Topological Qubit Design and Leakage

Robert Ainsworth

National University of Ireland, Maynooth

September 8, 2011

3

・ロン ・回と ・ヨン ・ヨン

Robert Ainsworth Topological Qubit Design and Leakage

T.Q.C. Leakage Braid Group

Overview

- Designing topological qubits, the braid group, leakage errors.
- Designing the optimal qubit/qudit.
- Possible leakage-free two-qubit gates.
- Summary, future work.

Topological Qubit Design and Leakage:

- New Journal of Physics 2011 New J. Phys. 13 075006
- ArXiv arXiv:1102.5029v1

T.Q.C. Leakage Braid Group

Topological Quantum Computation¹

• Collection of anyons.

¹N.E. Bonesteel, L. Hormozi, G. Zikos, and S.H. Simon. Braid topologies for quantum computation. Phys. Rev. Letters., 95(140503), 2005.

T.Q.C. Leakage Braid Group

Topological Quantum Computation¹

- Collection of anyons.
- $\bullet\,$ Hilbert space is fusion space of anyons \rightarrow no tensor product structure.

T.Q.C. Leakage Braid Group

Topological Quantum Computation¹

- Collection of anyons.
- $\bullet\,$ Hilbert space is fusion space of anyons \to no tensor product structure.
- Associate qubits with small groups of anyons.
- Computational space is the tensor product of qubit spaces.

¹N.E. Bonesteel, L. Hormozi, G. Zikos, and S.H. Simon. Braid topologies for quantum computation. Phys. Rev. Letters., 95(140503), 2005.

T.Q.C. Leakage Braid Group

Leakage

Example:

- 3-anyon qubit composed of Fibonacci anyons, γ_i .
- Fibonacci anyon fusion rules:

$$1 \otimes 1 = 1$$
$$\gamma \otimes 1 = \gamma$$

- Set overall charge to be γ : $((\bullet \bullet) \bullet)_{\gamma}$.
- γ_1 and γ_2 can fuse to 1 or γ :

•
$$|0\rangle_L = ((\bullet \ \bullet)_1 \ \bullet)_{\gamma}$$

• $|1\rangle_L = ((\bullet \ \bullet)_{\gamma} \ \bullet)_{\gamma}$

• But could have: $|N.C.\rangle = ((\bullet \ \bullet)_{\gamma} \ \bullet)_1.$

・ロン ・回 と ・ ヨ と ・ ヨ と

T.Q.C. Leakage Braid Group

Leakage

Braiding only changes the topological charge at the point where

the braiding takes place.

・ロト ・回ト ・ヨト ・ヨト

æ

Leakage

Braiding only changes the topological charge at the point where

the braiding takes place.

Two qubit gate: Only braiding between the qubits can change overall charge of qubits.

T.Q.C. Leakage Braid Group

The Braid Group, B_n

- Describes all possible braids on *n* particles.
- Generators: τ_i swaps particle i with particle i+1
- Relations:

$$\tau_i \tau_j = \tau_j \tau_i \text{ [if } |i-j| \ge 2]$$
(1)
$$\tau_i \tau_{i+1} \tau_i = \tau_{i+1} \tau_i \tau_{i+1}$$
(2)

• Generators of the braid group are conjugate to each other.

T.Q.C. Leakage Braid Group

Conjugacy of Braid Generators

• Start with τ_1

Robert Ainsworth Topological Qubit Design and Leakage

・ロン ・回 と ・ ヨ と ・ ヨ と

Э

T.Q.C. Leakage Braid Group

Conjugacy of Braid Generators

- Start with τ_1
- Conjugate by $T = (\tau_2 \tau_3 \tau_1 \tau_2)$

・ロン ・回と ・ヨン・

Э

T.Q.C. Leakage Braid Group

Conjugacy of Braid Generators

- Start with τ_1
- Conjugate by $\mathcal{T} = (\tau_2 \tau_3 \tau_1 \tau_2)$
- $T\tau_1 T^{-1} = \tau_3$

・ロト ・回ト ・ヨト

< ∃>

э

Max Number of Anyons Qudits

Optimal Qubit

If it is experimentally hard to manipulate many anyons:

• The less anyons we need the better.

Max Number of Anyons Qudits

Optimal Qubit

If it is experimentally hard to manipulate many anyons:

• The less anyons we need the better.

Two-anyon qubit

 \rightarrow not universal

Max Number of Anyons Qudits

Optimal Qubit

If it is experimentally hard to manipulate many anyons:

• The less anyons we need the better.

Two-anyon qubit Three-anyon qubit \rightarrow not universal \rightarrow can be universal^2

Max Number of Anyons Qudits

Optimal Qubit

If it is experimentally hard to manipulate many anyons:

- The less anyons we need the better.

Max Number of Anyons Qudits

Optimal Qubit

If it is experimentally **easy** to manipulate many anyons:

- More anyons per qubit means less reliance on two-qubit gates.
- Possible to avoid leakage.

Q: What is the highest number of anyons a qubit can contain.

Max Number of Anyons Qudits

Qubits as Braid Group Representations

- Obtain a representation of B_n , n = number of anyons in qubit.
- Hilbert space of a qubit is two dimensional.
- Logic operations on qubits are unitary.
- Represent the braid generators as matrices in U(2).
- Divide representation by determinant \rightarrow SU(2).

Max Number of Anyons Qudits

Representation of Qubit

Abelian vs. non-Abelian:

Abelian Group

Representation is the sum of 1 dimensional representations \rightarrow non-universal.

Non-Abelian Group

Representation is not reducible into 1 dimensional representations \rightarrow can be universal.

Find largest n for which 2-d representations of B_n can be non-Abelian.

・ロン ・回 と ・ ヨ と ・ ヨ と

Max Number of Anyons Qudits

Maximum Number of Anyons

- By relation (1), all $\tau_{\it odd}$ can be simultaneously diagonalised.
- By relation (2), if two neighbouring generators commute they are equal.

Max Number of Anyons Qudits

Maximum Number of Anyons

- \bullet By relation (1), all τ_{odd} can be simultaneously diagonalised.
- By relation (2), if two neighbouring generators commute they are equal.

Consider n = 5:

- 4 generators: τ_1, τ_3 are diagonal.
- τ₄ commutes with τ₁ ⇒ τ₄ is diagonal (unless τ₁ is a multiple of I).
- τ_4 now commutes with $\tau_3 \rightarrow$ neighbours commute \Rightarrow Abelian.
- \Rightarrow Not true for n < 5.

Max Number of Anyons Qudits

Maximum Number of Anyons

For Qubits

We must have n < 5.

If $n \ge 5$:

• Uninteresting 1-qubit braiding.

OR

• Universality but with leakage.

OR

• Higher dimensional computational space.

소리가 소문가 소문가 소문가

Max Number of Anyons Qudits

Maximal Number of Anyons for Qudits, d > 2

- For d = 2, have shown n < 5.
- Would like to find similar result for d > 2.
- Won't explicitly use the braid group, only arguments which apply to any exchange group.

Max Number of Anyons Qudits

Maximal Number of Anyons for Qudits, d > 2

- For d = 2, have shown n < 5.
- Would like to find similar result for d > 2.
- Won't explicitly use the braid group, only arguments which apply to any exchange group.

イロト イポト イヨト イヨト

Max Number of Anyons Qudits

Maximal Number of Anyons for Qudits, d >2

Assumed Properties:

- Generators which don't involve the same object commute.
- Interpretent of the property of the propert
- Generators are conjugate to each other, also any adjacent pair is conjugate to any other adjacent pair.

ヘロン 人間 とくほど くほとう

Max Number of Anyons Qudits

Upper Limit on *n*

- Consider: *d*-dimensional representation, χ , of some exchange group on *n* excitations.
- Choose basis: σ_{odd} are simultaneously diagonalisable.
- For $n \ge 5$ no two σ_{odd} can be equal:
 - Take n = 5 and let $\sigma_1 = \sigma_3$.
 - σ_4 and σ_1 commute (physically separated).
 - $\sigma_3 = \sigma_1 \Rightarrow \sigma_4$ and σ_3 commute \Rightarrow Abelian.

Max Number of Anyons Qudits

Upper Limit on n

- Consider: *d*-dimensional representation, χ , of some exchange group on *n* excitations.
- Choose basis: σ_{odd} are simultaneously diagonalisable.
- For $n \ge 5$ no two σ_{odd} can be equal:
 - Take n = 5 and let $\sigma_1 = \sigma_3$.
 - σ_4 and σ_1 commute (physically separated).
 - $\sigma_3 = \sigma_1 \Rightarrow \sigma_4$ and σ_3 commute \Rightarrow Abelian.
- Each σ_{odd} must have a different arrangement of the eigenvalues.
- Upper limit on n is 2d! + 1

Max Number of Anyons Qudits

Actually...

Upper limit on *n* is actually much lower:

1 All σ_{even} must commute with each other.

・ロト ・四ト ・ヨト ・ヨト - ヨ

Max Number of Anyons Qudits

Actually...

Upper limit on *n* is actually much lower:

- **1** All σ_{even} must commute with each other.
- **2** Each σ_i must commute with all σ_j where $j \neq i \pm 1$.

Max Number of Anyons Qudits

Actually...

