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challenge: understand quantum phases of strongly 
repelling lattice fermions at intermediate densities

Motivation

???

Mott insulatorFermi liquid



Supersymmetric model for lattice fermions

name of the game: 

• lattice models for spin-less fermions 

tuned to be supersymmetric

key features:

• susy implies delicate balance between kinetic 

and potential terms, leading to  interesting 

ground state structure

• analytic control due to such tools as the Witten 

index and cohomology techniques 



Supersymmetric model for lattice fermions

characteristics: 

• quantum criticality in 1D 

(N=2 superconformal FT)

• superfrustration in 2D

(extensive ground state entropy)

• supertopological phases in 2D
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Supersymmetric QM: algebraic structure

Q]Q,[,0)(Q,0)(Q 22
fN

Hamiltonian defined as

0],[,0]Q,[]Q,[ fNHHH

susy charges Q+, Q=(Q+)+ and fermion number Nf :

H Q ,Q
satisfies



Spectrum of supersymmetric QM

• E  0  for all states

• E > 0 states are paired into doublets of the susy algebra

• E = 0 iff a state is a singlet under the susy algebra

• if E = 0 ground state exist, supersymmetry is unbroken.

| ,Q | , Q | 0

Q | Q | 0



Witten index

• E>0 doublets                              

with Nf = f, Nf = f+1 cancel in W

• only E=0 groundstates contribute

|W| is lower bound on # of ground states

W Tr( 1)
N f

[Witten 1982]
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Susy lattice model

configurations: 
lattice fermions with nearest 
neighbor exclusion 
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Susy lattice model

configurations: 
lattice fermions with nearest 
neighbor exclusion 

)(QQ,)1(Q
i

ii nc

H Q ,Q H kin H pot

Hamiltonian: kinetic (hopping) plus potential terms 

nilpotent supercharges, respecting exclusion rule:

iii ccn

[Fendley - Schoutens - de Boer  2003]



Susy model in 1D

Hamiltonian:

)(QQ,)1()1(Q 11
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supercharges
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L=6model: Witten index 

Nf  = 0:   1  state

Nf  = 1 :   6  states

Nf  = 2:   9  states

Nf  = 3:   2  states

 W = 1 – 6 + 9 – 2 = 2

W Tr( 1)
N f



Spectrum for L=6 sites

Nf

E

susy doublets

2 susy groundstates



Cohomology technique

Lemma

Susy ground states are in 1-1 correspondence with 
the cohomology

of Q+ in the complex

...
Q

HN f

Q
HN f 1

Q
...



Cohomology technique

Spectral sequence technique for evaluating the 

cohomology:

• decompose: Q+ = Q+
A + Q+

B ,

• first evaluate the cohomology HB of Q+
B ,

• next evaluate the cohomology HA(HB) of Q+
A

A tic-tac-toe lemma relates HA(HB) to the full 

cohomology HQ . In general, HQ HA(HB). 
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Quantum critical behavior 1D

• periodic chain: 
2 gs for L multiple of 3, else 1 gs

• ground states at filling: 

• exactly solvable via Bethe Ansatz

• continuum limit:N=2 SCFT with central charge c=1



N=2 SCFT description for the chain

• finite size spectrum built from vertex operators

and Virasoro generators

• lattice model parameters E, P and Nf related to 

conformal dimensions hL,R and U(1) charges qL,R.

In particular

Vm,n , ( 1)
m 2n 1, hL,R

3

8
(m

2

3
n)2

L k ,L , L k,R

E hL hR
c

12



Spectrum for 1D chain, L=27, Nf=9
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V0,1/2 V0,-1/2



Spectrum for 1D chain, L=27, Nf=9

V0,1/2 V0,-1/2 L-1,L

L-1,LL-1,R

L-2,R



Spectrum for 1D chain, L=27, Nf=9

V0,1/2 V0,-1/2 L-1,L

L-1,L

L-2,R

V0,5/2
V0,-5/2

V0,+/-3/2
L-1,R
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Triangular lattice: Witten index 

[van Eerten 2005]

N M sites with periodic BC

`superfrustration’



Hexagonal lattice: Witten index 

N M sites with periodic BC

[van Eerten 2005]



Martini lattice 

• extensive number of susy ground  states, all at 
filling ¼ (one fermion per triangle)

• susy gs 1-1 with dimer coverings of hexagonal lattice

• exact result for ground state entropy

...16153.0]cos2ln[
1

3/

0

gs
d

N

S

[Fendley - Schoutens  2005]



Triangular lattice: ground states 

Two results

• ground states exist in range of filling fractions 

• upper bound to the number of gs on M N sites

Open problems

• ground state entropy in thermodynamic limit?

• nature of these ground states?

