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Excitons in quantum dots as qubits?

Island of reduced bandgap in optically active semiconductor,
e.g. InGaAs in GaAs.

H = Egs
z+g

[
s+E(t) + E∗(t)s−

]

Why not?

Decoherence?

Lifetimes typically . 1ns
. . . but E(t) fast – . 1ps

Inhomogeneity

1/(∆Eg) ∼ 0.01 ps (best 0.3 ps?)
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State preparation by resonant excitation

H = Egs
z + g

[
s+E(t) + E∗(t)s−

]
How to prepare an initial state | ↑〉?

Resonant excitation E(t) = eiEg(t)t|E(t)|,

H → UHU † − iU †dU
dt

= g|E(t)|(s+ + s−),

d~s

dt
= (g|E(t)|, 0, 0)× ~s

X | ↑〉 after pulse when
∫
g|E(t)|dt = π, 3π, 5π, . . ..
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Chirped adiabatic rapid passage

Inhomogeneous ensemble: dot-to-dot fluctuations in Eg, g
⇒ resonant excitation unusable.

Use chirped pulse

E(t) = eiω(t)t|E(t)|
ω(t) = Eg + αt

H = [Eg − ω(t)] sz + 2g|E(t)|sx

1− P↑ ∼ e−g
2|E|2/α.

PRE and R. T. Phillips, Phys. Rev. B 79 165303 (2009);

E. R. Schmigdall, PRE and R. T. Phillips, Phys. Rev. B 81 195306 (2010)
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Chirped adiabatic rapid passage in ensembles

X Works in ensembles despite variation in Eg, g, for all those dots
satisfying adiabatic criterion

∼ ps pulse creates a population equivalent to thermal equilibrium at 0.6 K

Paul Eastham (Trinity College Dublin) Adiabatic control of many-particle states 7 / 21



Experimental implemetations

Single quantum dot in photodiode, pulsed laser excitation

←− 1 exciton/pulse

Chirped excitation
Resonant excitation

[Wu et al., Phys. Rev. Lett. 106 067401 (2011);

Simon et al., Phys. Rev. Lett. 106 166801 (2011).]
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Theoretical models

H =
∑
i

Eg,is
z
i + gi

[
s+
i E(t) + E∗(t)s−i

]
−
∑
〈ij〉

Jij(s
+
i s
−
j )

1 Pairwise coupling
– Stacked quantum dots + Förster
coupling/wavefunction overlap

2 1D chain
– Coupled cavity-QED?

3 Mean-field limit
– Many quantum dots + optical cavity?
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ARP to populate pairwise-coupled dots

Solve equations of motion for pair w/coupling jT , with model pulse,
– duration τ , chirp rate α, centre frequency Eg, peak Rabi frequency g0.

FIG. 1: The calculated population inversion ρ↑↑ for the two-dot system excited by a chirped

Gaussian pulse whose central frequency is resonant with the energy of the two dots, as a function

of the dimensionless chirp ατ2 and exchange inter-dot coupling jT τ and considering four different

coupling strengths g0τ .

with corresponding eigenvalues λS = jT , λT− = −ε̃1/2 − ε̃2/2, λT0 = −jT and λT+ =

ε̃1/2 + ε̃2/2. The singlet and triplet states |S〉 and |T−〉 are entangled states for a system of

two spins. Throughout the paper we use dimensionless parameters ατ 2, g0τ and jT τ .

Population inversion We now demonstrate that robust population inversion can be ob-

tained for interacting two level systems under a wide variety of conditions. The evolution

of the two-state system can be studied through the standard density-matrix approach, by

solving the Liouville equation Figures 1(a)-(d) show the inversion ρ↑↑ for a coupled two-dot

system starting in the spin-down state [ρ↓↓ (t = 0) = 1]. Here we choose the central frequency

of the chirped Gaussian pulse to be resonant with the energy of the two degenerate dots

(ω0 = ε1 = ε2) and four different pulse strengths (g0τ = 1, 2.5, 5, 10) have been considered.

