Strongly Correlated Ultracold

 Quantum GasesThomas Busch Physics Department
science foundation ireland fondúireacht eolaíochta éireann
embarkinitiative \otimes

Invesing in People and deas

University College Cork

Ultracold Quantum Gases

Quantifying entanglement in strongly correlated quantum gases

Non-classical light sources in degenerate Fermi gases

Single particle engineering using adiabatic methods

Long-lived vortex flux qubits in superfluid BECs

Sub-micron fibres in optical lattices for global access quantum computing

Dr. Thomas Busch

John Goold

Suzanne McEndoo

Brian O'Sullivan

Tara Hennessy

Motivation

New states of matter:

2004 - Fermionic Condensates

2004 - Tonks Gas

Outline

1. Introduction into cold atoms

Brief
2. When Bosons and Fermions become alike:

Tonks-Giradeau gas
3. Interesting Dynamics:

Tonks-Girardeau gas in a double well
4. Applications in Quantum Information:

Entanglement of modes
5. Experimental Systems:

Atom-Ion Gases

Trapping

Magneto Optical Trap

$a_{0}=\sqrt{\frac{\hbar}{m \omega}} \sim \mu m$

Optical Lattices

$$
a_{0} \approx \frac{\lambda}{2} \sim n m
$$

effectively lower dimensional system

Quantum Statistics

Bosons (integer spin):

Bose-condensation in three dimensions is very well described by mean field theory using the NLSE.
\longrightarrow due to the interparticle interaction these systems are non-linear

Fermions (half-integer spin):

Two fermions do not have s-wave scattering due to symmetry reasons and at low temperature higher order amplitudes become very small
\longrightarrow systems can be described as ideal gases

One-dimensional Systems (Bosons only)

High Density Limit:
Non-linear Schrödinger Equation can be exactly solved for $V(x)=0$

$$
E \psi(x)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(x)+V(x) \psi(x)+g|\psi|^{2} \psi(x)
$$

\rightarrow Dark and bright soliton solutions

Low Density Limit:
Bosonic gas of interacting particles: Tonks gas

$$
E \Psi=\sum_{n=1}^{N}\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x_{n}^{2}}+\frac{1}{2} m \omega^{2} x_{n}^{2}\right) \Psi+\sum_{i<j} U\left(\left|x_{i}-x_{j}\right|\right) \Psi
$$

\rightarrow Bosons become indistinguishable from fermions

Bose-Fermi Mapping

1. N neutral, bosonic atoms with point-like interactions

$$
H_{0}=\sum_{j=1}^{N}-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x_{j}^{2}}+V\left(x_{1}, \ldots, x_{N}, t\right)+a \sum_{i<j}^{N} \delta\left(\left|x_{i}-x_{j}\right|\right)
$$

2. assume a $\rightarrow \infty$ and replace the interaction term by a constraint

$$
\Psi=0 \quad \text { if } \quad\left|x_{i}-x_{j}\right|=0 \quad i \neq j
$$

3. equivalent to the Pauli exclusion principle!

Solve fermionic problem and symmetrise!

Bose-Fermi Mapping

So, we need:

1. a system where the single particle eigenfunctions are known (and where they are nice!)
\longrightarrow free space, box, harmonic oscillator,...
2. a system where the Slater determinant can be calculated (analytically)
\longrightarrow probably best if eigenfunctions were polynomials

The δ-split Harmonic Oscillator

$$
H_{0}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2}+\kappa \delta(x)
$$

the odd eigenfunctions of the HO are still good eigenfunctions!
\longrightarrow the even ones have to be found

Scaling all quantities: $\quad a_{0}=\sqrt{\hbar / 2 m \omega} \quad \epsilon_{0}=\hbar \omega$ for $\kappa=0$

$$
\left(-\frac{d^{2}}{d x^{2}}+\frac{1}{4} x^{2}+\tilde{\kappa} \delta(x)+\epsilon_{n}\right) \phi_{n}(x)=0
$$

For $x>0$ this is Whittakers equation!

The δ-split Harmonic Oscillator

$x>0$

$$
\begin{aligned}
& U\left(\epsilon_{n}, x\right)=\cos \left(\frac{\pi}{4}+\frac{\pi \epsilon_{n}}{2}\right) Y_{1}-\sin \left(\frac{\pi}{4}+\frac{\pi \epsilon_{n}}{2}\right) Y_{2} \\
& Y_{1}=\frac{\Gamma\left(\frac{1}{4}-\frac{1}{2} \epsilon_{n}\right)}{\sqrt{\pi} 2^{\frac{1}{4}+\frac{1}{2} \epsilon_{n}}} e^{\frac{1}{4} x^{2}} M\left(\frac{1}{4}+\frac{1}{2} \epsilon_{n}, \frac{1}{2}, \frac{1}{2} x^{2}\right) \\
& Y_{2}=\frac{\Gamma\left(\frac{3}{4}-\frac{1}{2} \epsilon_{n}\right)}{\sqrt{\pi} 2^{-\frac{1}{4}-\frac{1}{2} \epsilon_{n}}} e^{-\frac{1}{4} x^{2}} x M\left(\frac{3}{4}+\frac{1}{2} \epsilon_{n}, \frac{3}{2}, \frac{1}{2} x^{2}\right) \\
& \quad \text { for any value of } \kappa!
\end{aligned}
$$

