Anomalous charge tunnelling in fractional quantum Hall edge states

Dario Ferraro Università di Genova

A. Braggio, M. Carrega, N. Magnoli, M. Sassetti

Maynooth, September 5, 2011

Outline

 Edge states tunnelling in Quantum Point Contact geometry

 Neutral mode dynamics: effects on transport properties

Relevance of agglomerate tunnelling

FQHE: bulk

$$\sigma_{xy} = \nu \frac{e^2}{h}$$
$$\nu = \frac{N}{N_{\varphi}}$$

Stormer et al., RMP 98

Incompressibility

Gapped excitations with fractional charge and fractional statistics (Abelian and non-Abelian)

Read & Rezayi, PRB99; Bishara et al., PRB08; Bonderson & Slingerland, PRB08...

FQHE: edge states

Low energy sector of the incompressible fluid

Quantization of the conductance Halperin, PRB82; Buttiker, PRB88; Beenakker, PRL90

Gapless excitations

Same charge and statistics of bulk quasiparticles

Wen & Lee, arXiv:9809160; Levkivsky & Sukhorukov, PRL08;

D. F., A. Braggio, M. Merlo, N. Magnoli, M. Sassetti, PRL 101, 166805 (2008)

Multiple-quasiparticle excitations

Multiple-quasiparticle operators **Bosonization** $\Psi^{(m)}(x) = \frac{1}{\sqrt{2\pi a}} e^{i[\alpha_m \varphi_c(x) + \beta_m \varphi_n(x)]}$ Single quasiparticle • $\Psi^{(1)}(x) = \frac{1}{\sqrt{2\pi a}} e^{i\left[\frac{1}{|p|}\varphi_c(x) + \sqrt{1 + \frac{1}{|p|}}\varphi_n(x)\right]}$ |p|-agglomerate 😁 $\Psi^{(|p|)}(x) = \frac{1}{\sqrt{2\pi a}} e^{i\varphi_c(x)}$

Quantum Point Contact geometry

Extremely weak backscattering: current

u=2/5 p=2,n=1

change in the slope

$$H_B = t_1 \Psi_R^{(1)}(0) \Psi_L^{(1)\dagger}(0) + h.c.$$
$$\Psi^{(1)}(x) = \frac{1}{\sqrt{2\pi a}} e^{i\left[\frac{1}{|p|}\varphi_c(x) + \sqrt{1 + \frac{1}{|p|}}\varphi_n(x)\right]}$$

weak backscattering and $V ightarrow 0^{\circ}$

Comparison with experiments

 $\omega_n \approx 50 \mathrm{mK}$

Finite velocity of neutral modes

Change in slope

Noise

Multiple-quasiparticle tunnelling

Relevance

Different energy scales create two regimes

 $\omega_n \ll E \ll \omega_c$

 $E \ll \omega_c, \omega_n$

Possible crossover between the two excitations

D. F., A. Braggio, M. Merlo, N. Magnoli, M. Sassetti PRL08

Fitting of the experimental data

D. F., A. Braggio, M. Merlo, N. Magnoli, M. Sassetti PRL08

Shot noise $S^{(tot)} = 2e_1^* \left(I_B^{(1)} + pI_B^{(p)} \right) \qquad k_B T \ll e^* V$

Effective charge

Excess noise $S_{B,ex}^{(tot)} = S_B^{(tot)} - 4k_B T G_B^{(tot)}$

Effective charge

 $S_{B,ex}^{(tot)} = 2e_{\text{eff}} \coth\left(\frac{e_{\text{eff}}V}{2k_BT}\right)I_B^{(tot)} - 4k_BTG_B^{(tot)}$

 $\nu = 2/5, p = 2$

 $\omega_n = 50mK$

$$\omega_n/\omega_c = 10^{-2}$$

 $g_c = 3, g_n = 4$ 085323 (2010)