In Fig. 1(a) the coupling strength chosen is just above that required to invert both spins

5

Large g0: fully occupied regions, separated by lines of fringes

Moderate g0: finite jT improves adiabaticity
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Interpretation: Pairwise-coupled dots

H = −α(t− t0)sz + 2g|E(t)|sx + jT s
+s−

| ↑↑〉

| ↑↓〉 − | ↓↑〉
| ↑↓〉+ | ↓↑〉

| ↓↓〉
FIG. 1: The calculated population inversion ρ↑↑ for the two-dot system excited by a chirped

Gaussian pulse whose central frequency is resonant with the energy of the two dots, as a function

of the dimensionless chirp ατ2 and exchange inter-dot coupling jT τ and considering four different

coupling strengths g0τ .

with corresponding eigenvalues λS = jT , λT− = −ε̃1/2 − ε̃2/2, λT0 = −jT and λT+ =

ε̃1/2 + ε̃2/2. The singlet and triplet states |S〉 and |T−〉 are entangled states for a system of

two spins. Throughout the paper we use dimensionless parameters ατ 2, g0τ and jT τ .

Population inversion We now demonstrate that robust population inversion can be ob-

tained for interacting two level systems under a wide variety of conditions. The evolution

of the two-state system can be studied through the standard density-matrix approach, by

solving the Liouville equation Figures 1(a)-(d) show the inversion ρ↑↑ for a coupled two-dot

system starting in the spin-down state [ρ↓↓ (t = 0) = 1]. Here we choose the central frequency

of the chirped Gaussian pulse to be resonant with the energy of the two degenerate dots

(ω0 = ε1 = ε2) and four different pulse strengths (g0τ = 1, 2.5, 5, 10) have been considered.

In Fig. 1(a) the coupling strength chosen is just above that required to invert both spins

5

FIG. 2: Time evolution of the energy eigenvalues of the two-dot system described by the Hamilto-

nian Ĥ ′ [see Eq. (2)]. In (a) which refers to point A in Fig. 1(c), the inversion proceeds through

the transitions |T−〉 → |T0〉 and |T0〉 → |T+〉. In (b), which refers to point B, the inversion occurs

via a two-photon transition, |T−〉 → |T+〉 mediated by the intermediate state |T0〉.

(see the small white sectors in the jT − α plane with ρ↑↑ = 1). Starting from g0τ = 2.5 [see

Fig. 1(b)] and increasing the coupling strength by successive factors of 2 [see Figs. 1(c)-(d)],

results in the emergence of a region of full inversion by adiabatic rapid passage, which opens

up and then develops for increasing strengths. Conventional Rabi oscillation emerges along

the zero chirp line ατ 2 = 0. For finite ατ 2 the results illustrate the expected insensitivity

of the inversion to variations of pulse power, but contain the new feature of a region of the

jT τ −ατ 2 plane in which the system response is not adiabatic and shows fringes. The mech-

anism through which the system can be adiabatically driven from the initial spin-down state

| ↓↓〉 to the fully inverted one | ↑↑〉 is different in the two regions located above and below the

fringes. In the former case [see Fig. 2(a)], the system evolves adiabatically into the spin-up

state | ↑↑〉 through the one-photon transitions |T−〉 = | ↓↓〉 → |T0〉 and |T0〉 → |T+〉 = | ↑↑〉.
In the full inversion region located below the fringes, the crossing between |T−〉 and |T0〉
occurs outside the spectral range of the ARP pulse and the inversion adiabatically proceeds

according to a two-photon transition |T−〉 → |T+〉 which involves |T0〉 as a virtual state [see

Fig. 2(b)]. The coupling induced by such a virtual state is of the order of g20/jT . Hence,

large values of the inter-dot interaction jT will reduce such coupling and make the whole

process no more adiabatic. This is why, as shown in Fig. 1(c), the region of full inversion

located below the fringes vanishes as jT increases.

