
Jack wavefunctions and W theories

Benoit Estienne
joint work with Raoul Santachiara

LPTHE
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CFT, Jacks and trial wavefunctions in the fractional
quantum Hall effect

In the lowest Landau level, wavefunctions are analytic

Model wavefunctions can be constructed using Conformal field theory

Parafermions and the Read-Rezayi states

Ground state wavefunctions are polynomials satisfying specific clustering
properties: they vanish as a cluster of k + 1 particles come together

⇒ Jack polynomials with generalized clustering properties: they
vanish with power r as a cluster of k + 1 particles come together

Jack wavefunction

Connection with CFT: these Jacks are described as correlators of certain
CFTs called W theories (Estienne, Santchiara, arXiv:0906.1969)
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Relating Jack wavefunctions and CFT correlation functions

Jack polynomials

Jαλ (z1, · · · , zN)

eigenvector of the
Calogero-Sutherland
Hamiltonian

Correlation functions

〈Ψ(z1)Ψ(z2) . . .Ψ(zN)〉
Ψ has degenerate descendants
⇒ correlation functions satisfy
a PDE

Link between these objects

They both satisfy the same Partial Differential Equation !
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Symmetric Polynomials

Monomial basis {mλ}
The monomial function mλ is a symmetric polynomial in n variables
{zi , i = 1, . . . , n} :

mλ({zi}) = S(
n∏

i=1

zλi
i )

Partitions λ = (λ1, . . . , λN)

λi are positive integers

λi > λi+1

For λ = (4, 4, 2, 1, 1) :

mλ = S (z4
1 z4

2 z2
3 z4z5

)

where the S stands for the symmetrization over the N variables, the
expansion of a Jack over the mλ basis takes the form :

Jαλ = mλ +
∑
µ<λ

uλµ(α)mµ. (1)
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Jack Polynomials Jαλ (z1, · · · , zN)

symmetric and homogeneous polynomials of N variables

indexed by partitions λ = (λ1, λ2, . . . , λN)

depend rationally on a parameter α : the expansion over the mλ basis
takes the form

Jαλ = mλ +
∑
µ<λ

uλµ(α)mµ.

The Jacks Jαλ are eigenfunctions of the Calogero-Sutherland
Hamiltonian :

HCS(α) =
N∑

i=1

(zi∂i )
2 +

1

α

∑
i<j

zi + zj

zi − zj
(zi∂i − zj∂j )
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Jacks wavefunction

(k , r) admissible partitions

λi − λi+k ≥ r

Jack Polynomials with (k , r) clustering properties

for the special value α = −(k + 1)/(r − 1)

and for a (k, r) admissible partition λ

[Feigin et al (2001) ]

These Jacks are well defined.

They have generalized clustering properties : they vanish as r powers
when k + 1 particles come to the same point.
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Jack Polynomials at α = −(k + 1)/(r − 1)

r

k

Densest (k , r) admissible partitions

The root partition for the wavefunction
with the highest density is given by the
occupation numbers

λ = [k 00 . . . 0︸ ︷︷ ︸
r−1

k 00 . . . 0︸ ︷︷ ︸
r−1

k . . . ]

Trial wavefunctions generalizing the Read-Rezayi states

These Jacks have been considered as trial many-body wavefunctions for
non-Ablian FQH states [ Bernevig and Haldane (2007)]

at (bosonic) filling fraction ν = k/r

r = 2 boils down to the Read-Rezayi Zk state

conjectured to be connected to W conformal field theories
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Conformal field theories as wavefunctions generators

To describe a N particles quantum Hall ground state, a polynomial
PN({zi}) has to be a SU(2) spin singlet :

L−PN =
∑

i ∂iPN({zi}) = 0

LzPN =
∑

i

(
zi∂i − Nφ

2

)
PN({zi}) = 0

L+PN =
∑

i

(−z2
i ∂i + ziNφ

)
PN({zi}) = 0

All these properties are automatically ensured by global conformal
invariance for single channel correlators :

〈Φ(z1) . . .Φ(zN)〉
∏
i<j

(zi − zj )
γ

Benoit Estienne (LPTHE) Jack wavefunctions andW theories 08/20/2009 9 / 33



Conformal field theories as wavefunctions generators

To describe a N particles quantum Hall ground state, a polynomial
PN({zi}) has to be a SU(2) spin singlet :