D. F., A. Braggio, N. Magnoli, M. Sassetti, PRB 82, 085323 (2010)

Edge dynamics for $\nu = \frac{5}{2}$ Anti-Pfaffian model Lee et al. PRL07; Levin et al. PRL07 $\mathcal{L} = -\frac{1}{2\pi} \partial_x \varphi_c \left(\partial_t + v_c \partial_x \right) \varphi_c$ $-\frac{1}{4\pi}\partial_x\varphi_n\left(-\partial_t+v_n\partial_x\right)\varphi_n$ $-i\psi\left(-\partial_t+v_n\partial_x\right)\psi$ $[\varphi_c(x), \varphi_c(y)] = i\frac{\pi}{2}\operatorname{sign}(x-y)\left[\varphi_n(x), \varphi_n(y)\right] = -i\pi\operatorname{sign}(x-y)$ ψ Majorana fermion $v_c \gg v_n$ Hu et al. PRB09....

Multiple-quasiparticle operators $\Psi^{(m)}(x) \propto \chi(x) e^{i\left[\left(\frac{m}{2}\right)\varphi_c(x) + \left(\frac{n}{2}\right)\varphi_n(x)\right]}$ $\chi = (1, \psi)(\sigma)$ m, n even m, n odd **Non-Abalian statistics** single-qp $q = \frac{e}{A}$ $\Psi^{(1)}(x) \propto \sigma(x) e^{i\left[\left(\frac{1}{2}\right)\varphi_c(x) + \left(\frac{1}{2}\right)\varphi_n(x)\right]}$ 2-agglomerate $q = \frac{e}{2}$ $\Psi^{(2)}(x) \propto e^{i\varphi_c(x)}$

Comparison with experimental data

M. Carrega, D. F., A. Braggio, N. Magnoli, M. Sassetti, arXiv:1102.5666 (to appear on PRL)

Conclusions

 Tunnelling in the composite edge states of the FQHE

Effects of the neutral modes dynamics

Relevance of agglomerate tunnelling

D. F., A. Braggio, M. Merlo, N. Magnoli, M. Sassetti, PRL 101 166805 (2008);
D. F., A. Braggio, N. Magnoli, M. Sassetti, NJP 12 013012 (2010);
D. F., A. Braggio, N. Magnoli, M. Sassetti, Physica E 42 580 (2010);
D. F., A. Braggio, N. Magnoli, M. Sassetti, PRB 82, 085323 (2010);
M. Carrega, D. F., A. Braggio, N. Magnoli, M. Sassetti, arXiv:1102.5666 (to appear on PRL)

Fano: temperature effect

$$S^{(m)} = 2me^* \operatorname{coth} \left(\frac{me^* V}{2k_m} \right) I_{\mathrm{B}}^{(m)}$$

u = 2/5, p = 2 $\omega_n / \omega_c = 10^{-2}$ $g_c = 1, g_n = 1$ $(|t_2|/|t_1|) = 10$

D. F., A. Braggio, N. Magnoli, M. Sassetti, NJP 12 013012 (2010)

$F_{3} = \frac{(e^{*})^{2} I_{B}^{(1)} + (pe^{*})^{2} I_{B}^{(p)}}{e I_{B}^{(tot)}}$

More stable against thermal effect

w = 2/5 , p = 2 $w_n/w_c = 10^{-2}$

Edge-"phonon" interaction Chiral Luttinger Liquid coupled with 1D phonons Rosenow & Halperin, PRL02 $S_{\chi LL} = \frac{1}{4\pi\nu} \int_{0}^{\beta} d\tau \int_{-\infty}^{+\infty} dx \partial_x \varphi \left(i\partial_\tau + v\partial_x\right) \varphi$ $S_{\rm ph} = \frac{1}{8\pi\tilde{\nu}u} \int_{0}^{\beta} d\tau \int_{-\infty}^{+\infty} dx \xi \left(-\partial_\tau^2 - u^2 \partial_x^2\right) \xi$ $S_{\rm int} = \lambda \int_{0}^{\beta} d\tau \int_{-\infty}^{+\infty} dx \partial_x \xi \partial_x \varphi$ Imaginary time Green's function $\mathcal{D}(0,0,\Omega_n) = g(\rho,\eta) \frac{2\pi\nu}{\Omega_n}$ Renormalization $g(\rho,\eta) = \int_{-\infty}^{+\infty} \frac{dx}{\pi} \frac{1}{1 + x^2(2\rho^2 + 1) + x^4\rho(\rho^3 + 2(\rho - \eta^2)) + x^6\rho^2(\rho - \eta^2)^2}}{1 + x^2(2\rho^2 + 1) + x^4\rho(\rho^3 + 2(\rho - \eta^2)) + x^6\rho^2(\rho - \eta^2)^2}$

