Double Affine Hecke Algebras and Nonsymmetric Macdonald Polynomials

Glen Burella

National University of Ireland, Maynooth

September 5th, 2011

Dilscoll na hérreann Ma Nuad

Outline

- Algebra structure
- Representing D.A.H.A - why?
- Importance of ordering
- Macdonald polynomials
- Models

Motivation

- Representation theory is a powerful tool as it reduces problems in abstract algebra to problems in linear algebra.

Motivation

- Representation theory is a powerful tool as it reduces problems in abstract algebra to problems in linear algebra.
- The theory of special functions, arithmetic and related combinatorics are the classical objectives of representation theory.

Spin Angular Momentum Algebra \longmapsto Pauli Matrices Orbital Angular Momentum \longmapsto Spherical Harmonics

Kac Moody Algebras \longmapsto Kac Moody Characters

Motivation

- Representation theory is a powerful tool as it reduces problems in abstract algebra to problems in linear algebra.
- The theory of special functions, arithmetic and related combinatorics are the classical objectives of representation theory.

> Spin Angular Momentum Algebra \longmapsto Pauli Matrices Orbital Angular Momentum \longmapsto Spherical Harmonics

> Kac Moody Algebras \longmapsto Kac Moody Characters

- Double Affine Hecke Algebra, (D.A.H.A) gives broader view.
- Gives reasons to believe D.A.H.A is this missing link.

The Braid Group B_{n}

- Invertible generators $\left\{T_{i} ; i=1, . ., n-1\right\}$
- Relations:

$$
\begin{aligned}
T_{i} T_{j} & =T_{j} T_{i} \quad|i-j| \geq 2 \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1}
\end{aligned}
$$

note: This is just Yang Baxter equation on braids.

The Braid Group B_{n}

- Invertible generators $\left\{T_{i} ; i=1, . ., n-1\right\}$
- Relations:

$$
\begin{aligned}
T_{i} T_{j} & =T_{j} T_{i} \quad|i-j| \geq 2 \\
T_{i} T_{i+1} T_{i} & =T_{i+1} T_{i} T_{i+1}
\end{aligned}
$$

note: This is just Yang Baxter equation on braids.

- Pictorially we have:

The Braid Group B_{n}

- Furthermore:

note: We see that the Yang Baxter equation on braids is the third Reidemeister move.
- Associate to B_{n} a Hecke Algebra H_{n}. (over some field \mathcal{K})
- If each T_{i} also satisfies the following skein relation:

$$
\left(T_{i}-t^{1 / 2}\right)\left(T_{i}+t^{-1 / 2}\right)=0 \quad t \in \mathcal{K}
$$

- This gives explicit form for inverse:

$$
T_{i}^{-1}=T_{i}-\left(t^{1 / 2}-t^{-1 / 2}\right) \quad t \in \mathcal{K}
$$

Affine Hecke Algebra \mathcal{A}_{n}

- Extend H_{n} to an Affine Hecke Algebra \mathcal{A}_{n}.
- Append to it n invertible operators Y_{i}.
- Relations:

$$
\begin{aligned}
Y_{i} Y_{j} & =Y_{j} Y_{i} \\
T_{i} Y_{j} & =Y_{j} T_{i} \quad j \neq i, i+1 \\
T_{i}^{-1} Y_{i} T_{i}^{-1} & =Y_{i+1}
\end{aligned}
$$

Affine Hecke Algebra \mathcal{A}_{n}

- Extend H_{n} to an Affine Hecke Algebra \mathcal{A}_{n}.
- Append to it n invertible operators Y_{i}.
- Relations:

$$
\begin{aligned}
Y_{i} Y_{j} & =Y_{j} Y_{i} \\
T_{i} Y_{j} & =Y_{j} T_{i} \quad j \neq i, i+1 \\
T_{i}^{-1} Y_{i} T_{i}^{-1} & =Y_{i+1}
\end{aligned}
$$

- Pictorially:

Affine Hecke Algebra \mathcal{A}_{n}

- $T_{i}^{-1} Y_{i} T_{i}^{-1}=Y_{i+1}$

Affine Hecke Algebra \mathcal{A}_{n}

- $T_{i}^{-1} Y_{i} T_{i}^{-1}=Y_{i+1}$
- For example Y_{2} :

Double Affine Hecke Algebra \mathcal{D}_{n}

- Further extend \mathcal{A}_{n} to a Double Affine Hecke Algebra \mathcal{D}_{n}.
- Append to it n invertible operators X_{i}.
- Relations:

$$
\begin{aligned}
X_{i} X_{j} & =X_{j} X_{i} \\
T_{i} X_{j} & =X_{j} T_{i} \quad j \neq i, i+1 \\
T_{i} X_{i} T_{i} & =X_{i+1}
\end{aligned}
$$

Double Affine Hecke Algebra \mathcal{D}_{n}

- Furthermore:

$$
\begin{aligned}
T_{1}^{2} & =Y_{2}^{-1} X_{1} Y_{2} X_{1}^{-1} \\
Y_{i} \tilde{X} & =q \tilde{X} Y_{i} \quad \text { where } \tilde{X}=\prod_{i=1}^{n} X_{i}, q \in \mathcal{K} \\
X_{i} \tilde{Y} & =q^{-1} \tilde{Y} X_{i} \quad \text { where } \tilde{Y}=\prod_{i=1}^{n} Y_{i}, q \in \mathcal{K}
\end{aligned}
$$

Representing \mathcal{D}_{n}

- Look at representation U of \mathcal{D}_{n} on the ring of n variable Laurent polynomials.