Entanglement For a system of two dots the intermediate states between the ground

6

A: all crossings inside pulse and adiabiatic. |T−〉 → |T0〉 → |T+〉.
B: |T−〉 crosses |T0〉 outside pulse ∴ |T0〉 unoccupied, but perturbatively
couples |T±〉, recovering adiabaticity.

Diagonal fringes: |T−〉, |T0〉 crossing becoming non-adiabatic.
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Pairwise-coupled dots: creating entangled states

FIG. 2: Time evolution of the energy eigenvalues of the two-dot system described by the Hamilto-

nian Ĥ ′ [see Eq. (2)]. In (a) which refers to point A in Fig. 1(c), the inversion proceeds through

the transitions |T−〉 → |T0〉 and |T0〉 → |T+〉. In (b), which refers to point B, the inversion occurs

via a two-photon transition, |T−〉 → |T+〉 mediated by the intermediate state |T0〉.

(see the small white sectors in the jT − α plane with ρ↑↑ = 1). Starting from g0τ = 2.5 [see

Fig. 1(b)] and increasing the coupling strength by successive factors of 2 [see Figs. 1(c)-(d)],

results in the emergence of a region of full inversion by adiabatic rapid passage, which opens

up and then develops for increasing strengths. Conventional Rabi oscillation emerges along

the zero chirp line ατ 2 = 0. For finite ατ 2 the results illustrate the expected insensitivity

of the inversion to variations of pulse power, but contain the new feature of a region of the

jT τ −ατ 2 plane in which the system response is not adiabatic and shows fringes. The mech-

anism through which the system can be adiabatically driven from the initial spin-down state

| ↓↓〉 to the fully inverted one | ↑↑〉 is different in the two regions located above and below the

fringes. In the former case [see Fig. 2(a)], the system evolves adiabatically into the spin-up

state | ↑↑〉 through the one-photon transitions |T−〉 = | ↓↓〉 → |T0〉 and |T0〉 → |T+〉 = | ↑↑〉.
In the full inversion region located below the fringes, the crossing between |T−〉 and |T0〉
occurs outside the spectral range of the ARP pulse and the inversion adiabatically proceeds

according to a two-photon transition |T−〉 → |T+〉 which involves |T0〉 as a virtual state [see

Fig. 2(b)]. The coupling induced by such a virtual state is of the order of g20/jT . Hence,

large values of the inter-dot interaction jT will reduce such coupling and make the whole

process no more adiabatic. This is why, as shown in Fig. 1(c), the region of full inversion

located below the fringes vanishes as jT increases.

Entanglement For a system of two dots the intermediate states between the ground

6

Could populate (entangled) state |T0〉
– centre pulse on |T−〉, |T0〉 crossing, pulse off before |T0〉|T+〉 crossing
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Pairwise-coupled dots: creating entangled states

(b)
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FIG. 3: (a): time evolution of the energy eigenvalues of an interacting two-dot system. The

continuous colored lines indicate the coupled eigenvalues (i.e., using g0τ = 5), while the thin

dashed lines denote the uncoupled ones (g0 = 0). The dimensionless chirp rate and exchange

coupling are ατ2 = 2 and jT τ = 4, respectively and the central frequency of the ARP pulse is

resonant with the level crossing between the uncoupled |T−〉 and |T0〉 states, ω0 = jT , (see point

A). (b): the population ρ↑↓ relative to the state | ↑↓〉, calculated as a function of the dimensionless

linear chirp ατ2 and exchange coupling jT τ using an ARP pulse with ω0 = jT . The white region

(where ρ↑↓ = 0.5) shows the range of values of chirp and exchange coupling which can be used to

drive the two-system into the entangled state |T0〉.

