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WHY DREDGE UP THIS OLD STUFF NOW?

e QGs and HAs have continued to turn up in several
areas of physics, not least of which is condensed
matter physics...

e The Standard Model is currently being pushed to
the limit by the LHC in CERN, so the importance
of beyond-the-SM physics can only increase in the
next few years...



OUTLINE

e Review of Hopf algebras (HAs) and quantum groups
(QGs): definitions and notation

e Recasting familiar “classical” ideas in the language
of HAs and QGs: Lie algebras and gauge theories

e Construction of a toy S U4(2) gauge theory as a
deformed version of the Standard Model (SM)

e Agreement and disagreement with undeformed SM



WHY DEFORM WHAT AIN'T BROKE? (YET)

Practicality: deformation parameters may give al-
ternate ways of — for example — introducing a cut-
off in renormalisation or a lattice size.

New physics: special relativity and quantum me-
chanics are deformed versions of Newtonian me-
chanics (with deformation parameters ¢ and #);
who's to say there aren’t more deformed theories
out there?

Fun: why not? At the very least, it’ll be good exer-
cise in seeing how QGs and HAs might play a role
in other theories.



HOPF ALGEBRAS

[E. Abe, Hopf Algebras (Cambridge University Press, 1977)]

A HA is a unital associative algebra U over a field k
with coproduct (or comultiplication) A : U — U @ U,
counit € : YU — k and antipode S : U — U satistying

(A®1d)A(x) = (Ad®A)A(x)

A(xy) A(X)A(y)
(e®1d)A(x) = (Ad®e)A(x) = x

e(xy) = e(x)e(y)
(S QIDA(X) = -(Id®S)A(x) = le(x)

*-HA: includes involution 6 : U —» U

Hz(x) = X
O(xy) = 6(»)6(x)
(1) = 1

A(B(x)) = (0®0)(AX))

€B(x) = e(x)’
aS(B(x) = Sl

(* is the conjugation in k)



SWEEDLER NOTATION

[M. E. Sweedler, Hopf Algebras (Benjamin Press, 1969)]

A(x) is generally a sum of elements in U @ U, but sum
IS suppressed and we write

Ax) = Zxél)‘g’xéz):x(l)@x@)

1

So
(A®1d)A(x) = A <X(1)) ® X(2)

- (x(l))(l) ® (x(l))(z) ® X(2)
and

(d®AAX) = x1)®A(x))
= WD®@@XD®OOmD

Coassociativity (A ® id)A(x) = (1d®A)A(x) gives both
as

X(1) @ X(2) ® X(3)
(like (ab)c = a(bc) = abc). Similarly,

S R1DAX)=€e(x)] — S (x(l)) x2) = €(x)1
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QUASITRIANGULAR HOPF ALGEBRAS

A QHA is a HA U together with an invertible element,
the universal R-matrix, R = ro, @ r* € U ® U satisfying

(A®id)(R) = R13R23
Ad®A)R) = RixRo3
(CoA)(x) = RANR!

where o(x® y) = y ® x, and
Rip = ra®l”a/®1,

RB = I”a®1®ra,
Rz = 1Q®raxre.

R satisfies the Yang-Baxter equation (YBE)
R12R13R23 = RozRizRi2

We can construct the special element u € U via

u = (S ®id)(Rp1) = S(rM)rq
which has the following properties:
= 2852 (ry)
Sz(x) = oy !
[wSlx = x[uSu)]



EXAMPLE: A CLASSICAL LIE ALGEBRA

If g is a “classical”’ Lie algebra with generators {74},
then the universal enveloping algebra U(g) is a quasi-
triangular Hopf algebra with

A(Ty) = TAp®1+18Ty

€Ty = 0
S(Ty) = -Ty
R = 1®1

If the hermitian adjoint is defined on g, then U(g) is a
*-Hopf algebra with

6(Ty) = T,



DUAL PAIRING OF HOPF ALGEBRAS

Two HAs U and A over the same field k are dually
paired if there is a nondegenerate inner product ¢, ) :
U R A — k such that

(xy,a) = (x®y,Aa))

