An Application of Quantum Groups: A q-Deformed Standard Model

or

And Now for Something Completely Different...

Paul Watts

Department of Mathematical Physics
 National University of Ireland, Maynooth

Based on "Toward a q-Deformed Standard Model"
J. Geom. Phys. 2461 (1997) 61 arXiv:hep-th/9603143

Workshop on Quantum Information and Condensed Matter Physics 9 September 2011

NUI MAYNOOTH

Ollscoil na hÉireann Má Nuad

WHY DREDGE UP THIS OLD STUFF NOW?

- QGs and HAs have continued to turn up in several areas of physics, not least of which is condensed matter physics...
- The Standard Model is currently being pushed to the limit by the LHC in CERN, so the importance of beyond-the-SM physics can only increase in the next few years...

OUTLINE

- Review of Hopf algebras (HAs) and quantum groups (QGs): definitions and notation
- Recasting familiar "classical" ideas in the language of HAs and QGs: Lie algebras and gauge theories
- Construction of a toy $S U_{q}(2)$ gauge theory as a deformed version of the Standard Model (SM)
- Agreement and disagreement with undeformed SM

WHY DEFORM WHAT AIN'T BROKE? (YET)

- Practicality: deformation parameters may give alternate ways of - for example - introducing a cutoff in renormalisation or a lattice size.
- New physics: special relativity and quantum mechanics are deformed versions of Newtonian mechanics (with deformation parameters c and \hbar); who's to say there aren't more deformed theories out there?
- Fun: why not? At the very least, it'll be good exercise in seeing how QGs and HAs might play a role in other theories.

HOPF ALGEBRAS

[E. Abe, Hopf Algebras (Cambridge University Press, 1977)]

A HA is a unital associative algebra \mathcal{U} over a field k with coproduct (or comultiplication) $\Delta: \mathcal{U} \rightarrow \mathcal{U} \otimes \mathcal{U}$, counit $\epsilon: \mathcal{U} \rightarrow k$ and antipode $S: \mathcal{U} \rightarrow \mathcal{U}$ satisfying

$$
\begin{aligned}
(\Delta \otimes \mathrm{id}) \Delta(x) & =(\mathrm{id} \otimes \Delta) \Delta(x) \\
\Delta(x y) & =\Delta(x) \Delta(y) \\
(\epsilon \otimes \mathrm{id}) \Delta(x) & =(\mathrm{id} \otimes \epsilon) \Delta(x)=x \\
\epsilon(x y) & =\epsilon(x) \epsilon(y) \\
\cdot(S \otimes \mathrm{id}) \Delta(x) & =\cdot(\operatorname{id} \otimes S) \Delta(x)=1 \epsilon(x)
\end{aligned}
$$

*-HA: includes involution $\theta: \mathcal{U} \rightarrow \mathcal{U}$

$$
\begin{aligned}
\theta^{2}(x) & =x \\
\theta(x y) & =\theta(y) \theta(x) \\
\theta(1) & =1 \\
\Delta(\theta(x)) & =(\theta \otimes \theta)(\Delta(x)) \\
\epsilon(\theta(x)) & =\epsilon(x)^{*} \\
\theta(S(\theta(x))) & =S^{-1}(x)
\end{aligned}
$$

(* is the conjugation in k)

SWEEDLER NOTATION

[M. E. Sweedler, Hopf Algebras (Benjamin Press, 1969)]
$\Delta(x)$ is generally a sum of elements in $\mathcal{U} \otimes \mathcal{U}$, but sum is suppressed and we write

$$
\Delta(x)=\sum_{i} x_{(1)}^{i} \otimes x_{(2)}^{i}=x_{(1)} \otimes x_{(2)}
$$

So

$$
\begin{aligned}
(\Delta \otimes \mathrm{id}) \Delta(x) & =\Delta\left(x_{(1)}\right) \otimes x_{(2)} \\
& =\left(x_{(1)}\right)_{(1)} \otimes\left(x_{(1)}\right)_{(2)} \otimes x_{(2)}
\end{aligned}
$$

and

$$
\begin{aligned}
(\mathrm{id} \otimes \Delta) \Delta(x) & =x_{(1)} \otimes \Delta\left(x_{(2)}\right) \\
& =x_{(1)} \otimes\left(x_{(2)}\right)_{(1)} \otimes\left(x_{(2)}\right)_{(2)}
\end{aligned}
$$

Coassociativity $(\Delta \otimes \mathrm{id}) \Delta(x)=(\operatorname{id} \otimes \Delta) \Delta(x)$ gives both as

$$
x_{(1)} \otimes x_{(2)} \otimes x_{(3)}
$$

(like $(a b) c=a(b c)=a b c$). Similarly,

$$
\cdot(S \otimes \mathrm{id}) \Delta(x)=\epsilon(x) 1 \quad \rightarrow \quad S\left(x_{(1)}\right) x_{(2)}=\epsilon(x) 1
$$

QUASITRIANGULAR HOPF ALGEBRAS

A QHA is a HA \mathcal{U} together with an invertible element, the universal R-matrix, $\mathcal{R}=r_{\alpha} \otimes r^{\alpha} \in \mathcal{U} \otimes \mathcal{U}$ satisfying

$$
\begin{aligned}
(\Delta \otimes \mathrm{id})(\mathcal{R}) & =\mathcal{R}_{13} \mathcal{R}_{23} \\
(\mathrm{id} \otimes \Delta)(\mathcal{R}) & =\mathcal{R}_{12} \mathcal{R}_{23} \\
(\sigma \circ \Delta)(x) & =\mathcal{R} \Delta(x) \mathcal{R}^{-1}
\end{aligned}
$$

where $\sigma(x \otimes y)=y \otimes x$, and

$$
\begin{aligned}
& \mathcal{R}_{12}=r_{\alpha} \otimes r^{\alpha} \otimes 1, \\
& \mathcal{R}_{13}=r_{\alpha} \otimes 1 \otimes r^{\alpha}, \\
& \mathcal{R}_{23}=1 \otimes r_{\alpha} \otimes r^{\alpha} .
\end{aligned}
$$

\mathcal{R} satisfies the Yang-Baxter equation (YBE)

$$
\mathcal{R}_{12} \mathcal{R}_{13} \mathcal{R}_{23}=\mathcal{R}_{23} \mathcal{R}_{13} \mathcal{R}_{12}
$$

We can construct the special element $u \in \mathcal{U}$ via

$$
u=\cdot(S \otimes \mathrm{id})\left(\mathcal{R}_{21}\right)=S\left(r^{\alpha}\right) r_{\alpha}
$$

which has the following properties:

$$
\begin{aligned}
u^{-1} & =r^{\alpha} S^{2}\left(r_{\alpha}\right) \\
S^{2}(x) & =u x u^{-1} \\
{[u S(u)] x } & =x[u S(u)]
\end{aligned}
$$

EXAMPLE: A CLASSICAL LIE ALGEBRA

If g is a "classical" Lie algebra with generators $\left\{T_{A}\right\}$, then the universal enveloping algebra $U(g)$ is a quasitriangular Hopf algebra with

$$
\begin{aligned}
\Delta\left(T_{A}\right) & =T_{A} \otimes 1+1 \otimes T_{A} \\
\epsilon\left(T_{A}\right) & =0 \\
S\left(T_{A}\right) & =-T_{A} \\
\mathcal{R} & =1 \otimes 1
\end{aligned}
$$