$x<0 \quad$ since we are looking for the even eigenfunctions

$$
\phi_{n}(x)=C U\left(\epsilon_{n},|x|\right)
$$

$\boldsymbol{x}=0 \quad$ evaluate the continuity condition:

$$
\frac{d}{d x} \phi_{n}\left(0^{+}\right)-\frac{d}{d x} \phi_{n}\left(0^{-}\right)=\tilde{\kappa} \phi_{n}(0)
$$

Ground State Eigenfunction

With increasing central potential height the magnitude at the centre of the even eigenfunctions decreases:

$111>$
same functional behaviour for all other even states

$\xrightarrow{11} \rightarrow$
for $\kappa=\infty$ even and odd states become degenerate

Eigenvalues

$$
\frac{\Gamma\left(\frac{3}{4}+\frac{1}{2} \epsilon_{n}\right)}{\Gamma\left(\frac{1}{4}+\frac{1}{2} \epsilon_{n}\right)}=-\tilde{\kappa}
$$

ODD
EVEN

Many Particles in a δ-split trap

Next: calculate the Slater determinant...

$$
\psi_{F}\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{\sqrt{N!}} \begin{gathered}
N-1, N \\
\operatorname{det} \\
n, j)=(0,1)
\end{gathered} \phi_{n}\left(x_{j}\right)
$$

Example: infinitely high barrier ($\kappa \rightarrow \infty$)

$$
\begin{array}{ll}
\psi_{n}(x)=C_{n} e^{-\frac{x^{2}}{2}} H_{n}(x) & \text { for } n \text { odd } \\
\psi_{n}(x)=C_{n+1} e^{-\frac{|x|^{2}}{2}} H_{n+1}(|x|) & \text { for } n \text { even }
\end{array}
$$

$$
C_{n}=\left(\sqrt{\pi} a_{0} 2^{n} n!\right)^{-\frac{1}{2}}
$$

Many Particles in a δ-split trap

Exact many particle wavefunction can be derived:

$$
\psi_{F}\left(x_{1}, \ldots, x_{N}\right) \propto 2^{\frac{N^{2}}{8}}\left[\prod_{j}^{N / 2} x_{j}\right] \prod_{(j, k)=(1, j+1)}^{(N / 2, N / 2)}\left(x_{j}^{2}-x_{k}^{2}\right)
$$

Because we know the ground state is real:

$$
\begin{aligned}
& \psi_{B}\left(x_{1}, \ldots, x_{N}\right)=\left|\psi_{F}\left(x_{1}, \ldots, x_{n}\right)\right| \\
& \quad \Perp \rho_{B}\left(x_{1}, \ldots, x_{n}\right)=\rho_{F}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

Bosons and fermions become indistiguishable!

$\kappa=0$

$\kappa=3$

$\kappa=\infty$

Reduced Single Particle Density Matrix

The self correlations are given by:

$$
\rho\left(x, x^{\prime}\right)=\int \psi_{B}\left(x, x_{2}, \ldots, x_{N}\right) \times \psi_{B}\left(x^{\prime}, x_{2}, \ldots, x_{n}\right) d x_{2} \ldots d x_{N}
$$

no barrier

high barrier

Coherences

low dimension \& strong interaction

Tonks gas is not Bose condensed!

change of basis by diagonalising reduced single particle density matrix

ground state occupation / coherences

Interferences

Switch all trapping potentials off:

Entanglement in Ultracold Gases

Why is this all interesting?

Cold atoms are a well suited system to do quantum information:
well isolated but also highly controllable!

Tonks gas, as an exactly solvable model, lets us calculate many of the properties of interest in quantum information

Example: Entanglement

$$
S(\rho)=-\operatorname{Tr}(\rho \ln \rho) \quad \text { von Neumann entropy }
$$

(only for a two particle system though...)

Two Particle Entanglement

Indistinguishability?

How about many particle entanglement?