(La) = €(a)
(A(x),a®b) = <{(x,ab)
e(x) = (x, 1)

S(x),a) = (x,5(a))
(0(x),a)y = (x,0(S(@))"

x,yeU,abeA



REPRESENTATIONS OF HOPF ALGEBRAS

A faithful linear representation p : U — M(N, k) of a
HA can be used to dually pair U with another HA A,
generated by the N? elements {Aij}, via

o0 = (nal)
SO
pOy) = pp(y) = AWM = Al A,
p()y=1 = €A) =4,
p (S (x1) x@)) = €I = S@A) =@,
The multiplication in A is determined by the comultipli-

cation in U, but little can be said of that without more
info.

Which leads us to...
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QUANTUM GROUPS

[V. G. Drinfel’d, Proc. Int. Cong. Math., Berkeley (Berkeley, 1986)
798
S. L. Woronowicz, Commun. Math. Phys. 111 (1987) 613]

A quantum group (QG) is a HA A generated by the
elements Ai]- is dually paired with a quasitriangular HA
U by means of a representation p.

The N? x N? numerical R-matrix is the universal R-
matrix in this representation:

Rijkg = <R,Aik®Ajg>

The dual pairing between U and A gives the commu-
tation relations between the generators of ‘A as

or
RA{A> = AbA(R
The numerical version of the YBE is
R1pR13R23 = Ry3R13R1)

11



QUANTUM LIE ALGEBRAS

[D. Bernard, Prog. Theor. Phys. Suppl. 102 (1990) 49]

A (left) action of U on itself, the adjoint action, is de-
fined as

XPYy = x(l)yS (X(z))

It satisfies

(xypz = x(»z),  »(yz) = (x1)PY)(X2)>2)
x1 = e(x)1, Irx =x

When U is the UEA of a “classical”’ Lie algebra, then

TaopTp = TA-Tp-1+1-Tp-S (Ty)
= TATp—TgTp = [Ty, Tgl

SO > generalises the commutator.
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The projectors

Pi(x) = e(x)l, Pylx)=x—-—€ex)l

decompose U into k1 & Uy. U is a quantum Lie alge-
bra (QLA) if

(a) Uy is finitely generated by n elements {1, 15, ..., Ty}
(b) Up>Uy < Uy

If U is a quasitriangular HA whose universal R-matrix
depends on a parameter 4 suchthat R - 1 ® 1 as
A — 0 and there is a dually paired QG A, then U is a
QLA generated by the elements of the matrix

. 1 .
le = 71(1@1—732173,Alj®1d>

[P. Schupp, PW, B. Zumino, Lett. Math. Phys. 25 (1992) 139]

The deformation parameter ¢ is usually defined via A =
q— q_l, with g — 1 giving the “classical limit”.
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THE KILLING METRIC

There is also an invariant trace for such QLAs, defined
by

trp(x) = tr[p(u)o(x)]
such that

tro(y>x) = €e()trp(x)

which vanishes if y € Uy. This means that the Killing
form

1 y) = tp(xy)
IS invariant under the adjoint action of U:

n') (Z(l)>x,Z(z)>y) = e(@n(x,y) =0

and we may define a Uy-invariant Killing metric
1) =t (TaTp)
[PW, arXiv:g-alg/9505027]
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DEFORMED GAUGE THEORIES

Mathematically, gauge theories are described in terms
of fibre bundles...

e Fibre ¥: where the matter fields live.

e Connection I': how we move between fibres; the
gauge fields.

Structure group A: the group of transformations
on the fields.

e Base space M: the manifold on which the fields
live.

