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@ testing candidate wavefunctions for a
given fraction using numerical
simulations

@ overlap can be misleading. At least one
known example where two different
states have large overlaps : Abelian
(Jain CF) vs non-abelian (Gaffnian).

@ is the groundstate enough to
characterize a FQH phase?

@ new tools to probe the groundstate

@ how deep are encoded the excitations
within the groundstate ?



1. Orbital entanglement spectrum
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Orbital entanglement spectrum




Landau level
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Filling factor : v = g = N,

Cyclotron frequency : we = %
Lowest Landau level (v < 1) : z™exp (—|z[?/4/?)
N-body wave function : W = P(zy, ..., zy) exp(— > |zi|?/4)

the Hamiltonian is just the (projected) interaction !
Ho= ) V(-1
i<j

(including screening effect, finite width, Landau level,...)



The Laughlin wave function

A (very) good approximation of the ground state at v = %

|z
Vi(z1,...2n) = H(Z,' — Zj)3e_zf 4P2

i<j
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add one flux quantum at zg = one quasi-hole

\Ilqh(zl, ...ZN) = H (Zo — Z,') \UL(Zl, ...ZN)

i

yv -

@ Locally, create one quasi-hole with fractional charge ?




v =5/2 : the Moore-Read state
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1 2
Vpr(z1,.2v) = Pf (z;—zJ')H(Zi_Zj)

i<j

@ add/remove one flux quanta — create a pair of quasi-holes
/quasi-electrons (+e/4)
@ non Abelian statistics !



Entanglement entropy for the FQHE

@ look at the ground state |W)
@ cut the system into two parts A and B in orbital space (~~ real
space, orbital partition)

e reduced density matrix pa = Trg |V) (V], block-diagonal wrt
NA and L2
@ compute the entanglement entropy Sa = —Tra (palogpa).
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A | B
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Entanglement entropy for the FQHE

@ calculation directly done at the level of the Fock
decomposition

@ topological entanglement entropy : extract the v from
Sa = cL — v (Haque et al.). Only depends on the nature of
the excitations.
But : highly non-trivial

@ looking at the entanglement spectrum : plot £ = —log Aa vs
L2 for fixed cut and NA

@ Schmidt decomposition W) =3 exp(—£/2)|A, p) ® |B, p)

key idea : think about exp(—¢) as a Boltzmann weight, £ as
“energies’ of a fictious Hamiltonian for N particles



Entanglement spectrum (Li and Haldane)
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Laughlin N =13, /4 = 36 (hemisphere cut), Na =6
L2 angular momentum of A, £ = —log Aa, Aa's are pa eigenvalues.



Entanglement spectrum

@ a way to look at the Fock space decomposition

@ “banana” shaped spectrum for pure CFT state (not only Jack
polynomials) with a given maximum L7

@ “low energy” part : a signature of the state (edge mode

degeneracy).
o example Laughlin (1,1,2) : W;, W, x Y.z, W x 3. z% and
v, x ZI<J ZiZj
A A
I—Z max LZmax -1

Probing physics of the edge from the ground state on a closed
surface



Coulomb case and entanglement gap
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Entanglement spectrum for the FQHE : some results

@ probing non abelian statistics (Li, Haldane 2008)
@ looking at (precursor of ) phase transition through closing
entanglement gap (Zozulya, Haque, NR, 2009)

o differentiate states with large overlap but different excitations
(from the ground state only!) (NR, Bernervig, Haldane
2009)

@ non-trivial relation between ES and edge mode (Bernervig,
NR 2009)

@ when N — oo recover degenerate multiplets and linear
(relativistic) dispersion relation for the edge mode (Thomale,
Stedyniak, NR, Bernervig 2010)

@ torus geometry, tower of edge modes (Lauchli et al. 2010)



Entanglement spectrum : beyond FQHE

quantum Hall bilayers
quantum spin systems
superconductor
topological insulators
Bose-Einstein condensates
SUSY lattice models



An application : probing statitics of excitations

Write wavefunctions for localized excitations and move them !
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In the Laughlin case (abelian excitations), the counting stays the
same (1,1,2,...)
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An application : probing statistics of excitations

In the Moore-Read case, the counting is able to detect if there is
an even or odd number of excitations.
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Conformal limit




Different geometries, similar ES

@ sphere
o cylinder
o disk

@ annulus

V=3, cuslu, cu will one differ by some geometrical factors
different eigenvalues of pa (shape of the ES) but the same
number of non-zero eigenvalues (counting)

The counting IS the important feature. For model states
(CFT) , exponentially lower than expected



Defining a “clear” entropy gap

@ entanglement gap collapses a few momenta away from the
maximum one (the system “feels” the edge)

@ remove the information coming from the geometry (~ annulus
with large radius)

e example : Coulomb v =1/2 N=11 bosons
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Defining a “clear” entropy gap

@ entanglement gap collapses a few momenta away from the
maximum one (the system “feels” the edge)

@ remove the information coming from the geometry (~ annulus
with large radius)

e example : Coulomb v =1/2 N=11 bosons
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Entanglement adiabatically continuable states

from Moore-Read state to delta ground state N=14 bosons, v =1

Ha=1=X) > 6(ri—r)d(r—n)+ Ao

i<j<k i<j

20

No gap closing despite moderate square overlap (0.887)!