If the hermitian adjoint is defined on g, then $U(g)$ is a *-Hopf algebra with

$$
\theta\left(T_{A}\right)=T_{A}^{\dagger}
$$

DUAL PAIRING OF HOPF ALGEBRAS

Two HAs \mathcal{U} and \mathcal{A} over the same field k are dually paired if there is a nondegenerate inner product \langle,$\rangle :$ $\mathcal{U} \otimes \mathcal{A} \rightarrow k$ such that

$$
\begin{aligned}
\langle x y, a\rangle & =\langle x \otimes y, \Delta(a)\rangle \\
\langle 1, a\rangle & =\epsilon(a) \\
\langle\Delta(x), a \otimes b\rangle & =\langle x, a b\rangle \\
\epsilon(x) & =\langle x, 1\rangle \\
\langle S(x), a\rangle & =\langle x, S(a)\rangle \\
\langle\theta(x), a\rangle & =\langle x, \theta(S(a))\rangle^{*}
\end{aligned}
$$

$x, y \in \mathcal{U}, a, b \in \mathcal{A}$

REPRESENTATIONS OF HOPF ALGEBRAS

A faithful linear representation $\rho: \mathcal{U} \rightarrow M(N, k)$ of a HA can be used to dually pair \mathcal{U} with another HA \mathcal{A}, generated by the N^{2} elements $\left\{A^{i}{ }_{j}\right\}$, via

$$
\rho^{i}{ }_{j}(x)=\left\langle x, A^{i}{ }_{j}\right\rangle
$$

so

$$
\begin{aligned}
\rho(x y)=\rho(x) \rho(y) & \Rightarrow \Delta\left(A_{j}^{i}\right)=A^{i}{ }_{k} \otimes A^{k}{ }_{j} \\
\rho(1)=I & \Rightarrow \epsilon\left(A_{j}^{i}\right)=\delta_{j}^{i} \\
\rho\left(S\left(x_{(1)}\right) x_{(2)}\right)=\epsilon(x) I & \Rightarrow S\left(A_{j}^{i}\right)=\left(A^{-1}\right)_{j}^{i}
\end{aligned}
$$

The multiplication in \mathcal{A} is determined by the comultiplication in \mathcal{U}, but little can be said of that without more info.

Which leads us to...

QUANTUM GROUPS

[V. G. Drinfel'd, Proc. Int. Cong. Math., Berkeley (Berkeley, 1986) 798
S. L. Woronowicz, Commun. Math. Phys. 111 (1987) 613]

A quantum group (QG) is a HA \mathcal{A} generated by the elements $A^{i}{ }_{j}$ is dually paired with a quasitriangular HA \mathcal{U} by means of a representation ρ.

The $N^{2} \times N^{2}$ numerical R-matrix is the universal Rmatrix in this representation:

$$
R_{k \ell}^{i j}=\left\langle\mathcal{R}, A^{i}{ }_{k} \otimes A^{j}{ }_{\ell}\right\rangle
$$

The dual pairing between \mathcal{U} and \mathcal{A} gives the commutation relations between the generators of \mathcal{A} as

$$
R^{i j}{ }_{m n} A^{m}{ }_{k} A^{n}{ }_{\ell}=A^{j}{ }_{n} A^{i}{ }_{m} R^{m n}{ }_{k \ell}
$$

or

$$
R A_{1} A_{2}=A_{2} A_{1} R
$$

The numerical version of the YBE is

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}
$$

QUANTUM LIE ALGEBRAS

[D. Bernard, Prog. Theor. Phys. Suppl. 102 (1990) 49]

A (left) action of \mathcal{U} on itself, the adjoint action, is defined as

$$
x \triangleright y=x_{(1)} y S\left(x_{(2)}\right)
$$

It satisfies

$$
\begin{aligned}
(x y) \triangleright z=x \triangleright(y \triangleright z), &
\end{aligned} x \triangleright(y z)=\left(x_{(1) \triangleright y)\left(x_{(2)} \triangleright z\right)} \begin{array}{rl}
x \triangleright 1=\epsilon(x) 1, & \\
& \triangleright \triangleright x=x
\end{array}\right.
$$

When \mathcal{U} is the UEA of a "classical" Lie algebra, then

$$
\begin{aligned}
T_{A \triangleright} \triangleright T_{B} & =T_{A} \cdot T_{B} \cdot 1+1 \cdot T_{B} \cdot S\left(T_{A}\right) \\
& =T_{A} T_{B}-T_{B} T_{A}=\left[T_{A}, T_{B}\right]
\end{aligned}
$$

$s o \triangleright$ generalises the commutator.

The projectors

$$
P_{1}(x)=\epsilon(x) 1, \quad P_{0}(x)=x-\epsilon(x) 1
$$

decompose \mathcal{U} into $k 1 \oplus \mathcal{U}_{0} . \mathcal{U}$ is a quantum Lie algebra (QLA) if
(a) \mathcal{U}_{0} is finitely generated by n elements $\left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$
(b) $\mathcal{U}_{0} \triangleright \mathcal{U}_{0} \subseteq \mathcal{U}_{0}$

If \mathcal{U} is a quasitriangular HA whose universal R-matrix depends on a parameter λ such that $\mathcal{R} \rightarrow 1 \otimes 1$ as $\lambda \rightarrow 0$ and there is a dually paired $\mathrm{QG} \mathcal{A}$, then \mathcal{U} is a QLA generated by the elements of the matrix

$$
X_{j}^{i}=\frac{1}{\lambda}\left\langle 1 \otimes 1-\mathcal{R}_{21} \mathcal{R}, A^{i}{ }_{j} \otimes \mathrm{id}\right\rangle
$$

[P. Schupp, PW, B. Zumino, Lett. Math. Phys. 25 (1992) 139]

The deformation parameter q is usually defined via $\lambda=$ $q-q^{-1}$, with $q \rightarrow 1$ giving the "classical limit".

THE KILLING METRIC

There is also an invariant trace for such QLAs, defined by

$$
\operatorname{tr}_{\rho}(x)=\operatorname{tr}[\rho(u) \rho(x)]
$$

such that

$$
\operatorname{tr}_{\rho}(y \triangleright x)=\epsilon(y) \operatorname{tr}_{\rho}(x)
$$

which vanishes if $y \in \mathcal{U}_{0}$. This means that the Killing form

$$
\eta^{(\rho)}(x, y)=\operatorname{tr}_{\rho}(x y)
$$

is invariant under the adjoint action of \mathcal{U}_{0} :

$$
\eta^{(\rho)}\left(z_{\left.(1)^{\triangleright} x, z(2)^{\triangleright y}\right)}=\epsilon(z) \eta^{(\rho)}(x, y)=0\right.
$$

and we may define a \mathcal{U}_{0}-invariant Killing metric

$$
\eta_{A B}^{(\rho)}=\operatorname{tr}_{\rho}\left(T_{A} T_{B}\right)
$$

[PW, arXiv:q-alg/9505027]

DEFORMED GAUGE THEORIES

Mathematically, gauge theories are described in terms of fibre bundles...