We wish to generalise the structure group to a HA, and
so the others must be generalised as well.
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THE FIBRE AND STRUCTURE GROUP

Take ¥ to be a unital associative *-algebra (with invo-
lution 7) and A a *-Hopf algebra which acts on ¥ via a
linear homomorphism L : F - A F as

Ly) = ¢V ey?
satisfying
sV oL(y@) = A(p")ey®
(V)@ = y

LF) = 0 )es
L(l) = 1®1
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THE EXTERIOR DERIVATIVES AND CONNECTION

Suppose d and ¢ are exterior derivatives on ¥ and A
respectively. The coaction of ‘A on differential forms on
¥ is given recursively by

Ldy) = sy ey® + (_1)|¢(1)/‘¢/(1)' ® dy'?
A connection is a linear map taking p-forms on A to
(p + 1)-forms on F satisfying
ra) =0
I'oa) = —-dI'(a)
LT (@) = (_1)|“(1)|+|“<3>|(|“(2)|+1)a(1)5 (a@))@r(a(z))
—6a(1)S (a(z)) ®1
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The FIELD STRENGTH AND COVARIANT
DERIVATIVE
The field strength is given by
F(@) = dr@) + (DOl (am) AT (a)
Thus,

L(F(a)) = (_1)|a(2)||a(3)|a,(1)5 (05(3)) ®F (a’(z)) :

The covariant derivative D of a p-form ¢ on F is
Dy = dy+T(y1)Ay®,
Thus,
D2y = F (lﬁ(l),) N2

and
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QUANTUM STRUCTURE GROUP

Let U4 and A be a QLA and its associated QG under a
representation p. If ¢ a form living in this rep,

L(I,bi) = Aij®lﬁj;
With I := T (A7),
L(I'j) = A4S (Aj) eI, -sA%s (AY)) o1,
and

Dy! =dy' + T Ay/ > A';@Dy/.

The field strength F!; := dI"; + Ty AT* transforms as
L(F';) = A4S (AY))e FY.

Classically, the above correspond to

Yy - Ay

I » Ara—!-saa-!
Dy — ADy

F — AFA™!
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COMMUTATION RELATIONS

The components (T4} are 1-forms given by
[(a) = T*(Tp,a)
The field strength is then
Fl@) = dTM(Ta,a) +TAANTB(TATg, a).
Classically,
TMAATBT T = %FA ATB (T4, Tg]

so that F = FAT,. Here, we require that F takes
this form, and so I'T commutation relations are deter-
mined.

Classically, the Bianchi identity DF = 0 must hold. Re-

quiring this in the deformed case as well gives I'dl" and
dI'dl' commutation relations.
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THE BASE SPACE
How we treat the base space isn’t obvious...

Noncommutative geometry?
[T. Brzezinski, S. Majid, Commun. Math. Phys. 157 (1993) 591
A. Connes, J. Lott, Nucl. Phys. Proc. Supp. 18B (1991) 89]

Sheaf theory?
[M. J. Pflaum, Commun. Math. Phys. 166 (1994) 279]

Our approach: assume the existence of a quadratic
form (| ) taking two p-forms on ¥ to k such that:

1.(ply)* = (F] 8);
2. (B ¥y > ¢y <¢(2)| w(2)> under the action of L

(not necessarily symmetric);
3. (p| ¥y — fM¢ A % in the undeformed limit.
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SUH2)

The numerical R-matrix for the g-deformed version of
SUQ)is

(g 0 0 0)
1lo1 0 0
R="a2lg 11 0
L0 0 0 ¢q)

withge Rand 1 =g —qg!
[L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtadzhyan, Leningrad
Math. J. 1 (1990) 193]

If the generators of the QG § U,4(2) are the elements of

the matrix
U - —_
—=b a

Then RU{U, = UrUR gives
ab = gba  ab = gba

bb=bb  ba = qgab

Q= Q

_ _ A -
ba=qgab aa = aa— —bb
q
with aa + bb = 1.
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The other HA operations are

A(U)

e(U)

OU) =SWU)

|
|

aRa+b®b a®b+b®a
ba+a®b bb+a®a

|

-

S QL

!

