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Known to support non-Abelian Ising anyons based on Chern 
number and CFT arguments
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exactly solvableexactly solvable

We can do more:

  Demonstrate the fusion rules from the spectrum

  Calculate the non-Abelian statistics from the eigenstates

  Understand the non-Abelian behavior microscopically

  Provide methods and predictions for future experiments



  

Anyons in an exactly solvable model

To demonstrate the Ising anyons, one needs to demonstrate:

(1) Ising fusion rules 
         
                                          

σ σ

1 or Ψ
σ  x σ  = 1 + Ψ
Ψ x σ  = σ
Ψ x Ψ = 1

DONE!
VL et al., Ann. Phys. 323, 9 (2008)



  

Anyons in an exactly solvable model

To demonstrate the Ising anyons, one needs to demonstrate:

(1) Ising fusion rules 
         
                                          

(2) Statistics

σ σ

1 or Ψ
σ  x σ  = 1 + Ψ
Ψ x σ  = σ
Ψ x Ψ = 1

DONE!
VL et al., Ann. Phys. 323, 9 (2008)

σ σ R2 = e-iπ/4R2 = e-iπ/4(   )0   1
1   0 ?
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z
x yAnisotropic nearest neighbour couplings 



  

The honeycomb lattice model

  The Hamiltonian

                            

z
x y

Effective magnetic field gives 
next-to-nearest interaction
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The honeycomb lattice model

  The Hamiltonian

                            

Represent Pauli operators by Majorana fermionsRepresent Pauli operators by Majorana fermions

  Static background Z2 gauge field living on every link

  Fixing u fixes the gauge and the physical sector
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The honeycomb lattice model

  The Hamiltonian

                            

Represent Pauli operators by Majorana fermionsRepresent Pauli operators by Majorana fermions

  The physical sectors are labeled by the plaquette 

operators (Wilson loops): 

  Eigenvalue w
p
 = -1: a vortex at plaquette p

+1 +1

+1 +1 +1+1

+1

+1 +1 +1

+1

+1

+1 +1 +1

+1

+1 +1 +1

+1 +1 +1 +1

+1 +1

-1

-1

-1



  

The honeycomb lattice model

  The Hamiltonian

                            

Represent Pauli operators by Majorana fermionsRepresent Pauli operators by Majorana fermions

  The physical sectors are labeled by the plaquette 

operators (Wilson loops): 

  Eigenvalue w
p
 = -1: a vortex at plaquette p



  

The honeycomb lattice model

Represent Pauli operators by Majorana fermionsRepresent Pauli operators by Majorana fermions

  The physical sectors are labeled by the plaquette 

operators (Wilson loops): 

  Eigenvalue w
p
 = -1: a vortex at plaquette p

To solve the model:
  Choose the system size and fix the boundary 

conditions (we work on torus).
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The honeycomb lattice model

Represent Pauli operators by Majorana fermionsRepresent Pauli operators by Majorana fermions

  The physical sectors are labeled by the plaquette 

operators (Wilson loops): 

  Eigenvalue w
p
 = -1: a vortex at plaquette p

To solve the model:
  Choose the system size and fix the boundary 

conditions (we work on torus).
  Fix the physical sector (the vortex configuration) by 

fixing the gauge field u.
  Choose the parameters J and K on all links (we 

consider the non-Abelian phase with globally 
Jx=Jy=Jz and K > 0).

  Dump the Hamiltonian into a number cruncher.
  Wait.
  ... while waiting figure out what to do with the 

spectrum and eigenvectors ..
  ... go walk through Australia on Google street view ..
  Get the results, change the parameters and repeat.



  

Vortex transport

How to simulate the transport of vortices?

The parameters J
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 appear in the Hamiltonian always paired with 

the local gauge fields u
ij
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Vortex transport

How to simulate the transport of vortices?

The parameters J
ij
 and K

ikj
 appear in the Hamiltonian always paired with 

the local gauge fields u
ij
. 

  Assume local control on link (ij)

J
ij
 , K

ikj               
0

  The vortex occupies both plaquettes



  

Vortex transport

How to simulate the transport of vortices?

The parameters J
ij
 and K

ikj
 appear in the Hamiltonian always paired with 

the local gauge fields u
ij
. 