Representing \mathcal{D}_{n}

- Look at representation U of \mathcal{D}_{n} on the ring of n variable Laurent polynomials.
- U is irreducible and Y - semisimple.

Representing \mathcal{D}_{n}

- Look at representation U of \mathcal{D}_{n} on the ring of n variable Laurent polynomials.
- U is irreducible and Y - semisimple.
- Y_{i} therefore simultaneously diagonalisable on U .

Representing \mathcal{D}_{n}

- Look at representation U of \mathcal{D}_{n} on the ring of n variable Laurent polynomials.
- U is irreducible and Y - semisimple.
- Y_{i} therefore simultaneously diagonalisable on U .
- Nonsymmetric Macdonald polynomial is a monic simultaneous eigenvector of Y_{i}.
- Nonsymmetric Macdonald polynomials form a basis of U.

Representing \mathcal{D}_{n}

- Polynomial map given by:

$$
\begin{aligned}
X_{i} & \longmapsto x_{i} \\
T_{i} & \longmapsto t^{1 / 2} s_{i}+\frac{\left(t^{1 / 2}-t^{-1 / 2}\right) x_{i+1}}{x_{i}-x_{i+1}}\left(s_{i}-1\right) \\
Y_{i} & \longmapsto T_{i} T_{i+1} \ldots \ldots T_{n-1} \omega T_{1}^{-1} T_{2}^{-1} \ldots . . T_{i-1}^{-1}
\end{aligned}
$$

- s_{i} permutes the variables x_{i} and x_{i+1}.
- $\omega=s_{n-1} \ldots s_{1} \tau_{1}$ with $\tau_{i} x_{j}=q^{\delta_{i j}} x_{j}$.

Namely, $\omega f\left(x_{1} x_{2} . . x_{n}\right)=f\left(q x_{n} x_{1} x_{2} . . x_{n-1}\right)$ for any $f \in U$.

Examples ($\mathrm{n}=3$ case)

- $X_{1}\left(x_{1}\right)=x_{1}^{2}$
- $X_{2}\left(x_{1}\right)=x_{2} x_{1}$
- $T_{1}\left(x_{2}\right)=t^{1 / 2} x_{1}+\left(t^{1 / 2}-t^{-1 / 2}\right) x_{2}$
- $T_{2}\left(x_{2}\right)=t^{-1 / 2} x_{3}$
- $Y_{1}\left(x_{1}\right)=q t x_{1}+q(t-1) x_{2}+q(t-1) x_{3}$
- $Y_{3}\left(x_{2}\right)=t^{-1} x_{2}+q(1-t) x_{3}$
- $Y_{2}\left(x_{3}^{2}\right)=t^{-1} x_{3}^{2}+\left(t^{-1}-1\right) x_{2} x_{3}$

Ordering

- Define an ordering \succ such that Y_{i} is triangular.
- Definition \succ :

$$
\lambda \succ \mu \Leftrightarrow\left(\lambda^{+}>\mu^{+}\right) \text {or }\left(\lambda^{+}=\mu^{+} \text {and } \lambda>\mu\right)
$$

- Here $>$ is the dominance ordering:

$$
\lambda \geq \mu \Leftrightarrow \sum_{j=1}^{\prime} \lambda_{j} \geq \sum_{j=1}^{I} \mu_{j} \text { for any } 1 \leq I \leq n
$$

- For example under this ordering $x^{\lambda} \succ x^{\mu}$ when $\lambda=(2,0,0)$ and $\mu=(1,1,0)$.

$$
x_{1}^{2} x_{2}^{0} x_{3}^{0} \succ x_{1}^{1} x_{2}^{1} x_{3}^{0}
$$

Ordering

- Action of Y_{i} on any polynomial now given by:

$$
Y_{i}\left(x^{\lambda}\right)=t^{\rho(\lambda)_{i}} q^{\lambda_{i}} x^{\lambda}+\sum_{\mu \prec \lambda} c_{\lambda, \mu} x^{\mu}
$$

- Recall:

$$
\begin{aligned}
Y_{1}\left(x_{1}\right)=q t x_{1} & +q(t-1) x_{2}+q(t-1) x_{3} \\
& \Rightarrow \rho(\lambda)_{i}=1 \\
Y_{3}\left(x_{2}\right) & =t^{-1} x_{2}+q(1-t) x_{3} \\
& \Rightarrow \rho(\lambda)_{i}=-1
\end{aligned}
$$

Ordering

- Action of Y_{i} on any polynomial now given by:

$$
Y_{i}\left(x^{\lambda}\right)=t^{\rho(\lambda)_{i}} q^{\lambda_{i}} x^{\lambda}+\sum_{\mu \prec \lambda} c_{\lambda, \mu} x^{\mu}
$$

- Recall:

$$
\begin{aligned}
Y_{1}\left(x_{1}\right)=q t x_{1} & +q(t-1) x_{2}+q(t-1) x_{3} \\
& \Rightarrow \rho(\lambda)_{i}=1 \\
Y_{3}\left(x_{2}\right) & =t^{-1} x_{2}+q(1-t) x_{3} \\
& \Rightarrow \rho(\lambda)_{i}=-1
\end{aligned}
$$

- Since Y_{i} is triangular under \succ, the action of Y_{i} on polynomials gives rise to triangular matrices.
- Easily diagonalisable!