- Fibre \mathcal{F} : where the matter fields live.
- Connection Γ : how we move between fibres; the gauge fields.
- Structure group \mathcal{A} : the group of transformations on the fields.
- Base space \mathcal{M} : the manifold on which the fields live.

We wish to generalise the structure group to a HA, and so the others must be generalised as well.

THE FIBRE AND STRUCTURE GROUP

Take \mathcal{F} to be a unital associative *-algebra (with involution ${ }^{-}$) and $\mathcal{A} \mathrm{a}^{*}$-Hopf algebra which acts on \mathcal{F} via a linear homomorphism $L: \mathcal{F} \rightarrow \mathcal{A} \otimes \mathcal{F}$ as

$$
L(\psi)=\psi^{(1)^{\prime}} \otimes \psi^{(2)}
$$

satisfying

$$
\begin{aligned}
\psi^{(1)^{\prime}} \otimes L\left(\psi^{(2)}\right) & =\Delta\left(\psi^{(1)^{\prime}}\right) \otimes \psi^{(2)} \\
\epsilon\left(\psi^{(1)^{\prime}}\right) \psi^{(2)} & =\psi \\
L(\bar{\psi}) & =\theta\left(\psi^{(1)^{\prime}}\right) \otimes \overline{\psi^{(2)}} \\
L(1) & =1 \otimes 1
\end{aligned}
$$

THE EXTERIOR DERIVATIVES AND CONNECTION

Suppose d and δ are exterior derivatives on \mathcal{F} and \mathcal{A} respectively. The coaction of \mathcal{A} on differential forms on \mathcal{F} is given recursively by

$$
L(\mathrm{~d} \psi)=\delta \psi^{(1)^{\prime}} \otimes \psi^{(2)}+\left.(-1)^{\mid \psi^{(1)^{\prime}}}\right|_{\psi^{(1)^{\prime}}} \otimes \mathrm{d} \psi^{(2)}
$$

A connection is a linear map taking p-forms on \mathcal{A} to ($p+1$)-forms on \mathcal{F} satisfying

$$
\begin{aligned}
\Gamma(1)= & 0 \\
\Gamma(\delta \alpha)= & -\mathrm{d} \Gamma(\alpha) \\
L(\Gamma(\alpha))= & (-1)^{\left.\left|\alpha_{(1)}\right|+\mid \alpha_{(3)}\right)\left(\left|\alpha_{(2)}\right|+1\right)}{\alpha_{(1)} S\left(\alpha_{(3)}\right) \otimes \Gamma\left(\alpha_{(2)}\right)} \begin{aligned}
& -\delta \alpha_{(1)} S\left(\alpha_{(2)}\right) \otimes 1
\end{aligned}
\end{aligned}
$$

The FIELD STRENGTH AND COVARIANT DERIVATIVE

The field strength is given by

$$
F(\alpha)=\mathrm{d} \Gamma(\alpha)+(-1)^{\left|\alpha_{(1)}\right|} \mid \Gamma\left(\alpha_{(1)}\right) \wedge \Gamma\left(\alpha_{(2)}\right)
$$

Thus,

$$
L(F(\alpha))=\left.(-1)^{\left|\alpha_{(2)}\right| \mid \alpha_{(3)}}\right|_{\alpha_{(1)} S\left(\alpha_{(3)}\right) \otimes F\left(\alpha_{(2)}\right) . . . ~} ^{\text {. }}
$$

The covariant derivative D of a p-form ψ on \mathcal{F} is

$$
\mathrm{D} \psi=\mathrm{d} \psi+\Gamma\left(\psi^{(1)^{\prime}}\right) \wedge \psi^{(2)}
$$

Thus,

$$
\mathrm{D}^{2} \psi=F\left(\psi^{(1)^{\prime}}\right) \wedge \psi^{(2)}
$$

and

$$
L(\mathrm{D} \psi)=\left.(-1)^{\mid \psi^{(1)^{\prime}}}\right|_{\psi^{(1)^{\prime}}} \otimes \mathrm{D} \psi^{(2)}
$$

QUANTUM STRUCTURE GROUP

Let \mathcal{U} and \mathcal{A} be a QLA and its associated QG under a representation ρ. If ψ^{i} a form living in this rep,

$$
L\left(\psi^{i}\right)=A_{j}^{i} \otimes \psi^{j}
$$

With $\Gamma^{i}{ }_{j}:=\Gamma\left(A^{i}{ }_{j}\right)$,

$$
L\left(\Gamma_{j}^{i}\right)=A_{k}^{i} S\left(A_{j}^{\ell}\right) \otimes \Gamma_{\ell}^{k}-\delta A_{k}^{i} S\left(A_{j}^{k}\right) \otimes 1,
$$

and

$$
\mathrm{D} \psi^{i}=\mathrm{d} \psi^{i}+\Gamma_{j}^{i} \wedge \psi^{j} \quad \mapsto \quad A_{j}^{i} \otimes \mathrm{D} \psi^{j} .
$$

The field strength $F^{i}{ }_{j}:=\mathrm{d} \Gamma^{i}{ }_{j}+\Gamma^{i}{ }_{k} \wedge \Gamma^{k}{ }_{j}$ transforms as

$$
L\left(F^{i}{ }_{j}\right)=A^{i}{ }_{k} S\left(A_{j}^{\ell}\right) \otimes F_{\ell}^{k} .
$$

Classically, the above correspond to

$$
\begin{aligned}
& \psi \mapsto A \psi \\
& \Gamma \mapsto A \Gamma A^{-1}-\delta A A^{-1} \\
& \mathrm{D} \psi \mapsto A \mathrm{D} \psi \\
& F \mapsto A F A^{-1}
\end{aligned}
$$

COMMUTATION RELATIONS

The components $\left\{\Gamma^{A}\right\}$ are 1-forms given by

$$
\Gamma(a)=\Gamma^{A}\left\langle T_{A}, a\right\rangle
$$

The field strength is then

$$
F(a)=\mathrm{d} \Gamma^{A}\left\langle T_{A}, a\right\rangle+\Gamma^{A} \wedge \Gamma^{B}\left\langle T_{A} T_{B}, a\right\rangle
$$

Classically,

$$
\Gamma^{A} \wedge \Gamma^{B} T_{A} T_{B}=\frac{1}{2} \Gamma^{A} \wedge \Gamma^{B}\left[T_{A}, T_{B}\right]
$$

so that $F=F^{A} T_{A}$. Here, we require that F takes this form, and so $Г Г$ commutation relations are determined.

Classically, the Bianchi identity DF $=0$ must hold. Requiring this in the deformed case as well gives $\Gamma \mathrm{d} \Gamma$ and $\mathrm{d} \Gamma \mathrm{d} \Gamma$ commutation relations.

THE BASE SPACE

How we treat the base space isn't obvious...

Noncommutative geometry?
[T. Brzeziński, S. Majid, Commun. Math. Phys. 157 (1993) 591
A. Connes, J. Lott, Nucl. Phys. Proc. Supp. 18B (1991) 89]

Sheaf theory?

[M. J. Pflaum, Commun. Math. Phys. 166 (1994) 279]

Our approach: assume the existence of a quadratic form $\langle\mid\rangle$ taking two p-forms on \mathcal{F} to k such that:

1. $\langle\phi \mid \psi\rangle^{*}=\langle\bar{\psi} \mid \bar{\phi}\rangle ;$
2. $\langle\phi \mid \psi\rangle \mapsto \phi^{(1)^{\prime}} \psi^{(1)^{\prime}}\left\langle\phi^{(2)} \mid \psi^{(2)}\right\rangle$ under the action of L (not necessarily symmetric);
3. $\langle\phi \mid \psi\rangle \rightarrow \int_{\mathcal{M}} \phi \wedge \star \psi$ in the undeformed limit.

$S U_{q}(2)$

The numerical R-matrix for the q-deformed version of $S U(2)$ is

$$
R=q^{-\frac{1}{2}}\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & 0 & q
\end{array}\right)
$$

with $q \in \mathbb{R}$ and $\lambda=q-q^{-1}$
[L. D. Faddeev, N. Yu. Reshetikhin, L. A. Takhtadzhyan, Leningrad Math. J. 1 (1990) 193]

If the generators of the QG $S U_{q}(2)$ are the elements of the matrix

$$
U=\left(\begin{array}{cc}
a & b \\
-\frac{1}{q} \bar{b} & \bar{a}
\end{array}\right)
$$

Then $R U_{1} U_{2}=U_{2} U_{1} R$ gives

$$
\begin{array}{rl}
a b=q b a & a \bar{b}=q \bar{b} a \\
b \bar{b}=\bar{b} b & b \bar{a}=q \bar{a} b \\
\bar{b} \bar{a}=q \bar{a} \bar{b} & a \bar{a}=\bar{a} a-\frac{\lambda}{q} b \bar{b}
\end{array}
$$

with $a \bar{a}+b \bar{b}=1$.

The other HA operations are

$$
\begin{aligned}
\Delta(U) & =\left(\begin{array}{cc}
a \otimes a+b \otimes \bar{b} & a \otimes b+b \otimes \bar{a} \\
\bar{b} \otimes a+\bar{a} \otimes \bar{b} & \bar{b} \otimes b+\bar{a} \otimes \bar{a}
\end{array}\right) \\
\epsilon(U) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
\theta(U)=S(U) & =\left(\begin{array}{cc}
\bar{a} & -q^{-1} b \\
\bar{b} & a
\end{array}\right)
\end{aligned}
$$

THE QLA $U_{q}(s u(2))$

Generated by T_{1}, T_{+}, T_{-}and T_{2} defined by

$$
X=\left(\begin{array}{ll}
T_{1} & T_{+} \\
T_{-} & T_{2}
\end{array}\right)=\frac{1}{\lambda}\left\langle 1 \otimes 1-\mathcal{R}_{21} \mathcal{R}, U \otimes \mathrm{id}\right\rangle
$$

If we define

$$
T_{0}=T_{1}+\frac{1}{q^{2}} T_{2}, \quad T_{3}=\frac{q^{2}}{1+q^{2}}\left(T_{1}-T_{2}\right)
$$

then the adjoint actions are

$$
\begin{aligned}
T_{A} \triangleright T_{0}=0, & T_{0} \triangleright T_{a}=-\lambda[2] T_{a} \\
T_{3} \triangleright T_{3}=-\lambda T_{3}, & T_{ \pm} \triangleright T_{\mp}= \pm \frac{[2]}{q} T_{3}, \\
T_{3} \triangleright T_{ \pm}= \pm q^{\mp 1} T_{ \pm}, & T_{ \pm} \triangleright T_{3}=\mp q^{ \pm 1} T_{ \pm}
\end{aligned}
$$

where $A=0,+,-, 3, a=+,-, 3$ and the "quantum number" $[n]$ is

$$
[n]:=\frac{1-q^{-2 n}}{1-q^{-2}}
$$

Or, as "commutation relations", T_{0} is central and

$$
\begin{aligned}
q^{\mp 1} T_{3} T_{ \pm}-q^{ \pm 1} T_{ \pm} T_{3} & = \pm\left(1-\frac{\lambda}{[2]} T_{0}\right) T_{ \pm} \\
T_{+} T_{-}-T_{-} T_{+} & =\frac{[2]}{q}\left(1-\frac{\lambda}{[2]} T_{0}\right) T_{3}+\frac{\lambda[2]}{q} T_{3}^{2}
\end{aligned}
$$

The generators are linearly independent, but related quadratically by

$$
\left(1-\frac{\lambda}{[2]} T_{0}\right)^{2}=1+q^{2} \lambda^{2} J^{2}
$$

where

$$
J^{2}=\frac{1}{q^{2}[2]}\left(q^{2} T_{+} T_{-}+T_{-} T_{+}+[2] T_{3}^{2}\right)
$$

REPRESENTATIONS

"Trivial":

$$
\underline{\mathrm{tv}}^{\prime}\left(T_{a}\right)=0 \quad \underline{\mathrm{tv}}^{\prime}\left(T_{0}\right)=\frac{2[2]}{\lambda}
$$

Fundamental:

$$
\begin{aligned}
\underline{\operatorname{fn}}\left(T_{0}\right)=-\frac{\lambda}{q}\left[\frac{1}{2}\right]\left[\frac{3}{2}\right]\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right), \quad \underline{\operatorname{fn}}\left(T_{3}\right)=\frac{1}{[2]}\left(\begin{array}{cc}
-1 & 0 \\
0 & \frac{1}{q^{2}}
\end{array}\right), \\
\underline{\mathrm{fn}}\left(T_{+}\right)=\left(\begin{array}{cc}
0 & 0 \\
-\frac{1}{q} & 0
\end{array}\right), \quad \underline{\mathrm{fn}}\left(T_{-}\right)=\left(\begin{array}{cc}
0 & -\frac{1}{q} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Adjoint:

$$
\begin{array}{ll}
\underline{\operatorname{ad}}\left(T_{0}\right)=-\lambda[2]\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), & \underline{\operatorname{ad}}\left(T_{3}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \frac{1}{q} & 0 & 0 \\
0 & 0 & -q & 0 \\
0 & 0 & 0 & -\lambda
\end{array}\right), \\
\underline{\operatorname{ad}}\left(T_{+}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -q[2] \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{q} & 0
\end{array}\right), & \underline{\operatorname{ad}}\left(T_{-}\right)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{[2]}{q} \\
0 & -\frac{1}{q} & 0 & 0
\end{array}\right) .
\end{array}
$$

$$
\begin{gathered}
\underline{\operatorname{ad}}(u)=\frac{1}{q^{4}}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & q^{2} & 0 & 0 \\
0 & 0 & \frac{1}{q^{2}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\eta_{\frac{(\mathrm{ad})}{A B}}=\frac{[4]}{q^{3}}\left(\begin{array}{cccc}
\frac{q \lambda^{2}\left[22^{2}[3]\right.}{[4]} & 0 & 0 & 0 \\
0 & 0 & q & 0 \\
0 & \frac{1}{q} & 0 & 0 \\
0 & 0 & 0 & \frac{q}{[2]}
\end{array}\right) .
\end{gathered}
$$

CONNECTION COMMUTATION RELATIONS

From $F=F^{A} T_{A}$:

$$
\begin{aligned}
\Gamma^{0} \wedge \Gamma^{0}=\Gamma^{ \pm} \wedge \Gamma^{ \pm} & =0 \\
\Gamma^{ \pm} \wedge \Gamma^{3}+q^{ \pm 2} \Gamma^{3} \wedge \Gamma^{ \pm} & =0 \\
\Gamma^{ \pm} \wedge \Gamma^{0}+\Gamma^{0} \wedge \Gamma^{ \pm} & = \pm \frac{q^{ \pm 1} \lambda}{[2]} \Gamma^{3} \wedge \Gamma^{ \pm} \\
\Gamma^{+} \wedge \Gamma^{-}+\Gamma^{-} \wedge \Gamma^{+} & =0 \\
\Gamma^{0} \wedge \Gamma^{3}+\Gamma^{3} \wedge \Gamma^{0} & =-\frac{\lambda}{q} \Gamma^{-} \wedge \Gamma^{+} \\
\Gamma^{3} \wedge \Gamma^{3} & =\frac{\lambda[2]}{q} \Gamma^{-} \wedge \Gamma^{+}
\end{aligned}
$$

From $\mathrm{D} F=0$:

$$
\begin{aligned}
\mathrm{d} \Gamma^{0} \wedge \Gamma^{A}= & \Gamma^{A} \wedge \mathrm{~d} \Gamma^{0} \\
\mathrm{~d} \Gamma^{ \pm} \wedge \Gamma^{ \pm}= & \Gamma^{ \pm} \wedge \mathrm{d} \Gamma^{ \pm} \\
\mathrm{d} \Gamma^{ \pm} \wedge \Gamma^{\mp}-\Gamma^{\mp} \wedge \mathrm{d} \Gamma^{ \pm}= & \pm q \lambda \Gamma^{0} \wedge \mathrm{~d} \Gamma^{3} \pm \frac{q \lambda}{[2]} \Gamma^{3} \wedge \mathrm{~d} \Gamma^{3} \\
& \mp \lambda[2] \Gamma^{0} \wedge \Gamma^{-} \wedge \Gamma^{+} \\
\mathrm{d} \Gamma^{ \pm} \wedge \Gamma^{3}-\Gamma^{3} \wedge \mathrm{~d} \Gamma^{ \pm}= & \mp q^{ \pm 1} \lambda \Gamma^{ \pm} \wedge \mathrm{d} \Gamma^{3} \\
& \mp q^{ \pm 1} \lambda[2] \Gamma^{0} \wedge \mathrm{~d} \Gamma^{ \pm} \\
& -q^{ \pm 2} \lambda[2] \Gamma^{0} \wedge \Gamma^{3} \wedge \Gamma^{ \pm} \\
\mathrm{d} \Gamma^{ \pm} \wedge \Gamma^{0}-\left(1+\lambda^{2}\right) \Gamma^{0} \wedge \mathrm{~d} \Gamma^{ \pm}= & \mp \frac{q^{\mp 1} \lambda}{[2]} \Gamma^{3} \wedge \mathrm{~d} \Gamma^{ \pm} \\
& \pm \frac{q^{ \pm 1} \lambda}{[2]} \Gamma^{ \pm} \wedge \mathrm{d} \Gamma^{3} \\
& \pm q^{ \pm 1} \lambda^{2} \Gamma^{0} \wedge \Gamma^{3} \wedge \Gamma^{ \pm} \\
\mathrm{d} \Gamma^{3} \wedge \Gamma^{ \pm}-\Gamma^{ \pm} \wedge \mathrm{d} \Gamma^{3}= & \pm q^{\mp 1} \lambda \Gamma^{3} \wedge \mathrm{~d} \Gamma^{ \pm} \\
& \pm q^{\mp 1} \lambda[2] \Gamma^{0} \wedge \mathrm{~d} \Gamma^{ \pm} \\
& +\lambda[2] \Gamma^{0} \wedge \Gamma^{3} \wedge \Gamma^{ \pm} \\
\mathrm{d} \Gamma^{3} \wedge \Gamma^{3}-\left(1-\lambda^{2}\right) \Gamma^{3} \wedge \mathrm{~d} \Gamma^{3}= & \frac{\lambda[2]}{q} \Gamma^{+} \wedge \mathrm{d} \Gamma^{-} \\
& -\frac{\lambda[2]}{q} \Gamma^{-} \wedge \mathrm{d} \Gamma^{+} \\
& -\lambda^{2}[2] \Gamma^{0} \wedge \mathrm{~d} \Gamma^{3} \\
& +\frac{\lambda^{2}[2]^{2}}{q} \Gamma^{0} \wedge \Gamma^{-} \wedge \Gamma^{+}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{d} \Gamma^{3} \wedge \Gamma^{0}-\left(1+\lambda^{2}\right) \Gamma^{0} \wedge \mathrm{~d} \Gamma^{3}= & \frac{\lambda}{q} \Gamma^{-} \wedge \mathrm{d} \Gamma^{+}-\frac{\lambda}{q} \Gamma^{+} \wedge \mathrm{d} \Gamma^{-} \\
& +\frac{\lambda^{2}}{[2]} \Gamma^{3} \wedge \mathrm{~d} \Gamma^{3} \\
& -\frac{\lambda^{2}[2]}{q} \Gamma^{0} \wedge \Gamma^{-} \wedge \Gamma^{+} \\
\mathrm{d} \Gamma^{3} \wedge \mathrm{~d} \Gamma^{ \pm}-q^{ \pm 2} \mathrm{~d} \Gamma^{ \pm} \wedge \mathrm{d} \Gamma^{3}= & \pm q^{ \pm 1} \lambda[2] \mathrm{d} \Gamma^{0} \wedge \mathrm{~d} \Gamma^{ \pm} \\
& +q^{ \pm 2} \lambda[2] \Gamma^{3} \wedge \Gamma^{ \pm} \wedge \mathrm{d} \Gamma^{0} \\
& -q^{ \pm 2} \lambda[2] \Gamma^{0} \wedge \Gamma^{ \pm} \wedge \mathrm{d} \Gamma^{3} \\
& +\lambda[2] \Gamma^{0} \wedge \Gamma^{3} \wedge \mathrm{~d} \Gamma^{ \pm} \\
\mathrm{d} \Gamma^{+} \wedge \mathrm{d} \Gamma^{-}-\mathrm{d} \Gamma^{-} \wedge \mathrm{d} \Gamma^{+}= & q \lambda \mathrm{~d} \Gamma^{0} \wedge \mathrm{~d} \Gamma^{3}+\frac{q \lambda}{[2]} \mathrm{d} \Gamma^{3} \wedge \mathrm{~d} \Gamma^{3} \\
& +\lambda[2] \Gamma^{0} \wedge \Gamma^{+} \wedge \mathrm{d} \Gamma^{-} \\
& -\lambda[2] \Gamma^{0} \wedge \Gamma^{-} \wedge \mathrm{d} \Gamma^{+} \\
& -\lambda[2] \Gamma^{-} \wedge \Gamma^{+} \wedge \mathrm{d} \Gamma^{0} \\
& -q \lambda^{2} \Gamma^{0} \wedge \Gamma^{3} \wedge \mathrm{~d} \Gamma^{3}
\end{aligned}
$$