What is encoded within the OES?

o focus on the Laughlin state [, _;(z; — z)™

e conjecture (numerically checked) : the full counting is given
by the Haldane statistics
@ when finite size effects are nice :

e thermodynamical limit : the counting is the same for any m
(U(1) boson)

e finite size : depends explicitly on m, give access to the boson
compactification radius

@ the entanglement gap protects the state statistical properties.



From the edge to the bulk




From orbital to particle partition

Particle entanglement entropy in FQHE (Zozulya, Haque,
Schoutens)

geometrical partition (%4 O
Ng/2

’ edge physics

removing particles while
keeping the same

geometry
~ smaller system with

particle partition extra flux quanta

probing quasihole
quasihole physics states !



Particle entanglement spectrum

@ can be extended to other geometries : here we focus on the
spehere

@ both L, and L? are good quantum numbers
o multplet structure [ — [A
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Particle entanglement spectrum

@ can be extended to other geometries : here we focus on the
sphere

o both L% and L are good quantum numbers
o multplet structure [ — [A
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Laughlin v =1/3 state N =8, Na =4



Particle entanglement spectrum

@ can be extended to other geometries : here we focus on the
sphere

@ both L, and L? are good quantum numbers
e multplet structure [A — [A

1 @ we are look at the Laughlin state
- with 4 particles and 12 quasiholes!

- @ the counting per LA sector exactly
matches the counting of quasihole
o - states

@ the eigenstates of reduced density

Laughlin v = 1/3 state N = 8, matrix also exactly match the
Ny=4 quasihole states



Particle entanglement spectrum : Coulomb interaction

Laughlin

25

Coulomb » =1/3, N = 8 and

Ny = 4

Coulomb (zoom)



Particle entanglement spectrum : Moore-Read state

candidate for v = 5/2, exhibits non-abelian excitations
the PES has the same features!
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Moore-Read state N = 12, Ng = 6 (bosons)



Particle entanglement spectrum : Moore-Read state

candidate for v = 5/2, exhibits non-abelian excitations
the PES has the same features!
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At half cut, looks like the spectrum of an incompressible state.
PES “groundstate” close to the Laughlin state...



Particle entanglement spectrum : other states

Is there anything special about the Laughlin and Moore-Read
state?

@ 1. completely defined throught an exact local Hamiltonian

@ 2. single Jack polynomials

Actually, PES features hold true for
e Haffnian state (satisfies 1 but not 2)

@ other single Jack polynomial with no known exact
Hamiltonian like the clustered state (k = 3,r = 4),...

@ the Jain's states (neither 1 nor 21)



Jain's model :
o [-@

Map FQHE into an integer quantum Hall effect for these
composite fermions.

Ny = Ng—2N
p
2p+1

More than a nice picture, we can build test wave functions!

Ver = PLiL H (zi — ‘DCF

i<j



Particle entanglement spectrum : Jain's states

How the particle partition translate into the CF picture ? What
does the PES tell us about the CF state?

o 1. start with the CF groundstate
(here v =2/5)

&#b _______ @ 2. removing two electrons —

——é— removing two CFs plus adding 4
(a) b (b) flux quanta

@ 3. for the gh excitations, do not
_____ &——— :
sort CF states with respect to
—&——%- ———— their effective kinetic energy,
(c)————— (d) —— only consider all 2 Landau level
excitations (i.e. discard d, keep
b and d).

the v = TPH CF state is inherently related to the p Landau level

physics even for the gh excitations



Probing the non-universal part of the OES




A deeper look at v =1/3
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A deeper look at v =1/3

o (b)Laughlin o (a)Coulomb
10 15 20 25 30 10 15 20— 25 30
Lz L

Laughlin v =1/3, N =38 Coulomb v =1/3, N =38

"Low energy part” of the Coulomb OES =~ Laughlin OES



A deeper look at v =1/3

» L ®Laughiin
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Coulomb v =1/3, N =38

A hierarchical substructure also appears in the non-universal part
of the Coulomb OES. Is there meaningful information here?




Understanding the true spectrum using CF

_______ ____#__
soeee so4=4

groundstate E*=0 lowest neut. exc. E*¥= h’wi

Leete PTRnS

higher neut. exc. E*=2p1w; higher neut. exc. E*=2p1w;

Effective energy hierarchy matches then one of the Coulomb
spectrum.



from Laughlin to Coulomb, using CF excitations

» L (®)Laughiin o L2t
10 15 20 25 30 10 15 20 25 30

Laughlin Laughlin + first CF correction



from Laughlin to Coulomb, using CF excitations

(d)dcf
10 15 20 25 30 o (a)Coulomb

Lz 10 15 20 25 30

Laughlin + up two second CF
& Tup . Coulomb
correction
@ non-universal part contains information about neutral

excitations.
@ the ES “energy” structure mimics the true energy structure of

the system.



Conclusions

@ numerical calculations are a powerful method to probe the
FQHE but...

@ more tools are needed to clearly identify phases
@ entanglement spectra a way to investigate this problem

@ extracting physics of the edge (orbital partition) and bulk
(particle partition) from the ground state

@ how much information is encoded within the groundstate of
these phases?



relation between OEM and PEM 7

some mathematical proofs are missing !

real space cut?

ES at finite temperature 7 relation between ES gap and true
gap

what is specific about FQHE ? What about other topological
phases ?
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