Matrix Representation ($n=3$ case)

Here are the matrices corresponding to the action of Y_{1}, Y_{2} and Y_{3} on degree zero and degree one polynomials with the basis $\left\{1, x_{1}, x_{2}, x_{3}\right\}$.

$$
\begin{gathered}
Y_{1}=\left[\begin{array}{cccc}
t & 0 & 0 & 0 \\
0 & q t & 0 & 0 \\
0 & q(t-1) & 1 & 0 \\
0 & q(t-1) & 0 & 1
\end{array}\right] Y_{3}=\left[\begin{array}{cccc}
t^{-1} & 0 & 0 & 0 \\
0 & t^{-1} & 0 & 0 \\
0 & 0 & t^{-1} & 0 \\
0 & q\left(t^{-1}-1\right) & q(1-t) & q t
\end{array}\right] \\
Y_{2}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & q(1-t) & q t & 0 \\
0 & q\left(2-t-t^{-1}\right) & q(t-1) & t^{-1}
\end{array}\right]
\end{gathered}
$$

Nonsymmetric Macdonald Polynomials ($\mathrm{n}=3$ case)

- Monic eigenvectors satisfying all of the above matrices easily obtained.
- These are nonsymmetric Macdonald polynomials E_{λ}.
- For the above we obtain:

$$
\begin{aligned}
& E_{(0,0,0)}=1 \\
& E_{(1,0,0)}=x_{1}+\frac{q(t-1)}{q t-1} x_{2}+\frac{q(t-1)}{q t-1} x_{3} \\
& E_{(0,1,0)}=x_{2}+\frac{q(t-1)}{q t-t^{-1}} x_{3} \\
& E_{(0,0,1)}=x_{3}
\end{aligned}
$$

Nonsymmetric Macdonald Polynomials ($\mathrm{n}=3$ case)

- For degree two polynomials:

$$
\begin{aligned}
& \begin{aligned}
& E_{(2,0,0)}= x_{1}^{2}+ \\
&+\frac{q^{2}(t-1)}{q^{2} t-1} x_{2}^{2}+\frac{q^{2}(t-1)}{q^{2} t-1} x_{3}^{2}+\frac{q(t-1)(q+1)}{q^{2} t-1} x_{1} x_{2} \\
&+\frac{q(t-1)(q+1)}{q^{2} t-1} x_{1} x_{3}+\frac{q^{2}(t-1)^{2}(q+1)}{(q t-1)\left(q^{2} t-1\right)} x_{2} x_{3}
\end{aligned} \\
& E_{(0,2,0)}= x_{2}^{2}+\frac{q^{2} t(t-1)}{q^{2} t^{2}-1} x_{1} x_{2}+\frac{q^{2} t(t-1)^{2}}{\left(q^{2} t^{2}-1\right)(q t-1)} x_{1} x_{3} \\
&+\frac{\left(q^{3} t^{2}+q^{2} t^{2}-q^{2} t-1\right)(t-1)}{\left(q^{2} t^{2}-1\right)(q t-1)} x_{2} x_{3} \\
& E_{(0,0,2)}= x_{3}^{2}+\frac{t-1}{(q t-1)} x_{1} x_{3}+\frac{t-1}{(q t-1)} x_{2} x_{3}
\end{aligned}
$$

Applications

- Examples where these D.A.H.A polynomials are deformed Q.H.E wave functions.

Applications

- Examples where these D.A.H.A polynomials are deformed Q.H.E wave functions.

In fact the vanishing conditions obeyed by the polynomials are the q-deformed vanishing conditions of the Q.H.E wavefunctions.

- Also shows that the polynomials are related to components of loop model ground states.
- Related to other integrable models?

Acknowledgements

- Jiri Vala
- Paul Watts
- Vincent Pasquier

Investing in
People and Ideas

References

- Kasatani, M: Subrepresentations in the Polynomial Representation of the Double Affine Hecke Algebra of type $G L_{n}$ at $t^{k+1} q^{r-1}=1$. International Mathematics Research Notices 2005, No. 28 [arXiv:math/0501272v1]
- Pasquier, V and Kasatani, M: On Polynomials Interpolating Between the Stationary State of a O(n) Model and a Q.H.E Ground State. Communications in Mathematical Physics 276, 397-435 (2007) [arXiv:cond-mat/0608160v3]
- Cherednik, I: Double Affine Hecke Algebras, Cambridge University Press, 2005