_q_lb
a

|

|



THE QLA Uy(su(2))
Generated by Ty, T+, T— and T» defined by

. Tl T.|_ _l . .
X—( T, )—/1(1(8)1 Ro1R, U ®1d)

If we define

| q2
To=T1 + —2T2, T3 =
q l+q
then the adjoint actions are

5(T1 = T2)

TapTo =0, TorTa=-112]Tq
2

T3I>T3 = —/1T3, T>T+ = iuT3,
q

TpTy = +q '\ Ty, TyT3=Fq T,
where A = 0,+,-,3, a = +,—,3 and the “quantum
number” [n] is
1 — q—2n
Or, as “commutation relations”, Ty is central and

[n] =

q$1T3Ti — qilTiT3 = % (1 - —TO) T,

T.T--T-T, = — (1 - —TO) T3+ ——T3



The generators are linearly independent, but related
quadratically by

A\ 2.2 2
1 ——T = 1+qg°A°J",
( 2] O) 1

e (¢T+T-+T_T, +[2]T3)



REPRESENTATIONS

“Trivial”:
212
bV (T)=0 ' (Tp)=""
Fundamental:
A1][3](1 0) 1 (-1 0
fn(Ty) = == |=||= . fn(T3) = — ,
o q2”2](0 DA [2](0 ﬁ]
fn(T4) 0 07 fn(7T-) 0 _é
n = , n(/-) =
— 72 0) = 0 0
Adjoint:
(0 0 0 0) (0 0 0
0100 0ol o
= — — q
ad(To)=-A21| o o ¢ o | WT=| &
L0 0 0 1) L0 0 0
(0000 0 ) (0 0 O
00 0 —q[2] 0 0 0
a_d(T+): 00 0O 0 > @(T—): O O 0
1 1
00z 0 (0 -5 0

24
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CONNECTION COMMUTATION RELATIONS

From F = FAT,:

MAT0=r* AT = 0,
TEAT + ¢T3 ATE = 0,

+1)
FEATO 4 TOATE = iq[z] 3 AT,
I"AT"+T" ATT = 0
A
AT +3ATY = I ATt
q
A2
PBard = A2 e

25



From DF = 0O:

dar' AT4 = 14 AdrY
dITATE = TE AT .
ArEATF —TTAdIE = g0 Adl3 + [%]ﬁ AdD3

FARITYAT AT
ArEAT? TP Adl = FgHAr* Adl?

g A21TY A dr®

—gPARITO AT AT

F1

1
9 213 A dr

drEATY = (1+ 22TV AdlrE = F
(1+2%) 5

+ T AT AT
AP AT —TFAdD? = +gF AT Adl™
+q7A21T0 A dr®
+ARITYAT? AT
A2
Qﬁ Adl™

q
AL gr
q
2212110 Al
/12 [2]2

q

dar’ AT? —(1 —12)r3 AdIP =

+ TOAT AT

26



dr3 ATO - (1 + /12)1“0 AdI?

dI> A dI'* — g*2dr* A dr>

dirt Adll™ —dl™ AdDlT

A A
T Al = =TT AdD™
q q

2

+ 2213 A gr?
[2]
A% (2]

q
+g*1A[21dr0 A dr*

+qF2A2] T3 ATE A dI?

g2 A2]TO ATE A DD

+ARITO AT Adl®

gAdr¥ A dr- + %dﬁ AdD

TOAT AT

+ARITOATY AdlT™
—ARITOAT Al
—A2]T" AT Adl?
—g T AT A



FIELD STRENGTH COMMUTATION RELATIONS

FO = qr9

F* = dIt+ ¢t AT,
)

oo grd Bl
q

SO

FPAFY—g®2FEAF = 2" A2 FY A F2,

b
F*AF —F AFt = q/lFO/\F3+E]7]F3/\F3,

FU A FA FA A FY,

10 13, FO and F3 are all antihermitian, and

) =1 () =

27



A ¢g-DEFORMED STANDARD MODEL

Now we put everything we’ve developed so far into ac-
tion:

(Pun intended.)

Using the quadratic form on M, the Killing metric in
the adjoint representation, the field strength F and in-
troducing the coupling k, we get the § Ug4(2)-symmetric
action

o = e (4 1

q
2217 [3]
P (F° F0>} .