L−PN =
∑

i ∂iPN({zi}) = 0

LzPN =
∑

i

(
zi∂i − Nφ

2

)
PN({zi}) = 0

L+PN =
∑

i

(−z2
i ∂i + ziNφ

)
PN({zi}) = 0

All these properties are automatically ensured by global conformal
invariance for single channel correlators :

〈Φ(z1) . . .Φ(zN)〉
∏
i<j

(zi − zj )
γ

Benoit Estienne (LPTHE) Jack wavefunctions andW theories 08/20/2009 9 / 33



Conformal field theories as wavefunctions generators

To describe a N particles quantum Hall ground state, a polynomial
PN({zi}) has to be a SU(2) spin singlet :

L−PN =
∑

i ∂iPN({zi}) = 0

LzPN =
∑

i

(
zi∂i − Nφ

2

)
PN({zi}) = 0

L+PN =
∑

i

(−z2
i ∂i + ziNφ

)
PN({zi}) = 0

All these properties are automatically ensured by global conformal
invariance for single channel correlators :

〈Φ(z1) . . .Φ(zN)〉
∏
i<j

(zi − zj )
γ

Benoit Estienne (LPTHE) Jack wavefunctions andW theories 08/20/2009 9 / 33



Parafermionic chiral algebra
• additional Zk symmetry encoded in the fusion rules of a set of chiral
operators Ψq(z) :

[Ψn]× [Ψm] = [Ψn+m]

consistency (bootstrap) fixes the conformal dimensions :

∆n =
r

2

n(k − n)

k

• r ≥ 2 is an integer :

r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)]
⇒ Read-Rezayi states

r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)]
⇒ Gaffnian

r = 4 : second parafermionic serie [Dotsenko, Jacobsen,
Santachiara (2003)]
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Parafermionic correlators and clustering properties

Parafermionic correlators

Let’s consider a parafermionic CFT Z(r)
k . The following function is a

symmetric polynomial

P
(k,r)
N ({zi}) =̂ 〈Ψ(z1) . . .Ψ(zN)〉

∏
i<j

(zi − zj )
2∆1−∆2

= 〈Ψ(z1) . . .Ψ(zN)〉
∏
i<j

(zi − zj )
r/k .

and is a SU(2) singlet.

Clustering properties

More interestingly, this polynomial vanishes as r powers when k + 1
particles come to the same point !
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WAk−1 conformal field theories : some basic properties

Extended conformal symmetry

These theories have first been introduced in the case k = 3 by Fateev
and Zamolodchikov (1987) : the so-called W3 theory

generalized to any k by Fateev and Lykyanov (1988)

they are the prototype of CFT with extended symmetries : in addition
to the stress-energy tensor T (z), the chiral algebra contains k − 2
currents W (s)(z) of integer spin s = 3, . . . , k − 1.

Minimal models

For a discrete serie of values of the central charge, these CFT are minimal.
The central charge of the WAk−1(p, p′) models is:

c(p, p′) = (k − 1)

(
1− k(k + 1)(p − p′)2

pp′

)
p and p′ are coprimes, and these models are unitary for p′ = p + 1.
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WA1 theories : minimal models of Virasoro algebra

Virasoro algebra

The conformal symmetry is encoded in a single current : the stress-enery
tensor T (z). Its mode obey the celebrated Virasoro algebra :

[Ln, Lm] = (n −m)Ln+m +
c

12
n(n2 − 1)δn+m,0

Primary fields

Primary fields are anihilated by all positive modes Ln :

T (z)Φ∆(0) =
∆

z2
Φ∆(0) +

1

z
∂Φ∆(0) + O(1)
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Minimal models of Virasoro algebra WA1(p, p′)

central charge

c = 1− 6(p − p′)2

pp′

finite number of primary fields Φ(n|n′) labeled by the Kac table :

1 ≤ n ≤ p′ − 1

1 ≤ n′ ≤ p − 1

with conformal dimension

∆(n,n′) =
(np − n′p′)2 − (p − p′)2

4pp′
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WA1(3, 2 + r) theories and parafermions

λ

Φ(1|2) × Φ(n|n′)