5

1

7

1

MN

N f

[Engström 2007]

[Jonsson 2005]
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Square lattice: Witten index 

N M sites with periodic BC

[Fendley - Schoutens - van Eerten 2005]



periodicities

Witten index related to rhombus 
tilings of the lattice

Theorem [Jonsson 2005]

with , ,

u,v

Square lattice: Witten index 



periodicities

number of gs related to rhombus 
tilings of the lattice, with Nf = Nt

Theorem [Fendley, LH - Schoutens 2009]

with , ,

u,v
Square lattice: ground states 



Square lattice: ground states 

Example: square lattice 6x6 

u (6,0), v (0,6)

• 18 tilings with Nt=8

• correction term equals -4

14 groundstates with Nf=8, filling 2/9



Square lattice: ground states 

 # gs grows exponentially with the linear size of the system

 zero energy ground states found at intermediate filling: 
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Square lattice: edge states 

• for `diagonal’ open boundary 

conditions there is a unique gs; 

expect that `vanished’ torus 

gs’s form band of edge modes

• explicit evidence for critical

modes from ED studies of

various ladder geometries

[LH - Halverson - Fendley - Schoutens  2008]



Octagon-square lattice

• N M plaquettes with open bc : unique gs with one 
fermion per plaquette: `filled Landau level’ 

• N M plaquettes with closed bc: 2M+2N-1 gs 

• gapless defects that interact through `Dirac strings’

• …

`supertopological phase’



Single plaquette

plaquette
(1 gs)



Single plaquette

H-defect
(2 gs)

plaquette
(1 gs)



Single plaquette

V-defect
(2 gs)

H-defect
(2 gs)

plaquette
(1 gs)



Single plaquette

HV-defect
(3 gs)

V-defect
(2 gs)

H-defect
(2 gs)

plaquette
(1 gs)



1D plaquette chain (open)

open bc



1D plaquette chain (open)

open bc
(1 gs)



1D plaquette chain (closed)

closed bc



1D plaquette chain (closed)

closed bc
(2 gs)

[ Maps to staggered 1D chain ]



1D plaquette chain (H-defect)

H-defect



1D plaquette chain (H-defect)

H-defect
(2 gs)



1D plaquette chain (V-defect)

V-defect



1D plaquette chain (V-defect)

V-defect
(2 gs)



2D lattice (open)

open bc
(1 gs)

“filled
Landau
level”



2D lattice (closed)

closed bc
(2M+2N-1 gs)



2D lattice (closed)

closed bc
(2M+2N-1 gs)



2D lattice (closed)

closed bc
(2M+2N-1 gs)



2D lattice (H-defect)

H-defect
(2 gs)



2D lattice (V-defect)

V-defect
(2 gs)



2D lattice (2 defects)

H-defect
plus
V-defect
(4 gs)

(I)



2D lattice (2 defects)

H-defect
plus
V-defect
(4 gs)

(II)



2D lattice (2 defects)

H-defect
plus
V-defect
(4 gs)

(III)



Supertopological phase?

need to understand

- gap above torus gs?

- edge modes for open system?

- topological interactions and braiding 

of H, V and HV defects?

- … 



Supersymmetric model for lattice fermions

1D: superconformal criticality

E

πππ P

V0,1/2 V0,-1/2

V0,0

V0,-1

2D: superfrustration

2D: supertopological phases
...16153.0]cos2ln[
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Thank you



Boundary twist: spectral flow

wave function picks up a phase exp(2πια)

as a particle hops over a “boundary”

twist: α: 0 1/2

“pbc        apbc”   =  “R       NS sector”

in SCFT: twist operator: V0,α

energy is parabolic function of twist parameter



Spectral flow for 1D chain, L=27 , Nf=9

α: 0, …, 1/2

ππππ Momentum



Spectral flow for 1D chain, L=27 , Nf=9

α: 0, …, 1/2

ππππ Momentum



What can we learn from spectral flow?

• 3 fit parameters

• 4 unknowns:

E, Q0, c and vF

• → ratios

• for 1D chain we extract: 

E

πππ P

V0,1/2 V0,-1/2

V0,0

V0,-1

sector E/c Q0/c c*vF

R 0 -0.334 3.92

NS -0.083 0 3.92

R 0 0.342 3.89

NS 0.254 0.675 3.89

state E Q0

V0,1/2 0 -1/3

V0,0 -1/12 0

V0,-1/2 0 1/3

V0,-1 1/4 2/3

numerics SCFT



Edge modes (heuristic argument)

• plane: #gs = 1

• cylinder: #gs ~ 2M

• torus : #gs ~ 2M+N

M

M

N



• square ladder

(2,0)x(0,L)

• zigzag ladder

(2,1)x(0,L)

GS for

• (3,3)x(0,L)

fermions can hop 
past each other

L

L

(0,L)

(3,3)

Spectral flow for the square lattice

file:\\l=0:\ (-1\12,0)&,&\ l=k\2:\ (1\12, 1\3),\ l=k:\ (1\4, 2\3)\nonumber
file:\\l=0:\ (-1\12,0)&,&\ l=k\2:\ (1\12, 1\3),\ l=k:\ (1\4, 2\3)\nonumber
file:\\l=0:\ (-1\12,0)&,&\ l=k\2:\ (1\12, 1\3),\ l=k:\ (1\4, 2\3)\nonumber
file:\\l=0:\ (-1\12,0)&,&\ l=k\2:\ (1\12, 1\3),\ l=k:\ (1\4, 2\3)\nonumber
file:\\l=0:\ (-1\12,0)&,&\ l=k\2:\ (1\12, 1\3),\ l=k:\ (1\4, 2\3)\nonumber


Spectral flow results (3,3)x(0,11), Nf=8



Spectral flow results



Spectral flow results

minimal models in SCFT:


