Introduction	Algebras	Representations	Diagonalisation	Outro

Double Affine Hecke Algebras and Nonsymmetric Macdonald Polynomials

Glen Burella

National University of Ireland, Maynooth

September 5th, 2011

Investing in People and Ideas

Irish Research Council for Science, Engineering and Technology

Introduction	Algebras	Representations	Diagonalisation	Outro
••	0000000	000	00000	000
Outline				

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Algebra structure
- Representing D.A.H.A why?
- Importance of ordering
- Macdonald polynomials
- Models

Introduction	Algebras	Representations	Diagonalisation	Outro
○●	0000000	000	00000	000
Motivation				

• Representation theory is a powerful tool as it reduces problems in abstract algebra to problems in linear algebra.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Algebras	Representations	Diagonalisation	Outro
○●	0000000	000	00000	000
Motivation				

- Representation theory is a powerful tool as it reduces problems in abstract algebra to problems in linear algebra.
- The theory of special functions, arithmetic and related combinatorics are the classical objectives of representation theory.

Spin Angular Momentum Algebra → Pauli Matrices Orbital Angular Momentum → Spherical Harmonics Kac Moody Algebras → Kac Moody Characters

Introduction	Algebras	Representations	Diagonalisation	Outro
○●	0000000	000	00000	000
Motivation				

- Representation theory is a powerful tool as it reduces problems in abstract algebra to problems in linear algebra.
- The theory of special functions, arithmetic and related combinatorics are the classical objectives of representation theory.

Spin Angular Momentum Algebra → Pauli Matrices Orbital Angular Momentum → Spherical Harmonics Kac Moody Algebras → Kac Moody Characters

- Double Affine Hecke Algebra, (D.A.H.A) gives broader view.
- Gives reasons to believe D.A.H.A is this missing link.

Introduction	Algebras	Representations	Diagonalisation	Outro
00	••••	000	00000	000
The Braid G	Froup B _n			

- Invertible generators $\{T_i; i = 1, .., n-1\}$
- Relations:

$$T_i T_j = T_j T_i \quad |i - j| \ge 2$$

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

note: This is just Yang Baxter equation on braids.

Introduction	Algebras	Representations	Diagonalisation	Outro
00	•••••	000	00000	000
The Braid G	roup <i>B_n</i>			

- Invertible generators $\{T_i; i = 1, .., n-1\}$
- Relations:

$$T_i T_j = T_j T_i \quad |i - j| \ge 2$$

$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$$

note: This is just Yang Baxter equation on braids.

• Pictorially we have:

• Furthermore:

<u>note:</u> We see that the Yang Baxter equation on braids is the third Reidemeister move.

Introduction	Algebras	Representations	Diagonalisation	Outro
00	○○●○○○○	000	00000	000
Hecke Alge	bra <i>H_n</i>			

- Associate to B_n a Hecke Algebra H_n . (over some field \mathcal{K})
- If each T_i also satisfies the following skein relation:

$$(T_i - t^{1/2})(T_i + t^{-1/2}) = 0 \qquad t \in \mathcal{K}$$

• This gives explicit form for inverse:

$$T_i^{-1} = T_i - (t^{1/2} - t^{-1/2}) \qquad t \in \mathcal{K}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Extend H_n to an Affine Hecke Algebra A_n .
- Append to it n invertible operators Y_i .
- Relations:

$$Y_i Y_j = Y_j Y_i$$

$$T_i Y_j = Y_j T_i \qquad j \neq i, i+1$$

$$T_i^{-1} Y_i T_i^{-1} = Y_{i+1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Extend H_n to an Affine Hecke Algebra \mathcal{A}_n .
- Append to it n invertible operators Y_i .
- Relations:

$$Y_i Y_j = Y_j Y_i$$

$$T_i Y_j = Y_j T_i \qquad j \neq i, i+1$$

$$T_i^{-1} Y_i T_i^{-1} = Y_{i+1}$$

• Pictorially:

Introduction 00	Algebras ○○○○●○○	Representations 000	Diagonalisation 00000	Outro 000		
Affine Heck	Affine Hecke Algebra \mathcal{A}_n					

•
$$T_i^{-1} Y_i T_i^{-1} = Y_{i+1}$$

- Further extend A_n to a Double Affine Hecke Algebra D_n .
- Append to it n invertible operators X_i .
- Relations:

$$X_i X_j = X_j X_i$$

$$T_i X_j = X_j T_i \qquad j \neq i, i+1$$

$$T_i X_i T_i = X_{i+1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction Algebras Representations Diagonalisation Outro

Double Affine Hecke Algebra \mathcal{D}_n

• Furthermore:

$$\begin{array}{lll} T_1^2 &=& Y_2^{-1}X_1Y_2X_1^{-1}\\ Y_i\tilde{X} &=& q\tilde{X}Y_i & \text{ where } \tilde{X} = \prod_{i=1}^n X_i \ , q \in \mathcal{K}\\ X_i\tilde{Y} &=& q^{-1}\tilde{Y}X_i & \text{ where } \tilde{Y} = \prod_{i=1}^n Y_i \ , q \in \mathcal{K} \end{array}$$

Introduction	Algebras	Representations	Diagonalisation	Outro
00	0000000	●00	00000	000
Representing	\mathcal{D}_n			

• Look at representation U of \mathcal{D}_n on the ring of n variable Laurent polynomials.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Algebras	Representations	Diagonalisation	Outro
00	0000000	●00	00000	000
Representing	\mathcal{D}_n			

• Look at representation U of \mathcal{D}_n on the ring of n variable Laurent polynomials.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• U is irreducible and Y- semisimple.

Introduction	Algebras	Representations	Diagonalisation	Outro
00	0000000	●00	00000	000
Representing	\mathcal{D}_n			

• Look at representation U of \mathcal{D}_n on the ring of n variable Laurent polynomials.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- U is irreducible and Y- semisimple.
- Y_i therefore simultaneously diagonalisable on U.

Introduction	Algebras	Representations	Diagonalisation	Outro
00	0000000	●00	00000	000
Representing	\mathcal{D}_n			

- Look at representation U of \mathcal{D}_n on the ring of n variable Laurent polynomials.
- U is irreducible and Y- semisimple.
- Y_i therefore simultaneously diagonalisable on U.
- Nonsymmetric Macdonald polynomial is a monic simultaneous eigenvector of *Y_i*.

• Nonsymmetric Macdonald polynomials form a basis of U.

Introduction	Algebras	Representations	Diagonalisation	Outro
		000		
Represent	$\operatorname{vin}_{\sigma}\mathcal{D}$			
ricpresent	$\nu_n \leq \nu_n$			

• Polynomial map given by:

$$\begin{array}{rcl} X_i &\longmapsto & x_i \\ T_i &\longmapsto & t^{1/2}s_i + \frac{(t^{1/2} - t^{-1/2})x_{i+1}}{x_i - x_{i+1}}(s_i - 1) \\ Y_i &\longmapsto & T_i T_{i+1} T_{n-1} \omega \, T_1^{-1} T_2^{-1} T_{i-1}^{-1} \end{array}$$

• s_i permutes the variables x_i and x_{i+1} .

•
$$\omega = s_{n-1}...s_1\tau_1$$
 with $\tau_i x_j = q^{\delta_{ij}}x_j$.
Namely, $\omega f(x_1x_2..x_n) = f(qx_nx_1x_2..x_{n-1})$
for any $f \in U$.

Introduction	Algebras	Representations	Diagonalisation	Outro
00	0000000	00●	00000	000
Examples (n	=3 case)			

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

•
$$X_1(x_1) = x_1^2$$

• $X_2(x_1) = x_2x_1$
• $T_1(x_2) = t^{1/2}x_1 + (t^{1/2} - t^{-1/2})x_2$
• $T_2(x_2) = t^{-1/2}x_3$
• $Y_1(x_1) = qtx_1 + q(t-1)x_2 + q(t-1)x_3$
• $Y_3(x_2) = t^{-1}x_2 + q(1-t)x_3$
• $Y_2(x_3^2) = t^{-1}x_3^2 + (t^{-1} - 1)x_2x_3$

Introduction	Algebras	Representations	Diagonalisation	Outro
00	0000000	000	●0000	000
Ordering				

- Define an ordering \succ such that Y_i is triangular.
- <u>Definition ≻:</u>

$$\lambda \succ \mu \Leftrightarrow (\lambda^+ > \mu^+) \text{ or } (\lambda^+ = \mu^+ \text{ and } \lambda > \mu)$$

• Here > is the dominance ordering:

$$\lambda \ge \mu \Leftrightarrow \sum_{j=1}^{l} \lambda_j \ge \sum_{j=1}^{l} \mu_j \text{ for any } 1 \le l \le n.$$

• For example under this ordering $x^{\lambda} \succ x^{\mu}$ when $\lambda = (2, 0, 0)$ and $\mu = (1, 1, 0)$.

$$x_1^2 x_2^0 x_3^0 \succ x_1^1 x_2^1 x_3^0$$

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction	Algebras	Representations	Diagonalisation	Outro
00	0000000	000	o●ooo	000
Ordering				

• Action of Y_i on any polynomial now given by:

$$Y_i(x^\lambda) = t^{
ho(\lambda)_i} q^{\lambda_i} x^\lambda + \sum_{\mu \prec \lambda} c_{\lambda,\mu} x^\mu$$

• Recall:

$$egin{aligned} Y_1(x_1) &= qtx_1 + q(t-1)x_2 + q(t-1)x_3 \ &\Rightarrow
ho(\lambda)_i = 1 \ Y_3(x_2) &= t^{-1}x_2 + q(1-t)x_3 \ &\Rightarrow
ho(\lambda)_i = -1 \end{aligned}$$

Introduction	Algebras	Representations	Diagonalisation	Outro
00	0000000	000	○●○○○	000
Ordering				

• Action of Y_i on any polynomial now given by:

$$Y_i(x^\lambda) = t^{
ho(\lambda)_i} q^{\lambda_i} x^\lambda + \sum_{\mu \prec \lambda} c_{\lambda,\mu} x^\mu$$

Recall:

$$egin{aligned} Y_1(x_1) &= qtx_1 + q(t-1)x_2 + q(t-1)x_3 \ &\Rightarrow
ho(\lambda)_i = 1 \ Y_3(x_2) &= t^{-1}x_2 + q(1-t)x_3 \ &\Rightarrow
ho(\lambda)_i = -1 \end{aligned}$$

- Since *Y_i* is triangular under ≻, the action of *Y_i* on polynomials gives rise to triangular matrices.
- Easily diagonalisable!

