters J and K on all links (we
consider the non-Abelian phase with globally
Jx=Jy=Jz and K> 0).
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Asolve the model:

s Choose the system size and fix the boundary
conditions (we work on torus).

» Fix the physical sector (the vortex configuration) by
fixing the gauge field u.

» Choose the parameters J and K on all links (we
consider the non-Abelian phase with globally
Jx=Jy=Jz and K > 0).

» Dump the Hamiltonian into a number cruncher.
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Asolve the model:

s Choose the system size and fix the boundary
conditions (we work on torus).

» Fix the physical sector (the vortex configuration) by
fixing the gauge field u.
» Choose the parameters J and K on all links (we

consider the non-Abelian phase with globally
Jx=Jy=Jz and K> 0).

» Dump the Hamiltonian into a number cruncher.
Wait.
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Asolve the model:

s Choose the system size and fix the boundary
conditions (we work on torus).

» Fix the physical sector (the vortex configuration) by
fixing the gauge field u.
» Choose the parameters J and K on all links (we

consider the non-Abelian phase with globally
Jx=Jy=Jz and K> 0).

» Dump the Hamiltonian into a number cruncher.
» Wait.

» ... while waiting figure out what to do with the
spectrum and eigenvectors ..
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Asolve the model:

s Choose the system size and fix the boundary
conditions (we work on torus).

» Fix the physical sector (the vortex configuration) by
fixing the gauge field u.

» Choose the parameters J and K on all links (we
consider the non-Abelian phase with globally
Jx=Jy=Jz and K > 0).

» Dump the Hamiltonian into a number cruncher.
» Wait.

» ... while waiting figure out what to do with the
spectrum and eigenvectors ..

... go walk through Australia on Google street view ..
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Asolve the model:

s Choose the system size and fix the boundary
conditions (we work on torus).

» Fix the physical sector (the vortex configuration) by
fixing the gauge field u.

» Choose the parameters J and K on all links (we
consider the non-Abelian phase with globally
Jx=Jy=Jz and K > 0).

» Dump the Hamiltonian into a number cruncher.
» Wait.

» ... while waiting figure out what to do with the
spectrum and eigenvectors ..

» ... go walk through Australia on Google street view ..
Get the results, change the parameters and repeat.
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How to simulate the transport of vortices?

The parameters Jij and Kikj appear in the Hamiltonian always paired with
the local gauge fields U

R 1’ A 1 A o~ A~
H = 1 Zq‘,,j A@jCiCj Aij — 2J@juij + 2 E Kijku@-k’ujk
k
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How to simulate the transport of vortices?

The parameters Jij and Kikj appear in the Hamiltonian always paired with
the local gauge fields U

R 2’ A 1 A o~ A~
H = 1 Zi,j A@jCiCj Aij — 2J@ju@-j + 2 E K@-j;gu@-;gujk
k

-

» Assume local control on link (if)
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How to simulate the transport of vortices?

The parameters Jij and Kikj appear in the Hamiltonian always paired with
the local gauge fields U

R 2’ A 1 A o~ A~
H = 1 Zi,j A@jCiCj Aij — 2J@ju@-j + 2 E K@-j;gu@-;gujk

-

» Assume local control on link (if)

JK->0

ikj

» The vortex occupies both plaquettes
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How to simulate the transport of vortices?

The parameters Jij and Kikj appear in the Hamiltonian always paired with
the local gauge fields U

R 2’ A 1 A o~ A~
H = 1 Zi,j A@jCiCj Aij — 2J@ju@-j + 2 E K@-j;gu@-;gujk

-

» Assume local control on link (if)

JK-»-JK

ikj ikj

» Equivalent to changing ul_j -> -ul_j :
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Mode spectrum Av;. = Lep1y, Full low-energy spectrum
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+ +
Mode spectrum Av;. = Lep1y, Full low-energy spectrum
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Mode spectrum Av;. = Lep1y, Full low-energy spectrum
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1.5

1F

2"-fold degeneracy for 2n vortices

Full low-energy spectrum
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» 2"-fold degeneracy for 2n vortices

@ |[nteractions lift degeneracy when
vortices nearby each other

Full low-energy spectrum

Zero mode energy oscillates
when vortices nearby.