Idea:

\rightarrow let two particles interact with the gas in two different regions of the trap
\Rightarrow in second quantisation the regions can be described as modes

$$
\left|\phi_{G}\right\rangle \sim|L\rangle+|R\rangle \quad \longrightarrow \quad\left|\phi_{L R}\right\rangle \sim|10\rangle+|01\rangle
$$

\Rightarrow calculate the entanglement of the state of the two sensors

Why is that interesting?
For ideal Bose gas:

Spatial Mode Entanglement

$1^{\text {st }}$ Quantisation

Single particle is in a superposition between left and right
$2^{\text {nd }}$ Quantisation

non-local particle number entanglement between modes A and B

$$
|\psi\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|1\rangle_{A}|0\rangle_{B}+|0\rangle_{A}|1\rangle_{B}\right)
$$

Spatial Mode Entanglement

Language: non-relativistic quantum field theory
\rightarrow construct mode operators

$$
\hat{\psi}_{A, B}^{\dagger}=\int_{A, B} d x g(x) \hat{\psi}^{\dagger}(x) \begin{aligned}
& \text { bosonic quantum field operator } \\
& \text { mode function }
\end{aligned} \quad \int|g(x)|^{2}=1 \quad\left[\hat{\psi}_{i}, \hat{\psi}_{j}^{\dagger}\right]=\delta_{i j}
$$

\rightarrow number of particles in the gas $\quad N=\operatorname{tr}\left[\hat{\psi}_{A}^{\dagger} \hat{\psi}_{A} \rho\right]+\operatorname{tr}\left[\hat{\psi}_{B}^{\dagger} \hat{\psi}_{B} \rho\right]$
$\rightarrow \mathrm{N}$ particle BEC split in the middle is described therefore as

$$
|\Psi\rangle=\frac{1}{\sqrt{N!}}\left(\frac{\hat{\psi}_{A}^{\dagger}}{\sqrt{2}}+\frac{\hat{\psi}_{B}^{\dagger}}{\sqrt{2}}\right)^{N}|0\rangle=\frac{1}{\sqrt{2^{N}}} \sum_{n=0}^{N} \frac{\sqrt{N!}}{\sqrt{n!(N-n)!}}|n, N-n\rangle
$$

$$
\left\lfloor\begin{array}{l:l|}
N & 0 \\
\hline
\end{array}\left|\begin{array}{l:l}
N-1 & 1 \\
& +\cdots \cdot \\
\hline
\end{array}\right| \begin{array}{l:l}
0 & N \\
\hline
\end{array}\right.
$$

Interference Detection Scheme

assume a fixed total particle number
$\|$ pure, separable state cannot show total destructive interference

Interference Detection Scheme

\rightarrow Calculate detector outcomes:

$$
\begin{aligned}
& N_{C}=\operatorname{tr}\left[\hat{\psi}_{C}^{\dagger} \hat{\psi}_{C} \rho\right]= \frac{1}{2}\left(\operatorname{tr}\left[\hat{\psi}_{A}^{\dagger} \hat{\psi}_{A} \rho\right]+\operatorname{tr}\left[\hat{\psi}_{B}^{\dagger} \hat{\psi}_{B} \rho\right]+2 \operatorname{tr}\left[\hat{\psi}_{A}^{\dagger} \hat{\psi}_{B} \rho\right]\right)=\frac{N}{2}+\epsilon_{A B} \\
& N_{D}=\operatorname{tr}\left[\hat{\psi}_{D}^{\dagger} \hat{\psi}_{D} \rho\right]= \frac{1}{2}\left(\operatorname{tr}\left[\hat{\psi}_{A}^{\dagger} \hat{\psi}_{A} \rho\right]+\operatorname{tr}\left[\hat{\psi}_{B}^{\dagger} \hat{\psi}_{B} \rho\right]-2 \operatorname{tr}\left[\hat{\psi}_{A}^{\dagger} \hat{\psi}_{B} \rho\right]\right)=\frac{N}{2}-\epsilon_{A B} \\
& \epsilon_{A B}=\int_{A} d x \int_{B} d x^{\prime} g(x) g\left(x^{\prime}\right) \rho^{(1)}\left(x, x^{\prime}\right) \\
& \text { reduced single particle density matrix }
\end{aligned}
$$

\rightarrow fully separable state: $\quad \rho_{\text {sep }}=\sum_{i} p_{i}\left|n_{i}\right\rangle\left\langle\left.{ }_{i}\right|_{A} \otimes \mid N-n_{i}\right\rangle\left\langle N-\left.n_{i}\right|_{B}\right.$

$$
\epsilon_{A B}=0
$$

\rightarrow general state (of fixed N): $\epsilon_{A B} \neq 0$
\rightarrow measure of spatial coherence \rightarrow good measure for entanglement for $\mathrm{N}=2$