  Assume local control on link (ij)

J
ij
 , K

ikj               
-J

ij
 , -K

ikj

  Equivalent to changing u
ij
 -> -u

ij
 .
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Mode spectrum Full low-energy spectrum

gap

“continuum of states”
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Zero modes and fusion rules

Mode spectrum Full low-energy spectrum

 2n-fold degeneracy for 2n vortices

Zero mode  - energy converges 
exponentially to E=0
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when vortices nearby. 
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Zero modes and fusion rules

Mode spectrum Full low-energy spectrum

 2n-fold degeneracy for 2n vortices
 Interactions lift degeneracy when     

  vortices nearby each other
 Occupation of a zero mode              

  corresponds to the fusion channel    
               σ x σ   = 1 + Ψ

2-vortex sector ground state 
with unoccupied zero mode

2-vortex sector ground state 
with occupied zero mode

Identify free fermion mode 
with Ψ quasiparticle



  

Non-Abelian statistics as a Berry phase

Can we evaluate the corresponding evolution of the system?



  

Non-Abelian statistics as a Berry phase

Under adiabatic evolution degenerate states evolve according to 
the non-Abelian Berry phase:

   C ~ a loop in a parameter space (space of 4-vortex configurations)

   T ~ total number of discrete steps on C

   t  ~ particular step on C

   P ~ “time ordering” in t

   n ~ ground state degeneracy (twofold for four vortices)



  

Non-Abelian statistics as a Berry phase

Under adiabatic evolution degenerate states evolve according to 
the non-Abelian Berry phase:

Strategy: 1) Diagonalize the Hamiltonian for every t

2) Construct the projector to the ground state space

3) Multiply them together to evaluate Γٕ
C



  

Non-Abelian statistics as a Berry phase

How to construct the degenerate ground states?

  Restrict to overall Ψ-fusion channel of four vortices

  The spectrum has two zero modes
   

  The ground states can be represented by:

|Ψ
10

 > = |Ψ
01

 > = 



  

Non-Abelian statistics as a Berry phase

  A finite system of 2MN spins on a torus.

  Consider the range 0 < K < 0.15 to study magnetic field dependance

  Evaluate the Berry phase for three parametrizations to study
   scaling with system size



  

Non-Abelian statistics as a Berry phase

  Under adiabatic approximation the Berry phase corresponds to 
  the exact time evolution when Δ >> δ 

Energy gap: Degeneracy:



  

Non-Abelian statistics as a Berry phase

  Under adiabatic approximation the Berry phase corresponds to 
  the exact time evolution when Δ >> δ 

Energy gap: Degeneracy:

K = 0.07 lower bound for
a stable topological phase.



  

Non-Abelian statistics as a Berry phase

  Introduce fidelity measures for the holonomy

  When the off-diagonal elements of Γ
C
 are reiθ and

(measure of unitarity)

(measure of off-diagonality)

(measure of total fidelity)
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  >0.98 when K < 0.11

  Upper bound for stable topological phase
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Non-Abelian statistics as a Berry phase

Unitarity

  >0.98 when K < 0.11

  Upper bound for stable topological phase

(i)

  No off-diagonality

(ii)

  Decaying off-diagonality

  The phase does not match

(iii)

  Stable off-diagonality

  At K=0.09 total fidelity > 0.99!
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Further checks of the topological nature of the Berry phase:

 Topology of the path

  With total fidelity > 0.98 when 

   =   Insensitive to perturbations of the path'



  

Non-Abelian statistics as a Berry phase

Further checks of the topological nature of the Berry phase:

 Topology of the path

  With total fidelity > 0.98 when 

   =   Insensitive to perturbations of the path

Orientation of the path

  Exact when direction reversed

'



  

Non-Abelian statistics as a Berry phase

Further checks of the topological nature of the Berry phase:

 Topology of the path

  With total fidelity > 0.98 when 

   =    Insensitive to perturbations of the path

Orientation of the path

  Exact when direction reversed

Statistics only in the non-Abelian phase

              Vanishes for K=0

'



  

Conclusions

Conclusions

  Explicit demonstration of non-Abelian statistics (better numerics desirable)

  The calculation discriminates between Ising and SU(2)2  

  The transport protocol experimentally realistic given sufficient site addressability

  Could be applied to other models

  Interesting to study robustness of the holonomy under perturbations 

New J. Phys. 11 (2009) 093027
Ann. Phys. 323, 9 (2008)
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