The adiabatic scheme proposed here could be implemented using two stacked (vertical)

quantum dots at a distance of few nanometers and coupled by Förster energy transfer. Pre-

vious studies have estimated an upper limit of 10 meV for Förster coupling in semiconductor

quantum dots [17]. It is important to recognize that the requirement of exact degeneracy of

the uncoupled transition is relaxed up to the magnitude of this Förster energy. This affords

a route to practical realization of our scheme, as the Förster energy and level splitting can
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FIG. 3: (a): time evolution of the energy eigenvalues of an interacting two-dot system. The

continuous colored lines indicate the coupled eigenvalues (i.e., using g0τ = 5), while the thin

dashed lines denote the uncoupled ones (g0 = 0). The dimensionless chirp rate and exchange

coupling are ατ2 = 2 and jT τ = 4, respectively and the central frequency of the ARP pulse is

resonant with the level crossing between the uncoupled |T−〉 and |T0〉 states, ω0 = jT , (see point

A). (b): the population ρ↑↓ relative to the state | ↑↓〉, calculated as a function of the dimensionless

linear chirp ατ2 and exchange coupling jT τ using an ARP pulse with ω0 = jT . The white region

(where ρ↑↓ = 0.5) shows the range of values of chirp and exchange coupling which can be used to

drive the two-system into the entangled state |T0〉.

The adiabatic scheme proposed here could be implemented using two stacked (vertical)

quantum dots at a distance of few nanometers and coupled by Förster energy transfer. Pre-

vious studies have estimated an upper limit of 10 meV for Förster coupling in semiconductor

quantum dots [17]. It is important to recognize that the requirement of exact degeneracy of

the uncoupled transition is relaxed up to the magnitude of this Förster energy. This affords

a route to practical realization of our scheme, as the Förster energy and level splitting can

8

[R. G. Unanyan, N. V. Vitanov and K. Bergmann, Phys. Rev. Lett. 87 137902 (2001)]
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1D chains

H =
∑
i

−αtszi + 2g|E(t)|sxi + 4J(s+
i s
−
i+1 + h.c.)

Diagonalize with Jordan-Wigner transform

szi = c†ici −
1

2

s−i =
1

2
eiπ

∑
j<i c

†
jcjci = Tici

H = −
∑
k

[
αt

2
+ J cos k]c†kck + 2g|E(t)|

∑
i

sxi
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1D chains

H = −
∑
k

[
αt

2
+ J cos k]c†kck + 2g|E(t)|

∑
i

sxi

Energy levels for N = 4 sites

J<0J>0

J/α

Colors–
N + 1 “bands” labelled with
n =

∑
c†c (Sz/population)

In each band, set of levels from n
fermions in N k-states (S2)

Uniform field conserves S2.
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Mean-field limit

Numerically solve equations of motion in mean-field approx :

H =
∑
i

[−αt]szi + g|E(t)|
[
s+
i + s−i

]
−
∑
i 6=j

Jij(s
+
i s
−
j ),

→−
∑
i 6=j

Jeff[s+
i 〈s−j 〉+ h.c.]

– Exact for Jij = J/N2, N →∞; LMG model for finite N .

Final occupation for g0τ = 3

Loss of adiabaticity for fast chirp

Fan of finite occupation with sharp
boundaries

J ≷ 0 increases (reduces)
occupation/adiabaticity
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Mean-field limit: interpretation

Final occupation for g0τ = 3

J<0J>0

J/α

Loss of adiabaticity for fast chirp

Fan of finite occupation with sharp
boundaries

J ≷ 0 increases (reduces)
occupation/adiabaticity
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Conclusions

Can adiabatically populate a single quantum dot by driving with chirped
laser pulses

In models (anti-)ferromagnetic x-y coupling initially enhances
(suppresses) populations

. . . but too strong coupling J ∼ ατ → no mixing at critical level crossing
→ scheme fails

Virtual transitions allow population even for large J in small systems

Straightforward extensions to generate entangled states
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Future directions

Experimental implementations of entanglement generation,
non-equilibrium condensation

Theoretical modelling of tolerance to fluctuations in Eg,i, gi, J
(random-field models)

Decoherence due to acoustic phonons, Johnson-Nyquist noise

Approaches to probing decoherence, interaction strengths (cf. NMR!)
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