FIELD STRENGTH COMMUTATION RELATIONS

$$
\begin{aligned}
F^{0} & =\mathrm{d} \Gamma^{0} \\
F^{ \pm} & =\mathrm{d} \Gamma^{ \pm} \pm q^{ \pm 1} \Gamma^{3} \wedge \Gamma^{ \pm} \\
F^{3} & =\mathrm{d} \Gamma^{3}-\frac{[2]}{q} \Gamma^{-} \wedge \Gamma^{+}
\end{aligned}
$$

so

$$
\begin{aligned}
F^{3} \wedge F^{ \pm}-q^{ \pm 2} F^{ \pm} \wedge F^{3} & = \pm q^{ \pm 1} \lambda[2] F^{0} \wedge F^{ \pm} \\
F^{+} \wedge F^{-}-F^{-} \wedge F^{+} & =q \lambda F^{0} \wedge F^{3}+\frac{q \lambda}{[2]} F^{3} \wedge F^{3} \\
F^{0} \wedge F^{A} & =F^{A} \wedge F^{0}
\end{aligned}
$$

$\Gamma^{0}, \Gamma^{3}, F^{0}$ and F^{3} are all antihermitian, and

$$
\left(\Gamma^{ \pm}\right)^{\dagger}=-\Gamma^{\mp} \quad\left(F^{ \pm}\right)^{\dagger}=-F^{\mp}
$$

A q-DEFORMED STANDARD MODEL

Now we put everything we've developed so far into action:
(Pun intended.)

Using the quadratic form on \mathcal{M}, the Killing metric in the adjoint representation, the field strength F and introducing the coupling κ, we get the $S U_{q}(2)$-symmetric action

$$
\begin{aligned}
S_{\mathrm{YM}}= & -\frac{1}{2 \kappa^{2}} \eta_{A B}^{(\mathrm{ad})}\left\langle F^{A} \mid F^{B}\right\rangle \\
= & -\frac{[4]}{2 \kappa^{2} q^{2}}\left\{\left\langle F^{+} \mid F^{-}\right\rangle+\frac{1}{q^{2}}\left\langle F^{-} \mid F^{+}\right\rangle+\frac{1}{[2]}\left\langle F^{3} \mid F^{3}\right\rangle\right. \\
& \left.+\frac{\lambda^{2}[2]^{2}[3]}{[4]}\left\langle F^{0} \mid F^{0}\right\rangle\right\} .
\end{aligned}
$$

THE YANG-MILLS ACTION

Define the four 1 -forms $W^{ \pm}, W^{3}$ and B and the coupling constant g by

$$
\begin{gathered}
\Gamma^{ \pm}=-\frac{i g \sqrt{2}}{[2]} W^{ \pm}, \quad \Gamma^{3}=-i g W^{3}, \quad \Gamma^{0}=-\frac{i g}{\lambda} \sqrt{\frac{[4]}{[2]^{3}[3]}} B \\
g=q \kappa \sqrt{\frac{[2]}{[4]}}
\end{gathered}
$$

Then

$$
\begin{aligned}
S_{\mathrm{YM}}= & \frac{1}{[2]}\left\langle\mathrm{d} W^{+} \mid \mathrm{d} W^{-}\right\rangle+\frac{1}{q^{2}[2]}\left\langle\mathrm{d} W^{-} \mid \mathrm{d} W^{+}\right\rangle \\
& +\frac{1}{2}\left\langle\mathrm{~d} W^{3} \mid \mathrm{d} W^{3}\right\rangle+\frac{1}{2}\langle\mathrm{~d} B \mid \mathrm{d} B\rangle \\
& +\frac{i g}{q[2]}\left(\left\langle\mathrm{d} W^{+} \mid W^{3} \wedge W^{-}\right\rangle-\left\langle\mathrm{d} W^{-} \mid W^{3} \wedge W^{+}\right\rangle\right. \\
& +\left\langle\mathrm{d} W^{3} \mid W^{-} \wedge W^{+}\right\rangle+\frac{1}{q^{2}}\left\langle W^{3} \wedge W^{-} \mid \mathrm{d} W^{+}\right\rangle \\
& \left.-q^{2}\left\langle W^{3} \wedge W^{+} \mid \mathrm{d} W^{-}\right\rangle+\left\langle W^{-} \wedge W^{+} \mid \mathrm{d} W^{3}\right\rangle\right) \\
& +\frac{g^{2}}{q[2]}\left(\left\langle W^{3} \wedge W^{+} \mid W^{3} \wedge W^{-}\right\rangle\right. \\
& +\frac{1}{q^{2}}\left\langle W^{3} \wedge W^{-} \mid W^{3} \wedge W^{+}\right\rangle \\
& \left.-\frac{2}{q[2]^{2}}\left\langle W^{-} \wedge W^{+} \mid W^{-} \wedge W^{+}\right\rangle\right)
\end{aligned}
$$

THE HIGGS MECHANISM

The Higgs field is introduced as a complex doublet Φ^{i} living in the fundamental rep of $S U_{q}(2)$:

$$
\Phi=\binom{\phi^{-}}{\phi^{0}}, \quad \Phi^{\dagger}=\left(\begin{array}{cc}
\phi^{+} & \bar{\phi}^{0}
\end{array}\right) .
$$

Under the QG action, these transform respectively as

$$
\Phi^{i} \mapsto U_{j}^{i} \otimes \Phi^{j}, \quad \Phi_{i}^{\dagger} \mapsto S\left(U^{j}\right) \otimes \Phi_{j}^{\dagger}
$$

Noncommutativity of the elements of U requires noncommutativity of the elements of Φ :

$$
\begin{aligned}
\phi^{0} \phi^{ \pm}=\frac{1}{q} \phi^{ \pm} \phi^{0}, & \bar{\phi}^{0} \phi^{ \pm}=q \phi^{ \pm} \bar{\phi}^{0} \\
\phi^{+} \phi^{-}=\phi^{-} \phi^{+}, & \bar{\phi}^{0} \phi^{0}=\phi^{0} \bar{\phi}^{0}-\frac{\lambda}{q} \phi^{+} \phi^{-}
\end{aligned}
$$

$\Phi^{\dagger} \Phi=\overline{\Phi^{i}} \Phi^{i} \equiv \bar{\phi}^{0} \phi^{0}+\phi^{+} \phi^{-}$is central and invariant, so we take the Higgs action to be

$$
S_{\mathrm{H}}=\left\langle(\mathrm{D} \Phi)^{\dagger} \mid \mathrm{D} \Phi\right\rangle-V\left(\Phi^{\dagger} \Phi\right)
$$