Cold Boson Pair

Boson pair Hamiltonian (1D)

$$
H=\sum_{i=1}^{2}\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x_{i}^{2}}+\frac{1}{2} m \omega^{2} x_{i}^{2}\right)+g_{1 D} \delta\left(\left|x_{i}-x_{j}\right|\right)
$$

entanglement finite even at strong interactions

Cold Boson Pair

tuning the interaction parameter modifies the distribution of entanglement

Ultracold lons in Tonks Gases

Born-Oppenheimer polarization potential

$$
\rightarrow \lim _{r \rightarrow \infty} V(r)=\frac{-\alpha e^{2}}{2 r^{4}}
$$

Characteristic scales: $\quad \frac{\hbar^{2}}{2 \mu\left(R^{*}\right)^{2}}=\frac{\alpha e^{2}}{2\left(R^{*}\right)^{4}}$

$\xrightarrow{\|}$ Polarisation energy $\quad E^{*}=\frac{\hbar^{2}}{2 \mu\left(R^{*}\right)^{2}}$

Atom-Ion Hamiltonian

Consider the idealised situation where an atom and an ion sit in the same isotropic 3D harmonic trap

$$
\mathcal{H}_{i a}=\sum_{\nu=i, a}\left(-\frac{\hbar^{2}}{2 m_{\nu}} \frac{\partial^{2}}{\partial \mathbf{r}_{\nu}^{2}}+\frac{1}{2} m_{\nu} \omega_{\nu}^{2} \mathbf{r}_{\nu}^{2}\right)+V_{i n t}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{a}\right|\right)
$$

\rightarrow ramp up transverse trapping frequencies $\omega_{\perp} \gg \omega_{\|}$
\rightarrow for low energies the problems becomes one-dimensional

$$
\Psi\left(r_{i}, r_{a}\right)=\psi_{\perp}\left(\rho_{i}, \rho_{a}\right) \psi_{\|}\left(x_{i}, x_{a}\right)
$$

\rightarrow go to relative and centre of mass co-ordinates:

$$
\mathcal{H}_{\text {rel }}=-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{2} \mu \omega^{2} x^{2}-\frac{\alpha e^{2}}{2 x^{4}}
$$

Quantum Defect Theory

the interaction potential deviates from the $1 / r^{4}$ law at short distance, which diverges towards $-\infty$
\rightarrow quantum defect theory (neglect harmonic potential)

$$
\begin{array}{ll}
\left(-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial x^{2}}-\frac{\alpha e^{2}}{2 x^{4}}\right) \psi_{n}(x)=E_{n} \psi_{n}(x) \\
\psi_{n}^{e} \rightarrow|x| \sin \left(\frac{R^{*}}{|x|}+\underline{\phi_{e}}\right) & \begin{array}{l}
\text { quantum defect parameters are } \\
\text { energy independent short range } \\
\text { phases }
\end{array}
\end{array}
$$

$\rightarrow \quad$ related to s - and p-wave scattering lengths via $a_{1 D}^{e, o}=-\cot \left(\phi_{e, o}\right)$
\rightarrow not known for current systems \rightarrow numerical solution using the iterative Numerov method

Ion in Tonks Gas

$$
H=\underbrace{\sum_{n=1}^{N}\left(-\frac{d^{2}}{d x_{n}^{2}}+\xi x_{n}^{2}-\frac{1}{x_{n}^{4}}\right)+g_{1 D} \sum_{i<j} \delta\left(\left|x_{i}-x_{j}\right|\right)}_{n=1} \quad \xi=\left(\frac{R^{*}}{a_{0}}\right)^{4}
$$

Molecular Atom-Ion States?

\rightarrow access to bound states requires three body collisions
\rightarrow but, in Tonks limit the second order correlation function shows that its diagonal elements are suppressed

\rightarrow in one dimension the system has no access to the bound states!

Tonks Gas Density

\rightarrow density dip in centre, despite attractive interaction!

Experiment Innsbruck

Prof. Johannes Denschlag

Pseudo-Potential Approximation

$$
H=\sum_{n=1}^{N}\left(-\frac{d^{2}}{d x_{n}^{2}}+\xi x_{n}^{2}-\frac{1}{x_{n}^{4}}\right)+g_{1 D} \sum_{i<j} \delta\left(\left|x_{i}-x_{j}\right|\right)
$$

vs.
$H=\sum_{n=1}^{N}\left(-\frac{d^{2}}{d x_{n}^{2}}+\frac{1}{2} x_{n}^{2}+\kappa \delta(x)\right)+g_{1 D} \sum_{i<j} \delta\left(\left|x_{i}-x_{j}\right|\right)$

Conclusion

Tonks gas can be solved in a double well trap.

Mode- Entanglement properties can be calculated exactly

One-dimensional atom-ion systems can be treated in quantum defect and TG formalism

Co-workers

John Goold

PhD student

Domhnall Murphy
PhD student QUB (now Citi)

Libby Heaney Vlatko Vedral

PhD student (now Oxford)

Hauke Doerk-Bending
PhD student (now Munich) Tommaso Calarco