28



THE YANG-MILLS ACTION

Define the four 1-forms W=, W3 and B and the coupling
constant g by

. g \/— 3 _ 30 _ lg [4]
| = I w2, T B
2 " 8 A\ 2P 3]

2]
&= A8\

ey (dw~|dw™)

w3l i) o L

+2 dW'dW>+2<dB|dB)
ig
q 2]

+ <dW3‘ W AW+ q—12<W3 A W“ dw*)

~* (W3 A W+‘ dW™) + (W™ A W+‘ dW3))

SyM = [2] <dW+|dW>

+

(<dW+' W3 A W) - <dW“ W3 A W)

2
+% (<W3 A W+‘ W3 A W)
+i2 (W3 A W_| W3 A W)
q
—% (W= AWH W™ A W+>)
q
29



THE HIGGS MECHANISM

The Higgs field is introduced as a complex doublet @
living in the fundamental rep of § U4(2):

¢~ _
(D=( o | @ =(9¢" 3°)
Under the QG action, these transform respectively as
. . . ; . ;
O - Ujed, o S (U)ed!
Noncommutativity of the elements of U requires non-
commutativity of the elements of ®:

+ 1 + 20 + + 7
pOp* = 5¢—¢0, #p* = qp=¢”
_ _ A
pto” =g ot ¢ = " - 5¢+¢‘

OF D = 0ipi = @0 + ¢+ is central and invariant, so
we take the Higgs action to be

Sy = ((D@)T'D@—v(qﬁ@)

30



THE Z-BOSON AND THE PHOTON

® lives in the fundamental, so

o= d¢_+q[2](\/£[ ” B+qwg)¢
e

# - d¢0+q[2l(\/£l ]HB‘éWS)w
+i;]g[\£]_w+¢_

If we define new fields Z and A by

W3 = cos OwZ + sinfOwA, B = —sinOwZ + cos OwA,

where
_ / [4] =
tan By = [2][3][ ” ]

then there is no A — ¢° term and

_— _ ig L _ lg\/_
R R e T
+ig sin OywAQP ™~
D¢O — d¢0— lg 7 O+ig\/§W+¢—

g2 [2] cos By ¢ q 2]
31



GAUGE BOSON MASSES

Assume the potential V has a minimum (and vanishes)
when ®Td = v2/2. Take

- V
#*) =0, (¢°)=(¢")=—
() =0 ()= ()=
The masses of the gauge fields are found by evaluating
SH at (D).

R 1
Sukay = my (W W)+ om7(Z| Z) + nij (Al A)

2.2 2.2
= §V2<W+|W_>+ 4 gzv 2, A2
q- (2] 2q* [2]* cos® By
SO
myg =0, my S qmyz cos By

~412]
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AND NOW, SOME ACTUAL PHYSICS...
The chosen value for tan 6y has two consequences:

1. A is massless and thus we may identify it with the
photon.

2. The A — ¢~ coupling is —g sin 6yy; call it the electron
charge —e.

If we assume we live at or very near g = 1, then we
find

) 3

sin” By = 11 ~ (.273, g =~ 0.580
The experimental value for sin? 6y is 0.2319, within
20% of the above.
If we take the experimental value of my = 91.187 GeV,
thenatg =1,

my = 77.76 GeV, v =268 GeV

The first is within 3% of the actual mass of 80.22 GeV.
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SYMMETRY BREAKING & ELECTRIC CHARGES

Define two new fields with vanishing VEV:

_ A0 . 1o) _ V2[00 -0
"= \5!2 (¢ +q¢) h0T H<¢ ”)
These obey the commutation relations
H¢*™ = ¢H+i(1-q)¢™¢

Hyp = oH+ 2i(1 — é)gﬁqﬁ_

1 1 1

pp*t = (q+ — - 1)¢i¢+ i(l — —)¢iH+ i(l — —)wpi
q q q

The linear term in the last of the above is linear in the

fields and breaks the S U,(2) symmetry.

However, if z is the sole generator of a HA such that

AZ) =20z €e€2)=1, S@) =60 =z7"

then

Ho10H, ¢ 18¢, ¢t Fleost

is a left coaction that leaves the commutation relations
invariant. This is the HA obtained from the classical
U(l).
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Define a new derivative D’ by subtracting off the VEV
of the Higgs:

, - igv __ _
AT
1 1oV
D’ 0——) = D¢’ s z
(¢ \Ev ? +q2\/§[2]cosew

D’ is a covariant derivative if z = ¢’®X and

W* o eHX QW Z> 187 A 1®A+6¢®1,

which are the gauge transformations for a classical
U (1) with gauge field A.