THE Z-BOSON AND THE PHOTON

Φ lives in the fundamental, so

$$
\begin{aligned}
\mathrm{D} \phi^{-}= & \mathrm{d} \phi^{-}+\frac{i g}{q[2]}\left(\sqrt{\frac{[4]}{[2][3]}}\left[\frac{1}{2}\right]\left[\frac{3}{2}\right] B+q W^{3}\right) \phi^{-} \\
& +\frac{i g \sqrt{2}}{q[2]} W^{-} \phi^{0}, \\
\mathrm{D} \phi^{0}= & \mathrm{d} \phi^{0}+\frac{i g}{q[2]}\left(\sqrt{\frac{[4]}{[2][3]}}\left[\frac{1}{2}\right]\left[\frac{3}{2}\right] B-\frac{1}{q} W^{3}\right) \phi^{0} \\
& +\frac{i g \sqrt{2}}{q[2]} W^{+} \phi^{-}
\end{aligned}
$$

If we define new fields Z and A by
$W^{3}=\cos \theta_{\mathrm{W}} Z+\sin \theta_{\mathrm{W}} A, \quad B=-\sin \theta_{\mathrm{W}} Z+\cos \theta_{\mathrm{W}} A$, where

$$
\tan \theta_{\mathrm{W}}=q \sqrt{\frac{[4]}{[2][3]}}\left[\frac{1}{2}\right]\left[\frac{3}{2}\right] .
$$

then there is no $A-\phi^{0}$ term and

$$
\begin{aligned}
\mathrm{D} \phi^{-}= & \mathrm{d} \phi^{-}+\frac{i g}{\cos \theta_{\mathrm{W}}}\left(\frac{1}{[2]}-\sin ^{2} \theta_{\mathrm{W}}\right) Z \phi^{-}+\frac{i g \sqrt{2}}{q[2]} W^{-} \phi^{0} \\
& +i g \sin \theta_{\mathrm{W}} A \phi^{-}
\end{aligned}
$$

$$
\mathrm{D} \phi^{0}=\mathrm{d} \phi^{0}-\frac{i g}{q^{2}[2] \cos \theta_{\mathrm{W}}} Z \phi^{0}+\frac{i g \sqrt{2}}{q[2]} W^{+} \phi^{-}
$$

GAUGE BOSON MASSES

Assume the potential V has a minimum (and vanishes) when $\Phi^{\dagger} \Phi=v^{2} / 2$. Take

$$
\left\langle\phi^{ \pm}\right\rangle=0, \quad\left\langle\phi^{0}\right\rangle=\left\langle\bar{\phi}^{0}\right\rangle=\frac{v}{\sqrt{2}}
$$

The masses of the gauge fields are found by evaluating $S_{\text {H }}$ at $\langle\Phi\rangle$:

$$
\begin{aligned}
S_{\mathrm{H} \mid\langle\Phi\rangle} & =m_{W}^{2}\left\langle W^{+} \mid W^{-}\right\rangle+\frac{1}{2} m_{Z}^{2}\langle Z \mid Z\rangle+\frac{1}{2} m_{A}^{2}\langle A \mid A\rangle \\
& =\frac{g^{2} v^{2}}{q^{2}[2]^{2}}\left\langle W^{+} \mid W^{-}\right\rangle+\frac{g^{2} v^{2}}{2 q^{4}[2]^{2} \cos ^{2} \theta_{\mathrm{W}}}\langle Z \mid Z\rangle .
\end{aligned}
$$

SO

$$
m_{A}=0, \quad m_{W}=\frac{g v}{q[2]}=q m_{Z} \cos \theta_{\mathrm{W}}
$$

AND NOW, SOME ACTUAL PHYSICS...

The chosen value for $\tan \theta_{\mathrm{W}}$ has two consequences:

1. A is massless and thus we may identify it with the photon.
2. The $A-\phi^{-}$coupling is $-g \sin \theta_{W}$; call it the electron charge $-e$.

If we assume we live at or very near $q=1$, then we find

$$
\sin ^{2} \theta_{\mathrm{W}}=\frac{3}{11} \approx 0.273, \quad g \approx 0.580
$$

The experimental value for $\sin ^{2} \theta_{\mathrm{W}}$ is 0.2319 , within 20% of the above.

If we take the experimental value of $m_{Z}=91.187 \mathrm{GeV}$, then at $q=1$,

$$
m_{W}=77.76 \mathrm{GeV}, \quad v=268 \mathrm{GeV}
$$

The first is within 3% of the actual mass of 80.22 GeV .

SYMMETRY BREAKING \& ELECTRIC CHARGES

Define two new fields with vanishing VEV:

$$
H=\sqrt{2}\left[\frac{1}{2}\right]\left(\bar{\phi}^{0}+\frac{1}{q} \phi^{0}\right)-v, \quad \phi=\frac{\sqrt{2}}{i q}\left[\frac{1}{2}\right]\left(\phi^{0}-\bar{\phi}^{0}\right)
$$

These obey the commutation relations

$$
\begin{aligned}
H \phi^{ \pm} & =\phi^{ \pm} H+i(1-q) \phi^{ \pm} \phi \\
H \phi & =\phi H+2 i\left(1-\frac{1}{q}\right) \phi^{+} \phi^{-} \\
\phi \phi^{ \pm} & =\left(q+\frac{1}{q}-1\right) \phi^{ \pm} \phi+i\left(1-\frac{1}{q}\right) \phi^{ \pm} H+i\left(1-\frac{1}{q}\right) v \phi^{ \pm}
\end{aligned}
$$

The linear term in the last of the above is linear in the fields and breaks the $S U_{q}(2)$ symmetry.

However, if z is the sole generator of a HA such that

$$
\Delta(z)=z \otimes z, \quad \epsilon(z)=1, \quad S(z)=\theta(z)=z^{-1}
$$

then

$$
H \mapsto 1 \otimes H, \quad \phi \mapsto 1 \otimes \phi, \quad \phi^{ \pm} \mapsto z^{ \pm 1} \otimes \phi^{ \pm}
$$

is a left coaction that leaves the commutation relations invariant. This is the HA obtained from the classical $U(1)$.

Define a new derivative D^{\prime} by subtracting off the VEV of the Higgs:

$$
\begin{aligned}
\mathrm{D}^{\prime} \phi^{-} & =\mathrm{D} \phi^{-}-\frac{i g v}{q[2]} W^{-} \\
\mathrm{D}^{\prime}\left(\phi^{0}-\frac{1}{\sqrt{2}} v\right) & =\mathrm{D} \phi^{0}+\frac{i g v}{q^{2} \sqrt{2}[2] \cos \theta_{\mathrm{W}}} Z .
\end{aligned}
$$

D^{\prime} is a covariant derivative if $z=e^{i e \chi}$ and

$$
W^{ \pm} \mapsto e^{ \pm i e \chi} \otimes W^{ \pm}, \quad Z \mapsto 1 \otimes Z, \quad A \mapsto 1 \otimes A+\delta \chi \otimes 1
$$

which are the gauge transformations for a classical $U(1)$ with gauge field A.

