

Non-Abelian Statistics as a Berry Phase in the Honeycomb Lattice Model

New J. Phys. 11 (2009) 093027 arXiv:0901.3674

Ville Lahtinen and Jiannis K. Pachos DAQIST workshop, 18 September 2009, Maynooth

Kitaev's honeycomb lattice model:

A.Y. Kitaev, Annals of Physics, 321:2, 2006

- An exactly solvable 2D spin model on a honeycomb lattice
- Known to support non-Abelian Ising anyons based on Chern number and CFT arguments

Kitaev's honeycomb lattice model:

A.Y. Kitaev, Annals of Physics, 321:2, 2006

- Ar exactly solvable ?D spin model on a honeycomb lattice
- Known to support non-Abelian Ising anyons based on Chern number and CFT arguments

We can do more:

- Demonstrate the fusion rules from the spectrum
- Calculate the non-Abelian statistics from the eigenstates
- Understand the non-Abelian behavior microscopically
- Provide methods and predictions for future experiments

To demonstrate the Ising anyons, one needs to demonstrate:

(1) Ising fusion rules

To demonstrate the Ising anyons, one needs to demonstrate:

(1) Ising fusion rules

 $\sigma \times \sigma = 1 + \Psi$ $\Psi \times \sigma = \sigma$ $\Psi \times \Psi = 1$

DONE! VL et al., Ann. Phys. 323, 9 (2008)

(2) Statistics

$$H = -\sum_{\nu \in \{x,y,z\}} \sum_{(i,j) \in \nu \text{-links}} J^{\nu}_{ij} \sigma^{\nu}_i \sigma^{\nu}_j - \sum_{(i,j,k)} K_{ijk} \sigma^x_i \sigma^y_j \sigma^z_k$$

$$H = -\sum_{\nu \in \{x,y,z\}} \sum_{(i,j) \in \nu \text{-links}} J_{ij}^{\nu} \sigma_{i}^{\nu} \sigma_{j}^{\nu} - \sum_{(i,j,k)} K_{ijk} \sigma_{i}^{x} \sigma_{j}^{y} \sigma_{k}^{z}$$
Represent Pauli operators by Majorana fermions
$$H = \frac{i}{4} \sum_{i,j} \hat{A}_{ij} c_{i} c_{j} \quad \hat{A}_{ij} = 2J_{ij} \hat{u}_{ij} + 2\sum_{k} K_{ijk} \hat{u}_{ik} \hat{u}_{jk}$$

+1

$$H = -\sum_{\nu \in \{x, y, z\}} \sum_{(i, j) \in \nu \text{-links}} J_{ij}^{\nu} \sigma_{i}^{\nu} \sigma_{j}^{\nu} - \sum_{(i, j, k)} K_{ijk} \sigma_{i}^{x} \sigma_{j}^{y} \sigma_{k}^{z}$$
Represent Pauli operators by Majorana fermions
$$H = \frac{i}{4} \sum_{i, j} \hat{A}_{ij} c_{i} c_{j} \quad \hat{A}_{ij} = 2J_{ij} \hat{u}_{ij} + 2\sum_{k} K_{ijk} \hat{u}_{ik} \hat{u}_{jk}$$
• The physical sectors are labeled by the plaquette operators (Wilson loops): $\hat{w}_{p} = \prod_{(i, j) \in p} \hat{u}_{ij}$
• Eigenvalue w_{p} = -1: a vortex at plaquette p

$$H = -\sum_{\nu \in \{x, y, z\}} \sum_{(i, j) \in \nu \text{-links}} J_{ij}^{\nu} \sigma_{i}^{\nu} \sigma_{j}^{\nu} - \sum_{(i, j, k)} K_{ijk} \sigma_{i}^{x} \sigma_{j}^{y} \sigma_{k}^{z}$$
Represent Pauli operators by Majorana fermions
$$H = \frac{i}{4} \sum_{i, j} \hat{A}_{ij} c_{i} c_{j} \quad \hat{A}_{ij} = 2J_{ij} \hat{u}_{ij} + 2\sum_{k} K_{ijk} \hat{u}_{ik} \hat{u}_{jk}$$
• The physical sectors are labeled by the plaquette operators (Wilson loops): $\hat{w}_{p} = \prod_{(i, j) \in p} \hat{u}_{ij}$
• Eigenvalue w_{p} = -1: a vortex at plaquette p

To solve the model:

• Choose the system size and fix the boundary conditions (we work on torus).

- Choose the system size and fix the boundary conditions (we work on torus).
- Fix the physical sector (the vortex configuration) by fixing the gauge field *u*.