Matrix Representation (n=3 case)

Here are the matrices corresponding to the action of Y_1 , Y_2 and Y_3 on degree zero and degree one polynomials with the basis $\{1, x_1, x_2, x_3\}$.

$$Y_{1} = \begin{bmatrix} t & 0 & 0 & 0 \\ 0 & qt & 0 & 0 \\ 0 & q(t-1) & 1 & 0 \\ 0 & q(t-1) & 0 & 1 \end{bmatrix} Y_{3} = \begin{bmatrix} t^{-1} & 0 & 0 & 0 \\ 0 & t^{-1} & 0 & 0 \\ 0 & 0 & t^{-1} & 0 \\ 0 & q(t^{-1}-1) & q(1-t) & qt \end{bmatrix}$$
$$Y_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & q(1-t) & qt & 0 \\ 0 & q(2-t-t^{-1}) & q(t-1) & t^{-1} \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

- Monic eigenvectors satisfying all of the above matrices easily obtained.
- These are nonsymmetric Macdonald polynomials E_{λ} .
- For the above we obtain:

$$\begin{array}{rcl} E_{(0,0,0)} = & 1 \\ E_{(1,0,0)} = & x_1 + \frac{q(t-1)}{qt-1} x_2 + \frac{q(t-1)}{qt-1} x_3 \\ E_{(0,1,0)} = & x_2 + \frac{q(t-1)}{qt-t^{-1}} x_3 \\ E_{(0,0,1)} = & x_3 \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• For degree two polynomials:

$$\begin{split} \mathcal{E}_{(2,0,0)} &= x_1^2 + \frac{q^2(t-1)}{q^2t-1} x_2^2 + \frac{q^2(t-1)}{q^2t-1} x_3^2 + \frac{q(t-1)(q+1)}{q^2t-1} x_1 x_2 \\ &+ \frac{q(t-1)(q+1)}{q^2t-1} x_1 x_3 + \frac{q^2(t-1)^2(q+1)}{(qt-1)(q^2t-1)} x_2 x_3 \end{split}$$

$$\begin{split} \mathsf{E}_{(0,2,0)} &= x_2^2 + \frac{q^2 t (t-1)}{q^2 t^2 - 1} x_1 x_2 + \frac{q^2 t (t-1)^2}{(q^2 t^2 - 1) (qt-1)} x_1 x_3 \\ &+ \frac{(q^3 t^2 + q^2 t^2 - q^2 t - 1) (t-1)}{(q^2 t^2 - 1) (qt-1)} x_2 x_3 \end{split}$$

$$E_{(0,0,2)} = x_3^2 + rac{t-1}{(qt-1)}x_1x_3 + rac{t-1}{(qt-1)}x_2x_3$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Introduction	Algebras	Representations	Diagonalisation	Outro
00	0000000	000	00000	●00
Applications				

• Examples where these D.A.H.A polynomials are deformed Q.H.E wave functions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	Algebras	Representations	Diagonalisation	Outro
00	0000000	000	00000	●00
Applications				

• Examples where these D.A.H.A polynomials are deformed Q.H.E wave functions.

In fact the vanishing conditions obeyed by the polynomials are the q-deformed vanishing conditions of the Q.H.E wavefunctions.

• Also shows that the polynomials are related to components of loop model ground states.

• Related to other integrable models?

Introduction	Algebras	Representations	Diagonalisation	Outro
00	0000000	000	00000	0●0
Acknowledge	ements			

- Jiri Vala
- Paul Watts
- Vincent Pasquier

Irish Research Council for Science, Engineering and Technology

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Algebras	Representations	Diagonalisation	Outro
00	0000000	000	00000	00●
References				

- Kasatani, M: Subrepresentations in the Polynomial Representation of the Double Affine Hecke Algebra of type GL_n at $t^{k+1}q^{r-1} = 1$. International Mathematics Research Notices 2005, No.28 [arXiv:math/0501272v1]
- Pasquier, V and Kasatani, M: On Polynomials Interpolating Between the Stationary State of a O(n) Model and a Q.H.E Ground State. Communications in Mathematical Physics 276, 397-435 (2007) [arXiv:cond-mat/0608160v3]

(日) (同) (三) (三) (三) (○) (○)

• Cherednik, I: Double Affine Hecke Algebras, Cambridge University Press, 2005