1/f noise and dissipation (1)

Dalla Torre et al., Nature Physics 10 $S = \frac{1}{4\pi\nu} \int_{-\infty}^{+\infty} dx \int_{0}^{\beta} d\tau \partial_{x} \varphi (i\partial_{\tau} + v\partial_{x}) \varphi$ $S_{1/f} = i \int_{-\infty}^{+\infty} dx \int_{0}^{\beta} d\tau \rho(x,\tau) f(x,\tau)$

Out of equilibrium noise with spectral density $\langle \tilde{f}(\omega,q)\tilde{f}^*(\omega,q)\rangle = \frac{F}{|\omega|}$

Absorbed energy dissipated by the cooling setup

$$S_{\rm diss} = \frac{\gamma}{4\pi} \int_{-\infty}^{+\infty} dx \int_{0}^{\beta} d\tau d\tau' \frac{\pi^2 \left(\varphi(x,\tau) - \varphi(x,\tau')\right)^2}{\beta^2 \sin^2 \left[\pi(\tau - \tau')/\beta\right]}$$

1/f noise and dissipation (2) Green's functions in the Keldysh picture $\frac{2i\gamma|\omega|+2i\frac{q^2}{(2\pi\nu)^2}\frac{F}{\gamma}}{\frac{1}{(2\pi\nu)^2}(\omega+vq)^2q^2+\gamma^2\omega^2} \qquad \frac{1}{\frac{1}{2\pi\nu}(\omega+vq)q+i\gamma\omega} \\
\frac{1}{\frac{1}{\frac{1}{2\pi\nu}(\omega+vq)q-i\gamma\omega}} \qquad 0$ $\mathbf{G} =$ $G^{K} = \langle \varphi^{\rm cl}(0,t)\varphi^{\rm cl}(0,0)\rangle = -\nu g\ln\left(1+i\omega_{\rho}t\right)$ Renormalization $g = 1 + \frac{1}{(2\pi)^2} \frac{F}{\gamma}$

1/f and dissipation are relevant perturbations with massive coupling constants, it is possible to extend this approach to the disorder-dominated phase of the composite edge states

Noise

 $S = 2(e_1^*I_B^{(1)} + e_p^*I_B^{(p)}) = 2e_1^*(I_B^{(1)} + pI_B^{(p)})$

Extremely weak backscattering: noise

extremely weak backscattering $(t \to 0)$ $I_B \propto t^2 \vee T^{2\nu-2} \qquad eV \ll k_B T$ $I_B \propto t^2 \vee^{2\nu-1} \qquad eV \gg k_B T$ mode dynamics

general solutions at any order in t

Moon, Yi, Kane, Fisher PRL 93 (MC simulations) Yue, Matveev, Glazman PRB 94 (weak interaction expansion $\nu = 1 - \epsilon$) Fendley, Ludwig, Saleur PRL 95, 96 (thermodinamic Bethe Ansatz) Weiss, Egger, Sassetti PRB 95 (real time P.I. $\nu = 1/2 + \epsilon$) Aristov, Woelfle EPL 08 (fermionic representation, RG equation)

extremely weak backscattering

non-universal power law exponent ! minimum !

Other experimental deviations Chang et al., PRL 96; Grayson et al. PRL 98; Glattli et al. Physica E 00; Chang et al. PRL 01; Grayson et al. PRL 01; Hilke PRL 01....

most relevant operators for tunneling processes

 $egin{split} \mathcal{G}_m^k(au) &= \langle T_ au[\Psi_k^{(m)}(0, au)\Psi_k^{(m)\dagger}(0,0)]
angle \ \mathcal{G}_m^k(au) &= rac{1}{2\pi a}\left(rac{1}{1+\omega_c| au|}
ight)^{
ulpha_m^2}\left(rac{1}{1+\omega_n| au|}
ight)^{(eta_m^k)^2} \end{split}$