Φ(n|n′+1)

Φ(n|n′−1)

Fermionic field Φ(1|2)

In the theory WA1(3, 2 + r) the field Ψ = Φ(1|2) obey the fusion rules :

Ψ×Ψ = I

and its conformal dimension is ∆(1|2) = r
4

⇒ This is a particular realization of a Z(r)
2 parafermionic field theory
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Null vector at level 2 for the field Ψ = Φ(1|2)

The following field

χ2 =

(
L−2 − 3

r + 2
L2
−1

)
Ψ

This degeneracy translates into a PDE for correlators:

∂2〈Ψ(z)Φ1(w1)Φ2(w2) · · · 〉 =
r + 2

3
〈L−2Ψ(z)Φ1(w1)Φ2(w2) · · · 〉

Virasoro modes have a geometric interpretation

〈(L−2Φ(z))Φ1(w1)Φ2(w2) · · · 〉 =
∑

j

D̂j〈Φ(z)Φ1(w1)Φ2(w2) · · · 〉

where Dj are differential operators acting on the j th field:

D̂j =
1

(z − wj )2
∆j +

1

(z − wj )
∂wj
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WA1(3, 2 + r) theories and PDE

Null vector at level 2

N∑
i=1

z2
i ∂

2
i 〈Ψ(z1)Ψ(z2) · · ·Ψ(zN)〉 =

r + 2

3

N∑
i=1

z2
i L

(i)
−2〈Ψ(z1)Ψ(z2) · · ·Ψ(zN)〉

translates into the following PDE :

HWA1(r)〈Ψ(z1)Ψ(z2) · · ·Ψ(zN)〉 = 0

HWA1 is a differential operator of order 2:

∑
i

(zi∂i )
2 + γ1(r)

∑
i 6=j

z2
j

(zj − zi )2
+ γ2(r)

∑
i 6=j

zizj (∂j − ∂i )

(zj − zi )
+ Nγ3(r)

γ1 = − r(r + 2)

12
, γ2 =

r + 2

6
et γ3 = − r(r − 1)

12
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HWA1(r)〈Ψ(z1)Ψ(z2) · · ·Ψ(zN)〉 = 0

HWA1 is a differential operator of order 2:

∑
i

(zi∂i )
2 + γ1(r)

∑
i 6=j

z2
j

(zj − zi )2
+ γ2(r)

∑
i 6=j

zizj (∂j − ∂i )

(zj − zi )
+ Nγ3(r)

γ1 = − r(r + 2)

12
, γ2 =

r + 2

6
et γ3 = − r(r − 1)

12
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WA1(3, 2 + r) theories and Jacks [Cardy (2004)]

Jack polynomial

By restauring the charge part, we consider the following polynomial
wavefunction :

PN=̂〈Ψ(z1) . . .Ψ(zN)〉
∏
i<j

(zi − zj )
r/2 .

⇒ It is an eigenvalue of the Calogero-Sutherland Hamiltonian for
α = −2+1

r−1 , corresponding to the densest (2, r) admissible partition !

This proves the following relation :

〈Ψ(z1) . . .Ψ(zN)〉
∏
i<j

(zi − zj )
r/2 . = J

−3/(r−1)
[20r−120r−1···2]
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WA2 algebra

The algebra is generated by two currents T (z) and W (z) :

[Ln, Lm] = (n −m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln,Wm] = (2n −m) Wn+m

[Wn,Wm] =
16

22 + 5c
(n −m)Λn+m +

c

360
n(n2 − 1)(n2 − 4)δn+m,0

+ (n −m)

[
(n + m + 2)(n + m + 3)

15
− (n + 2)(m + 2)

6

]
Ln+m

Primary fields Φ∆,ω

T (z)Φ∆,ω(0) =
∆Φ(0)

z2
+
∂Φ(0)

z
+ . . .