The central element in Ug(su(2)) generating the unbro-
ken u(1) algebra is the charge operator

q
1113
1215 [3]
and so the covariant derivative of a field  living in rep
oIS

Ty + T3

ig V2
2]
Z|p(T3) ~sin” bwp(Q) | — ig sin bwAP(Q)Y.

D'y = dy— === [Wp(Th) + Wp(T-) |y

ig

COs By



LEPTONS

Let ¥ be a (left-handed) lepton doublet living in the
fundamental

y

\y:(*”), ¥=(7 7)

with anticommutation relations

v =v = =7 =0

Q = diag(-1,0) in this rep, so we may identify ¢ with
the electron (Q = —1) and v (Q = 0) with the electron
neutrino.

Taking [}’ as the covariant derivative on fermions, then
SE = (P|idw) + 7 idw)
gV2

—g sin Oy (| Ap) - /2] (<€Z| WV> + <17| WW»
1

¢ L 4 sin2ow) @
COS Oy [( [2] * s QW) <W| “o+ g [2]
35
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In the low-energy theory, the Wy coupling will result

in a four-fermion interaction with the Fermi coupling
2

g
G*21> V2m3,
0.983 x 107> GeV~2, about 16% away from the experi-
mental value 1.16639 x 10™> GeV 2.

In the ¢ — 1 limit Gg —

constant Gg =



SO FAR, SO GOOD. BUT...

PROBLEM #1: Where are the right-handed leptons?

We've incorporated leptons that live in the fundamental
rep; at g = 1, these transform as S U(2) fields, since
To = 0, and so become left-handed.

Right-handed leptons are S U(2) singlets, but carry U(1)
hypercharge, so must be in a rep where T, 3 vanish but
Ty does not: the “trivial” rep.

Thus, if y is a fermion living in this “trivial” rep tv’, its
contribution to the action is

(elity’ (®)x) = @livo) + 22 (7] 1)

1
o g ZSiHZQW _
= Ul “M_cosew qﬂ[%] [%] (vl Zx)
2
+g sin Oy (el Ax)
(qﬂz 5]13]

As desired, it couples to the A and Z but not W=, but
the g = 1 limit does not exist. And all other reps of
S Uy4(2) will be in a nontrivial rep of SU(2) at g = 1, so
it seems there are no chiral leptons in this theory.
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PROBLEM #2: Weird electric charges!

Recall

Q= ! Iy + T3, (1 = iTo)2 =1+ ¢%*2°J%,
2133} 2

Eliminating 7o and taking the ¢ — 1 limit gives an

S U4(2) analogue of the Gell-Mann-Nishijima relation

(Q=T3+Y/2):

)
Q=15-3J

A state in the isospin-j rep with 73-component m will
have charge m —2j(j+ 1)/3. So

J Q

0 0

1 -1,0

2 ’

1| 72 _4 _1
3> 3 3

3| -4,-3,2,-1

2 | -6,-5,-4,-3,-2
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The appearance of 3 in the denominator is intriguing;
note that if we amend the formula slightly to be

2
Q = m—gj(j+1)—S+1

and let (u,d, s) be an § U4(2) triplet with § = 0O for the u
and d and —1 for the s, then we get charges 2/3, —1/3
and —1/3...



CONCLUSIONS

PROS:

e A consistent way of extending the structure group,
fibore and connection of a fibre bundle to include
HA structure

e An S Ug4(2)-invariant action that includes gauge fields,
Higgs bosons and left-handed leptons and agrees
with the undeformed action at g = 1

e Values for sin? 6y, my and Gr which are within
20% of experimental values, and predicted values
for the Higgs VEV and § U,4(2) coupling constant.

e Correct electric charges for the left-handed lep-
tons after the QG symmetry is broken to U(1)
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CONS:

e Unclear picture of what the base space is in the
q # 1 case

e Problems incorporating right-handed leptons into
the theory

e Electric charges take on bizarre values
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