 $pprox au^{-2\Delta_m^k}$

Skewness

D. F., A. Braggio, N. Magnoli, M. Sassetti, NJP 12 013012 (2010)

Models for the Jain sequence A single mode model can only describe states of the Laughlin sequence

We need to introduce additional neutral modes

Hierarchical model Wen, Zee, PRB 92 Fradkin-Lopez model Lopez, Fradkin, PRB 99

p-1 neutral fields

two neutral fields

We consider a minimal model with only one neutral mode

Neutral mode

dynamical

 $0
eq v_n \ll v_c$

Wen, Zee, PRB 92; Kane, Fisher, Polchinski,PRL 94; Lee, Wen, cond-mat 9809160; Levkivskyi, Sukhorukov,PRB 08; D. F. et al. PRL 08; D. F. et al. NJP 10

topological

Lopez, Fradkin, PRB 99, PRB 01; Chamon, Fradkin, Lopez, PRL 07

$F_{3} = \frac{(e^{*})^{2} I_{B}^{(1)} + (pe^{*})^{2} I_{B}^{(p)}}{e I_{B}^{(tot)}}$

More stable against thermal effect

w = 2/5 , p = 2 $w_n/w_c = 10^{-2}$

Quantum Point Contact geometry

 $H_{B} = t\psi_{qp}^{(+)}(x=0)\psi_{qp}^{(-)*}(x=0) + h.c.$ $I = \nu \frac{e^{2}}{h} \sqrt{-I_{B}}$

Edge states in the Laughlin sequence

chiral Luttinger liquids

$[\phi_c(x),\phi_c(x')]=i\pi u\,\mathrm{sgn}(x-x')\qquad ho(x)=rac{\partial_x\phi_c(x)}{\partial_x}$

Halperin PRB 82; Wen PRL 90, PRB 90,91; MacDonald PRL 90; Lopez, Fradkin PRB 99 ...

Quasiparticles excitations

Fractional charge $e^* = \nu e$

Fractional statistics

 $\mathbb{V}_{\mathrm{qp}}(x)\mathbb{V}_{\mathrm{qp}}(x')=\mathbb{V}_{\mathrm{qp}}(x')\mathbb{V}_{\mathrm{qp}}(x)e^{-i heta\mathrm{sgn}(x-x')}$ $\theta = \pi \nu$

Laughlin PRL 83; Arovas, Schrieffer, Wilczek PRL 84.

Bosonization $\mathbb{\Psi}_{ ext{qp}}(x) = rac{1}{\sqrt{2\pi a}} e^{i \phi_c}$

maximum

minimum

Non-universal power law exponents!

deviations also for electron tunneling between edge-metal and edge-edge: Chang et al., PRL 96; Grayson et al. PRL 98; Glattli et al. Physica E 00; Chang et al. PRL 01; Grayson et al. PRL 01; Hilke PRL 01, Grayson SSC 06

Several proposals

c ph coupling (Heinonen & Eggert PRL 96, Rosenow & Halperin PRL 02, Kihlebnikov PRB 06)
c Interaction (Imura EPL 99, Mandal & Jain PRL 02, Papa & MacDonald PRL 05, D' Agosta et al. PRB 03)
c ge reconstruction (MacDonald et al. J. Phys 93, Chamon & Wen PRB 94, Wan et al. PRL 02, Yang PRL 03)
l ocal filling factor (Sandler et al PRB 98, Roddaro et al. PRL 04, 05, Lal EPL 07, Rosenow & Halperin cond-mat 0806.0869)

Renormalization of the Luttinger parameter

u
ightarrow g
u

Zero frequency noise $S(\omega=0)=\int_{-\infty}^{\infty}dt \langle \{\delta I_B(t),\delta I_B(0)\}
angle$

weak backscattering -> Poissonian process

Noise

Current: temperature effects

u=2/5, p=2i $\omega_n/\omega_c=10^{-2}$

 $g_c = 5.5, g_n = 2$ $(|t_2|/|t_1|) = 10$

Tunneling of p-agglomerates: most relevant process at low energy for $g_n > \nu(1 - 1/p)g_c$