W (z)Φ∆,ω(0) =
ωΦ(0)

z3
+

W−1Φ(0)

z2
+

W−2Φ(0)

z
+ . . .
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WA2(p, p′) minimal models

central charge

c = 2

(
1− 12(p − p′)2

pp′

)
finite number of primary fields Φ(n1,n2|n′1,n′2) labeled by the Kac table :

n1 + n2 ≤ p′ − 1

n′1 + n′2 ≤ p − 1

with conformal dimension

∆(n1,n2|n′1,n′2) =
(~np − ~n′p′)2 − ~ρ2(p − p′)2

2pp′
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WA2(4, 3 + r) CFT : parafermionic Z(r)
3 theories

λ

Φ(11|21) × Φ(n1,n2|n′1,n′2)

Φ(n1,n2|n′1+1,n′2)

Φ(n1,n2|n′1−1,n′2+1)

Φ(n1,n2|n′1,n′2−1)
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WA2(4, 3 + r) CFT : parafermionic Z(r)
3 theories
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Φ(1,1|2,0)
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Φ(1,1|2,2)

Φ(1,1|0,3)

Φ(1,1|1,1)
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Φ(1,1|1,3)

Φ(1,1|2,1)
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WA2(4, 3 + r) CFT : parafermionic Z(r)
3 theories

Parafermionic fields Ψ = Φ(1,1|2,1) and Ψ† = Φ(1,1|1,2)

In the theory WA2(4, 3 + r) the field Ψ = Φ(1|2) obey the fusion rules :

Ψ ×Ψ = Ψ†

Ψ ×Ψ† = I
Ψ† ×Ψ† = Ψ

and their conformal dimension is ∆(1,1|2,1) = ∆(1,1|1,2) = r
3

⇒ This is a particular realization of a Z(r)
3 parafermionic field theory
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Null vectors... but !

Null vectors at level 1 and 2 for the field Ψ = Φ(1,1|2,1)

The parafermionic field admits the following null vectors :(
W−1 − 3ω

2∆
L−1

)
Ψ = 0(

W−2 − 12ω

∆(5∆ + 1)
L2
−1 −

6ω(∆ + 1)

∆(5∆ + 1)
L−2

)
Ψ = 0

But !

No geometrical interpretation of the modes Wn ...

How to get rid of these modes ?

Using the asymptotic behavior of the current W (z)
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Asymptotic behavior of W (z)

W (z) =
∑

n

Wn

zn+3
and W (z)

z→∞∼ 1

z6

Correlation functions of the form 〈W (z)Φ1(z1) · · ·ΦN(zN)〉 can be
expanded into :

〈W (z)Φ1(z1) · · ·ΦN(zN)〉 =
N∑

j=1

(
ωj

(z − zj )3
+

W
(j)
−1

(z − zj )2
+

W
(j)
−2

(z − zj )

)
〈Φ1(z1) · · ·ΦN(zN)〉

By comparing this expansion and the asymptotic behavior of the current
W (z) we get five relations, including :

N∑
j=1

(
z2

j W
(j)
−2 + 2zjW

(j)
−1 + ωj

)
〈Φ1(z1)Φ2(z2) · · ·ΦN(zN)〉 = 0
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Partial differential equation

Plugging the null vectors

W−1Ψ = 3ω
2∆L−1Ψ

W−2Ψ =
(

12ω
∆(5∆+1)L

2
−1 + 6ω(∆+1)

∆(5∆+1)L−2

)
Ψ

into the equation

N∑
j=1

z2
j W

(j)
−2︸︷︷︸+2zj W

(j)
−1︸︷︷︸+ωj

 〈Ψ(z1)Ψ(z2) · · ·Ψ(zN)〉 = 0

⇒ We are left with Virasoro modes only !

and we get a partial differential equation for 〈Ψ(z1)Ψ(z2) · · ·Ψ(zN)〉
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PDE

HWA2(r)〈Ψ(z1)Ψ(z2) · · ·Ψ(zN)〉 = 0

où HWA2 is a differential operator of order 2.

Restauring the charge part, this PDE becomes an eigenvector equation for
the Calogero-Sutherland Hamiltonian for α = −3+1

r−1 , corresponding to the
densest (3, r) admissible partition !

