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Introduction

• Non-Abelian anyons probably exist in certain gapped 
two dimensional systems:

- Fractional Quantum Hall Effect (n=5/2, 12/5, …?)

- ruthenates, topological insulators, rapidly rotating bose 
condensates, quantum loop gases/string nets?

• They could have application in quantum computation, 
providing naturally (“topologically protected”) fault-
tolerant hardware.

• Assuming we have them at our disposal, what 
operations are necessary to implement topological 
quantum computation?



Anyon Models
(unitary braided tensor categories)

Describe quasiparticle braiding statistics in gapped two 

dimensional systems.

Finite set      of anyonic charges:
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Fusion rules:

Unique “vacuum” charge, denoted 

has trivial fusion and braiding with all particles.
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Hilbert space construct from state vectors associated with 

fusion/splitting channels of anyons.

Expressed diagrammatically:

Inner product:
'cc=



Associativity of fusing/splitting more 

than two anyons is specified by the 

unitary F-moves:
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Braiding
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Can be non-Abelian if there are multiple fusion channels  c
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Topological Quantum Computation
(Kitaev, Preskill, Freedman, Larsen, Wang)
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Ising:  === 10   ,  , cIca

Fib:  === 10   ,  , cIca

Topological Protection!
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(Bonesteel, et. al.)

Topological Quantum Computation
(Kitaev, Preskill, Freedman, Larsen, Wang)

  time

a a

Ising: not quite 
(must be supplemented)

Fib: yes!

Is braiding computationally universal?
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(Bonesteel, et. al.)

Topological Quantum Computation
(Kitaev, Preskill, Freedman, Larsen, Wang)

 Topological Charge Measurement

  time
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Topological Charge Measurement

Projective (von Neumann)

e.g. loop operator measurements in lattice 

models, energy splitting measurement
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Topological Charge Measurement

Interferometric (PB, Shtengel, Slingerland `07)
e.g. 2PC FQH, and Anyonic Mach-Zehnder (idealized, not FQH)

Asymptotically characterized as projection of the 

target‟s anyonic charge AND decoherence of anyonic 

charge entanglement between the interior and exterior 

of the target region. (more later; ignore for now)



Anyonic State Teleportation
(for projective measurement)

Entanglement Resource: maximally entangled anyon pair
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Anyonic State Teleportation
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Forced 

Measurement
(projective)
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Anyonic State Teleportation

Forced 

Measurement
(projective)
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Anyonic State Teleportation

Forced 

Measurement
(projective)
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“Success” occurs with probability            for each repeat try.2
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What good is this if we want to 

braid computational anyons?
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Use a maximally entangled pair and “forced 

measurements” for a series of teleportations
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Use a maximally entangled pair and “forced 

measurements” for a series of teleportations
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Use a maximally entangled pair and “forced 

measurements” for a series of teleportations
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Use a maximally entangled pair and “forced 

measurements” for a series of teleportations
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Measurement Simulated Braiding!
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in FQH, for example



in FQH, for example



in FQH, for example
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Topological Quantum Computation

 Topological Charge Measurement

  time
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measurement simulated braiding
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Topological Charge Measurement

Measurement-Only Topological 

Quantum Computation



Topological Charge Measurement

Interferometric (PB, Shtengel, Slingerland `07)
e.g. 2PC FQH, and Anyonic Mach-Zehnder (idealized, not FQH)

Asymptotically characterized as projection of the 

target‟s anyonic charge AND decoherence of anyonic 

charge entanglement between the interior and exterior 

of the target region.



Interferometrical Decoherence 
of Anyonic Charge Entanglement
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For   a   inside the interferometer and   b   outside:
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Interferometrical Decoherence
Ising:
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Interferometrical Decoherence
Fibonacci:
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Measurement Generated Braiding!

Using Interferometric Measurements is similar but 

more complicated, requiring the density matrix 

description.

The resulting “forced measurement” procedure must 

include an additional measurement (of 8 or fewer 

anyons, i.e. still bounded size) in each teleportation 

attempt to ensure the overall charge of the topological 

qubits being acted upon remains trivial.

Note: For the Ising model TQC qubits, 

interferometric measurements are projective.



Ising         vs         Fibonacci
(in FQH)

• Braiding not universal 
(needs one gate supplement)

Dn=5/2 ~ 600 mK

• Braids  =  Natural gates          
(braiding = Clifford group)

• No leakage from braiding 
(from any gates)

• Projective MOTQC         
(2 anyon measurements)

• Measurement difficulty 

distinguishing   I  and  
(precise phase calibration)

• Braiding is universal    
(needs one gate supplement)

• Dn=12/5 ~ 70 mK

• Braids  =  Unnatural gates             
(see Bonesteel, et. al.)

• Inherent leakage errors
(from entangling gates)

• Interferometrical MOTQC         
(2,4,8 anyon measurements)

• Robust measurement 

distinguishing   I  and  
(amplitude of interference)



Conclusion

• Quantum state teleportation and entanglement 

resources have anyonic counterparts.

• Bounded, adaptive, non-demolitional 

measurements can generate the braiding 

transformations used in TQC.

• Stationary computational anyons hopefully 

makes life easier for experimental realization.

• Experimental realization of FQH double point-

contact interferometers is at hand.