- Choose the system size and fix the boundary conditions (we work on torus).
- Fix the physical sector (the vortex configuration) by fixing the gauge field *u*.
- Choose the parameters J and K on all links (we consider the non-Abelian phase with globally $J_x=J_y=J_z$ and K > 0).

- Choose the system size and fix the boundary conditions (we work on torus).
- Fix the physical sector (the vortex configuration) by fixing the gauge field *u*.
- Choose the parameters J and K on all links (we consider the non-Abelian phase with globally $J_x=J_y=J_z$ and K > 0).
- Dump the Hamiltonian into a number cruncher.

- Choose the system size and fix the boundary conditions (we work on torus).
- Fix the physical sector (the vortex configuration) by fixing the gauge field *u*.
- Choose the parameters J and K on all links (we consider the non-Abelian phase with globally $J_x=J_y=J_z$ and K > 0).
- Dump the Hamiltonian into a number cruncher.
- Wait.

- Choose the system size and fix the boundary conditions (we work on torus).
- Fix the physical sector (the vortex configuration) by fixing the gauge field *u*.
- Choose the parameters J and K on all links (we consider the non-Abelian phase with globally $J_x=J_y=J_z$ and K > 0).
- Dump the Hamiltonian into a number cruncher.
- Wait.
- ... while waiting figure out what to do with the spectrum and eigenvectors ..

- Choose the system size and fix the boundary conditions (we work on torus).
- Fix the physical sector (the vortex configuration) by fixing the gauge field *u*.
- Choose the parameters J and K on all links (we consider the non-Abelian phase with globally $J_x=J_y=J_z$ and K > 0).
- Dump the Hamiltonian into a number cruncher.
- Wait.
- ... while waiting figure out what to do with the spectrum and eigenvectors ..
- ... go walk through Australia on Google street view ..

- Choose the system size and fix the boundary conditions (we work on torus).
- Fix the physical sector (the vortex configuration) by fixing the gauge field *u*.
- Choose the parameters J and K on all links (we consider the non-Abelian phase with globally $J_x=J_y=J_z$ and K > 0).
- Dump the Hamiltonian into a number cruncher.
- Wait.
- ... while waiting figure out what to do with the spectrum and eigenvectors ..
- ... go walk through Australia on Google street view ..
- Get the results, change the parameters and repeat.

How to simulate the transport of vortices?

$$H = \frac{i}{4} \sum_{i,j} \hat{A}_{ij} c_i c_j \qquad \hat{A}_{ij} = 2J_{ij} \hat{u}_{ij} + 2\sum_k K_{ijk} \hat{u}_{ik} \hat{u}_{jk}$$

How to simulate the transport of vortices?

How to simulate the transport of vortices?

How to simulate the transport of vortices?

$$\underbrace{\text{Mode spectrum}}_{0.5} A \psi_k^{\pm} = \pm \epsilon_k \psi_k^{\pm}$$

Can we evaluate the corresponding evolution of the system?

Under adiabatic evolution degenerate states evolve according to the non-Abelian Berry phase:

$$\Gamma_C = P \exp \oint_C A^{\mu}(\lambda) d\lambda_{\mu} = P \prod_{t=1}^T \left(\sum_{\alpha=1}^n |\Psi_{\alpha}(\lambda(t))\rangle \langle \Psi_{\alpha}(\lambda(t))| \right)$$

- $C \sim$ a loop in a parameter space (space of 4-vortex configurations)
- $T \sim$ total number of discrete steps on C
- $t \sim \text{particular step on } C$
- $P \sim$ "time ordering" in t
- *n* ~ ground state degeneracy (twofold for four vortices)

Under adiabatic evolution degenerate states evolve according to the non-Abelian Berry phase:

$$\Gamma_C = P \exp \oint_C A^{\mu}(\lambda) d\lambda_{\mu} = P \prod_{t=1}^T \left(\sum_{\alpha=1}^n |\Psi_{\alpha}(\lambda(t))\rangle \langle \Psi_{\alpha}(\lambda(t))| \right)$$

- Strategy:
- 1) Diagonalize the Hamiltonian for every t
 - 2) Construct the projector to the ground state space
 - 3) Multiply them together to evaluate Γ_{c}

How to construct the degenerate ground states?

• Restrict to overall Ψ -fusion channel of four vortices

• The spectrum has two zero modes

 $|\Psi_{\alpha_1\alpha_2}\rangle = (b_1^{\dagger})^{\alpha_1}(b_2^{\dagger})^{\alpha_2} |\operatorname{gs}\rangle \qquad |\operatorname{gs}\rangle = \prod_{k=1}^{MN} b_k |\phi\rangle \qquad b_k^{\dagger} |\phi\rangle = 0$

• The ground states can be represented by: $|\Psi_{\alpha}\rangle = \sum_{\substack{MN-1\\ \{k,\dots,l=1|\\k,\dots,l\neq\alpha\}}}^{MN-1} \frac{\varepsilon_{k,\dots,l}}{\sqrt{(MN-1)!}} \psi_{k}^{-} \otimes \cdots \otimes \psi_{l}^{-} \qquad A\psi_{k}^{\pm} = \pm \epsilon_{k} \psi_{k}^{\pm}$

- A finite system of 2MN spins on a torus.
- Consider the range 0 < K < 0.15 to study magnetic field dependance
- Evaluate the Berry phase for three parametrizations to study scaling with system size

	d	S	T	2MN
(i)	1	$2 \cdot 10^{3}$	$32 \cdot 10^{3}$	120
(ii)	2	$2 \cdot 10^{3}$	$48 \cdot 10^{3}$	224
(iii)	3	$4 \cdot 10^{3}$	$128 \cdot 10^{3}$	360

Energy gap:

• Under adiabatic approximation the Berry phase corresponds to the exact time evolution when $\Delta >> \delta$

Degeneracy:

 Under adiabatic approximation the Berry phase corresponds to the exact time evolution when Δ >> δ

Introduce fidelity measures for the holonomy

$$s(U,V) = \frac{1}{4} \operatorname{tr} \left(UV^{\dagger} + VU^{\dagger} \right) \qquad s(U,V) \leq 1$$

• When the off-diagonal elements of Γ_c are $re^{i\theta}$ and $R^2 = e^{-\frac{\pi}{4}i} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

$$\begin{split} s(\mathbbm{1}, \Gamma_{C_l} \Gamma_{C_l}^{\dagger}) & \text{(measure of unitarity)} \\ s(|R^2|, |\Gamma_{C_l}|) &= r & \text{(measure of off-diagonality)} \\ \bar{s}(R^2, \Gamma_{C_l}) &= \frac{1}{2} [r \cos(\frac{\pi}{4} + \theta) + 1] & \text{(measure of total fidelity)} \end{split}$$

<u>Unitarity</u>

- >0.98 when K < 0.11</p>
- Upper bound for stable topological phase

<u>Unitarity</u>

- >0.98 when K < 0.11</p>
- Upper bound for stable topological phase

<u>(i)</u>

No off-diagonality

<u>Unitarity</u>

- >0.98 when K < 0.11</p>
- Upper bound for stable topological phase

<u>(i)</u>

No off-diagonality

<u>(ii)</u>

- Decaying off-diagonality
- The phase does not match

<u>Unitarity</u>

- >0.98 when K < 0.11</p>
- Upper bound for stable topological phase

<u>(i)</u>

No off-diagonality

<u>(ii)</u>

- Decaying off-diagonality
- The phase does not match

<u>(iii)</u>

- Stable off-diagonality
- At K=0.09 total fidelity > 0.99!

Further checks of the topological nature of the Berry phase:

<u>Topology of the path</u>

 $\Gamma_{C_o} \approx 1$ With total fidelity > 0.98 when $C_1 C_1^1 C_2 C_2^1 \sim ()$

 $\Gamma_{C_l} = \Gamma_{C_l}$. Insensitive to perturbations of the path

Further checks of the topological nature of the Berry phase:

Topology of the path

 $\Gamma_{C_o} \approx 1$ With total fidelity > 0.98 when $C_1 C_1 C_2 C_2 \sim ()$

 $\Gamma_{C_l} = \Gamma_{C_l}$. Insensitive to perturbations of the path

Orientation of the path

 $\Gamma_{C_{i}^{-1}} = \Gamma_{C_{i}}^{\dagger}$ Exact when direction reversed

Further checks of the topological nature of the Berry phase:

<u>Topology of the path</u>

 $\Gamma_{C_o} \approx 1$ With total fidelity > 0.98 when $C_1 C_1^1 C_2 C_2^1 \sim ()$

 $\Gamma_{C_l} = \Gamma_{C_l}$ Insensitive to perturbations of the path

Orientation of the path

 $\Gamma_{C_i^{-1}} = \Gamma_{C_i}^{\dagger}$ Exact when direction reversed

Statistics only in the non-Abelian phase

 Γ_{C_1} Vanishes for K=0

Conclusions

Conclusions

New J. Phys. 11 (2009) 093027 Ann. Phys. 323, 9 (2008)

- Explicit demonstration of non-Abelian statistics (better numerics desirable)
- The calculation discriminates between Ising and SU(2)2
- The transport protocol experimentally realistic given sufficient site addressability
- Could be applied to other models
- Interesting to study robustness of the holonomy under perturbations