This proves the conjecture for k = 3:

〈Ψ(z1) . . .Ψ(zN)〉
∏
i<j

(zi − zj )
r/2 . = J

−4/(r−1)
[30r−130r−1···3]
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WAk−1 theories

WAk−1 algebra

The algebra is generated by k − 1 currents W (s)(z) :
⇒ Commutation relations are rather untractable

Huge number of descendants

Level n Number of fields p(n) Descendants

0 1 Φ

1 k − 1 W
(2)
−1 Φ, W

(3)
−1 Φ,. . . W

(k)
−1 Φ

2 (k − 1)(k + 2)/2 W
(i)
−2Φ, W

(i)
−1W

(j)
−1Φ

Generating function :

Φk (x) =

(
1

ϕ(x)

)k−1

=
∞∏

n=1

(
1

1− xn

)k−1

=
∞∑

n=0

p(n)xn
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Parafermionic fields in WAk−1(k + 1, k + r) theories

Parafermions

The WAk−1(k + 1, k + r) theories are a special case of Z(r)
k parafermionic

theories, with :

Ψ1 = Φ(1,1,...,1|2,1,...1)

Ψk−1 = Φ(1,1,...,1|1,1,...2)

Null vectors

In order to derive a Calogero-Sutherland type PDE, it is sufficient to show
that these parafermionic field have null vectors of the form:(

W
(3)
−1 + βL−1

)
Ψ = 0(

W
(3)
−2 + µL2

−1 + νL−2

)
Ψ = 0
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Characters

χ(λ|µ)(x) = Φk (x)
∑

w∈Ŵ

ε(w)x∆(w(λ)|µ)

counts the number of descendants of the primary field Φ(λ|µ)

For the field Φ(1,1,...,1|2,1,...1)

The parafermionic field Ψ = Φ(1,1,...,1|2,1,...1) has :

only has one state at level one: L−1Ψ

two independent states at level two: L2
−1Ψ and L−2Ψ

This ensures the existence of null vectors of the desired form(
W

(3)
−1 + βL−1

)
Ψ = 0

(
W

(3)
−2 + µL2

−1 + νL−2

)
Ψ = 0
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Partial differential equation in the general case (k , r)

PDE for parafermionic correlators

HWAk−1(r)〈Ψ(z1)Ψ(z2) · · ·Ψ(zN)〉 = 0

where HWAk−1 is a differential operator of order 2:

∑
j

(zj∂j )
2 + γ1

∑
i 6=j

z2
j

(zj − zi )2
+ γ2

∑
i 6=j

zizj (∂j − ∂i )

(zj − zi )
+ Nγ3

with

γ1(k, r) = − r(rk − r + k2 − k)

k2(k + 1)
,

γ2(k, r) =
r + k

k(k + 1)
,

γ3(k, r) = − r(k − 1)(2rk − k − 2r)

6k2
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Polynomial

The polynomial P
(k,r)
N defined as :

P
(k,r)
N = 〈Ψ(z1)Ψ(z2) · · ·Ψ(zN)〉

∏
i<j

(zi − zj )
r
k

is an eigenvector of the Calogero-Sutherland Hamiltonian, with the
eigenvalue corresponding to the parameters :

α = −k + 1

r − 1

λ = [k 00 . . . 0︸ ︷︷ ︸
r−1

k 00 . . . 0︸ ︷︷ ︸
r−1

k . . . ]

⇒ It is the conjectured Jack polynomial !
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Conclusion

By using the Ward identities associated to the spin 3 curent W (3)(z)
and the degeneracy properties of the Ψ1 and Ψk−1 representations,
we showed that their N−points correlation functions satisfy a second
order differential equation.

This equation can be transformed into a Calogero Hamiltonian with
negative rational coupling α = −(k + 1)/(r − 1).

⇒ this proves that the N−points correlation functions of Ψ can be written
in term of a single Jack polynomial.

This relation between Jacks and W theories is an interesting result for
W conformal field theories, since computing correlation function of
these higher spin symmetry CFTs is usually an hard problem.
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Perspectives

Wavefunctions with quasiholes are related to the follwing correlators:

〈σ(w1) · · ·σ(wM)Ψ(z1) · · ·Ψ(zN)〉

These correlators also obey a partial differential equation

This could have some interesting applications, even for the Read-Rezayi
states !

Coulomb gas techniques associated with these CFTs :
→ integral representation of these Jacks
→ integral representation of the conformal blocks for quasihole
wavefunctions
This is interesting to investigate the properties of the quasihole
excitations, and to get information beyond their braiding properties
and the dimension of the Hilbert space.
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