1 2 3 4 56 7 8 9 10111213 14 15
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» 2"-fold degeneracy for 2n vortices

@ |[nteractions lift degeneracy when
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Zero modes and fusion rules

» 2"-fold degeneracy for 2n vortices

@ |[nteractions lift degeneracy when
vortices nearby each other

» Occupation of a zero mode
corresponds to the fusion channel

oxo =1+
+ +
Mode spectrum Av;. = Lep1y, Full low-energy spectrum
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Can we evaluate the corresponding evolution of the system?
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Under adiabatic evolution degenerate states evolve according to
the non-Abelian Berry phase:

o = pesp § 440)an, = T (32 w0, 00

C ~ aloop in a parameter space (space of 4-vortex configurations)
T ~ total number of discrete steps on C

t ~ particular step on C

P ~ “time ordering” in t

n ~ ground state degeneracy (twofold for four vortices)
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Under adiabatic evolution degenerate states evolve according to
the non-Abelian Berry phase:

L

d+2
éji 2d+3
[
~N
S -1 -1
C1C2C1C2 ~ @ C1C1C2C2 ~ O O

Strategy: 1) Diagonalize the Hamiltonian for every t

2) Construct the projector to the ground state space

3) Multiply them together to evaluate I
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How to construct the degenerate ground states?

» Restrict to overall W-fusion channel of four vortices

» The spectrum has two zero modes
[Waiao) = D O)*2 1gs)  lgs) =121 bxld)  bL1o) =0

» The ground states can be represented by:
MN—1

Ek,..., _
| Wo) = Z ; lr/k - Y Azr/);t — j:ék’l/),zt
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» A finite system of 2MN spins on a torus.
» Consider the range 0 < K < 0.15 to study magnetic field dependance

» Evaluate the Berry phase for three parametrizations to study
scaling with system size

S T 2M N
2.10° | 32-10° | 120
2.10° | 48-10° | 224
4-10° [128-10% | 360

(1)
(i)
(iii)

W N =] Q.
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» Under adiabatic approximation the Berry phase corresponds to
the exact time evolution when A >>6

Energy gap: Degeneracy:

A = mtin(eg —€5), 0= mgmx(eg —€})

157 —e—a)
-0 3 ()
—a— A (ii)
17 = |- (i)
—o— A (iii)
- - 3 (i)

0.5F
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» Under adiabatic approximation the Berry phase corresponds to
the exact time evolution when A >>6

Energy gap: Degeneracy:

A = 1’111;111(6?3 —€h), 6= m?x(eg —€h)

157 —e—a)
-0 3 ()
—a— A (ii)
17 = |- (i)
—o— A (iii)
- - 3 (i)

o

K= 0.07 lower bound for
a stable topological phase.

0.5F
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Non-Abelian statistics as a Berry phase

» Introduce fidelity measures for the holonomy

s(U, V) = itr (UvVt +vUh) s(U,V) <1

| . =, 1
» When the off-diagonal elements of I'C are re®and R? = ¢ 71! ( (1) 0 )

s(1, ¢, ng ) (measure of unitarity)

8(|R2|,|FC£|) = r (measure of off-diagonality)

*

E(RQ? Le,) = % [r COS(% +0)41] (measure of total fidelity)
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Unitarity
@ >0.98 when K< 0.11

» Upper bound for stable topological phase

=

s(1,T'TH
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Unitarity
@ >0.98 when K< 0.11

» Upper bound for stable topological phase
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()
» No off-diagonality
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Unitarity
@ >0.98 when K< 0.11

» Upper bound for stable topological phase

=

=

()
» No off-diagonality

(ii)
» Decaying off-diagonality

» The phase does not match
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Unitarity
@ >0.98 when K< 0.11

» Upper bound for stable topological phase

()
» No off-diagonality

(i)

» Decaying off-diagonality

» The phase does not match

i

» Stable off-diagonality

» At K=0.09 total fidelity > 0.99!
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Further checks of the topological nature of the Berry phase:

Topology of the path

-1 .
FCO ~ 1l  With total fidelity > 0.98 when 01010202] ~ O O

FC‘; = FC.{. Insensitive to perturbations of the path
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Further checks of the topological nature of the Berry phase:

Topology of the path

-1 i
FCO ~ 1  With total fidelity > 0.98 when 010102021 ~ O O

FC‘; = FC.{. Insensitive to perturbations of the path

Qrientation of the path

| R — I‘T Exact when direction reversed
C; o
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Further checks of the topological nature of the Berry phase:

Topology of the path

-1 .
FCO ~ 1 With total fidelity > 0.98 when 01010202] ~ O O

FC‘; = FO;- Insensitive to perturbations of the path

Qrientation of the path

.. = I‘T Exact when direction reversed
C, @F

Statistics only in the non-Abelian phase

FC; Vanishes for K=0
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New J. Phys. 11 (2009) 093027
Conclusions Ann. Phys. 323, 9 (2008)

Explicit demonstration of non-Abelian statistics (better numerics desirable)

The calculation discriminates between Ising and SU(2)2

The transport protocol experimentally realistic given sufficient site addressability

Could be applied to other models

Interesting to study robustness of the holonomy under perturbations
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