The central element in $U_{q}(s u(2))$ generating the unbroken $u(1)$ algebra is the charge operator

$$
Q=\frac{q}{\lambda[2]\left[\frac{1}{2}\right]\left[\frac{3}{2}\right]} T_{0}+T_{3}
$$

and so the covariant derivative of a field ψ living in rep ρ is

$$
\begin{aligned}
\mathrm{D}^{\prime} \psi= & \mathrm{d} \psi-\frac{i g \sqrt{2}}{[2]}\left[W^{+} \rho\left(T_{+}\right)+W^{-} \rho\left(T_{-}\right)\right] \psi \\
& -\frac{i g}{\cos \theta_{\mathrm{W}}} Z\left[\rho\left(T_{3}\right)-\sin ^{2} \theta_{\mathrm{W}} \rho(Q)\right] \psi-i g \sin \theta_{\mathrm{W}} A \rho(Q) \psi .
\end{aligned}
$$

LEPTONS

Let Ψ^{i} be a (left-handed) lepton doublet living in the fundamental

$$
\Psi=\binom{\psi}{v}, \quad \bar{\Psi}=\left(\begin{array}{ll}
\bar{\psi} & \bar{v}
\end{array}\right)
$$

with anticommutation relations

$$
\begin{aligned}
\psi v=-\frac{1}{q} \nu \psi, & \psi \bar{v}=-q \bar{\nu} \psi \\
\bar{\psi} v=-\frac{1}{q} \nu \psi, & \bar{\psi} \bar{v}=-q \bar{\nu} \psi \\
\psi^{2}=v^{2}= & \bar{\psi}^{2}=\bar{v}^{2}=0
\end{aligned}
$$

$Q=\operatorname{diag}(-1,0)$ in this rep, so we may identify ψ with the electron $(Q=-1)$ and $v(Q=0)$ with the electron neutrino.

Taking \mathbb{D}^{\prime} as the covariant derivative on fermions, then

$$
\begin{aligned}
S_{\mathrm{F}}= & \langle\bar{\psi} \mid i \nexists \psi\rangle+\langle\bar{v} \mid i \not \partial v\rangle \\
& -g \sin \theta_{\mathrm{W}}\langle\bar{\psi} \mid A \psi\rangle-\frac{g \sqrt{2}}{q[2]}\left(\langle\bar{\psi} \mid W v\rangle+\left\langle\bar{v} \mid W^{+} \psi\right\rangle\right) \\
& +\frac{g}{\cos \theta_{\mathrm{W}}}\left[\left(-\frac{1}{[2]}+\sin ^{2} \theta_{\mathrm{W}}\right)\langle\bar{\psi} \mid \nexists \psi\rangle+\frac{1}{q^{2}[2]}\langle\bar{\nu} \mid \nexists v\rangle\right]
\end{aligned}
$$

In the low-energy theory, the $W v \psi$ coupling will result in a four-fermion interaction with the Fermi coupling constant $G_{\mathrm{F}}=\frac{g^{2}}{q^{2}[2]^{2} \sqrt{2} m_{W}^{2}}$. In the $q \rightarrow 1$ limit $G_{\mathrm{F}} \rightarrow$ $0.983 \times 10^{-5} \mathrm{GeV}^{-2}$, about 16% away from the experimental value $1.16639 \times 10^{-5} \mathrm{GeV}^{-2}$.

SO FAR, SO GOOD. BUT...

PROBLEM \#1: Where are the right-handed leptons?

We've incorporated leptons that live in the fundamental rep; at $q=1$, these transform as $S U(2)$ fields, since $T_{0}=0$, and so become left-handed.

Right-handed leptons are $S U(2)$ singlets, but carry $U(1)$ hypercharge, so must be in a rep where $T_{ \pm, 3}$ vanish but T_{0} does not: the "trivial" rep.

Thus, if χ is a fermion living in this "trivial" rep $\underline{\mathrm{tv}^{\prime}}$, its contribution to the action is

$$
\begin{aligned}
\left\langle\bar{\chi} \mid i \underline{\mathrm{v}}^{\prime}\left(\square^{\prime}\right) \chi\right\rangle= & \langle\bar{\chi} \mid i \not \partial \chi\rangle+\frac{2 i[2]}{\lambda}\left\langle\bar{\chi} \mid \nabla^{0} \chi\right\rangle \\
= & \langle\bar{\chi} \mid i \not \partial \chi\rangle-\frac{g}{\cos \theta_{\mathrm{W}}}\left(\frac{2 \sin ^{2} \theta_{\mathrm{W}}}{q \lambda^{2}\left[\frac{1}{2}\right]\left[\frac{3}{2}\right]}\right)\langle\bar{\chi} \mid Z \chi\rangle \\
& +g \sin \theta_{\mathrm{W}}\left(\frac{2}{q \lambda^{2}\left[\frac{1}{2}\right]\left[\frac{3}{2}\right]}\right)\langle\bar{\chi} \mid A \chi\rangle
\end{aligned}
$$

As desired, it couples to the A and Z but not $W^{ \pm}$, but the $q=1$ limit does not exist. And all other reps of $S U_{q}(2)$ will be in a nontrivial rep of $S U(2)$ at $q=1$, so it seems there are no chiral leptons in this theory.

PROBLEM \#2: Weird electric charges!

Recall
$Q=\frac{q}{\lambda[2]\left[\frac{1}{2}\right]\left[\frac{3}{2}\right]} T_{0}+T_{3}, \quad\left(1-\frac{\lambda}{[2]} T_{0}\right)^{2}=1+q^{2} \lambda^{2} J^{2}$,
Eliminating T_{0} and taking the $q \rightarrow 1$ limit gives an $S U_{q}(2)$ analogue of the Gell-Mann-Nishijima relation $\left(Q=T_{3}+Y / 2\right)$:

$$
Q=T_{3}-\frac{2}{3} J^{2}
$$

A state in the isospin- j rep with T_{3}-component m will have charge $m-2 j(j+1) / 3$. So

j	Q
0	0
$\frac{1}{2}$	$-1,0$
1	$-\frac{7}{3},-\frac{4}{3},-\frac{1}{3}$
$\frac{3}{2}$	$-4,-3,-2,-1$
2	$-6,-5,-4,-3,-2$
\vdots	\vdots

The appearance of 3 in the denominator is intriguing; note that if we amend the formula slightly to be

$$
Q=m-\frac{2}{3} j(j+1)-S+1
$$

and let (u, d, s) be an $S U_{q}(2)$ triplet with $S=0$ for the u and d and -1 for the s, then we get charges $2 / 3,-1 / 3$ and $-1 / 3 \ldots$

CONCLUSIONS

PROS:

- A consistent way of extending the structure group, fibre and connection of a fibre bundle to include HA structure
- An $S U_{q}$ (2)-invariant action that includes gauge fields, Higgs bosons and left-handed leptons and agrees with the undeformed action at $q=1$
- Values for $\sin ^{2} \theta_{\mathrm{W}}, m_{W}$ and G_{F} which are within 20% of experimental values, and predicted values for the Higgs VEV and $S U_{q}(2)$ coupling constant.
- Correct electric charges for the left-handed leptons after the QG symmetry is broken to $U(1)$

CONS:

- Unclear picture of what the base space is in the $q \neq 1$ case
- Problems incorporating right-handed leptons into the theory
- Electric charges take on bizarre values