Upper limit on *n* is actually much lower:

- **1** All σ_{even} must commute with each other.
- **2** Each σ_i must commute with all σ_j where $j \neq i \pm 1$.
- $\begin{tabular}{ll} \hline \begin{tabular}{ll} \bullet \\ \hline \begin{tabular}{ll}$
 - σ_3 has eigenvalue arrangement $(\alpha, \alpha, \beta, \gamma, \beta)$.
 - σ_5 has eigenvalue arrangement $(\beta, \beta, \alpha, \gamma, \alpha)$.
 - σ_2 is of some form that commutes with σ_5 .
 - Therefore σ_2 commutes with $\sigma_3 \Rightarrow$ Abelian.

・ロン ・回 と ・ 回 と ・ 回 と

Max Number of Anyons Qudits

Results

N(d): Largest *n* for which the representation of the exchange group(dimension *d*) is non-Abelian.

Formanek⁵ Result

For the braid group B_n : N(d) = d + 2

- We have replicated this result for general exchange group for d = 2, 3.
- No complete proof yet for arbitrary *d*.

⁵E. Formanek. Braid group representations of low degree. London Math. Soc., 2(s3- 73):279322, 1996.

Max Number of Anyons Qudits

Results

But...

- Have shown upper limit of *n* exists for any exchange group.
- This upper limit depends strongly on the number and multiplicity of eigenvalues of the generators.
- The maximum number of anyons per qudit is related to the number of topological charges of the chosen anyon model.

Two-Qudit Gates Two-Qubit Gates Outro

Leakage in Two-Qudit Gates

- Possible to avoid leakage in single qubit gates.
- Two-qudit gates \rightarrow topological charge of qudits can be changed.
- Is it possible to completely avoid leakage?

Two-Qudit Gates Two-Qubit Gates Outro

Leakage in Two-Qudit Gates

- Possible to avoid leakage in single qubit gates.
- Two-qudit gates \rightarrow topological charge of qudits can be changed.
- Is it possible to completely avoid leakage?
- Have system of *n* anyons, n_1 in qubit 1 and n_2 in qubits 2; $n = n_1 + n_2$.
- 2 We know $\rho_{1/2}$; representations of $B_{n_{1/2}}$ of dimension $d_{1/2}$. We want to find ρ , a representation of B_n of dimension d.
- **③** Leakage-free braiding $\Rightarrow \mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$ and $d = d_1 d_2$.

Two-Qudit Gates Two-Qubit Gates Outro

Leakage in Two-Qudit Gates

Find a representation ρ such that:

- Braids that braid within first qubit: ρ(τ_i) = ρ₁(τ_i) ⊗ I_{d₂}.
- Braids that braid within second qubit: $\rho(\tau_i) = \mathbb{I}_{d_1} \otimes \rho_2(\tau_i)$.
- Use braid relations to obtain form of braid which swaps anyons between qubits, τ_{q_1,q_2} .
- If a matrix exists to represent $au_{q_1,q_2} \rightarrow$ Leakage-free braiding.

Two-Qudit Gates Two-Qubit Gates Outro

Three-Anyon Qubits

- ρ_1 and ρ_2 are 2-dimensional representations of B_3 .
 $$\begin{split} \rho(\tau_{1/2}) &= \rho_1(\tau_{1/2}) \otimes \mathbb{I}_2 \\ \rho(\tau_{4/5}) &= \mathbb{I}_2 \otimes \rho_2(\tau_{1/2}) \end{split}$$
- $\rho(\tau_3)$ exchanges anyons between qubits.

・ロン ・回 と ・ 回 と ・ 回 と

Two-Qudit Gates Two-Qubit Gates Outro

Three-Anyon Qubits

- τ_3 can be represented by matrix provided eigenvalues are 8th roots of unity.
- $\bullet~$ Leakage-free two-qubit braiding! \rightarrow All braids are leakage free.

Two-Qudit Gates Two-Qubit Gates Outro

Three-Anyon Qubits

- τ_3 can be represented by matrix provided eigenvalues are 8^{th} roots of unity.
- $\bullet~$ Leakage-free two-qubit braiding! \rightarrow All braids are leakage free.

Problem:

- \bullet These eigenvalues correspond to representations of Ising-like anyon models \to non-universal.
- Leakage-free but non-universal two-qubit braiding.

Two-Qudit Gates Two-Qubit Gates Outro

Other Types of Qubits

- 2 \times 4-anyon qubits: 4-dimensional representation of B_8 .
- 3-anyon qubit & 4-anyons qubit: 4-dimensional representation of B_7 .

・ロン ・回と ・ヨン・

э

Two-Qudit Gates Two-Qubit Gates Outro

Other Types of Qubits

- 2 \times 4-anyon qubits: 4-dimensional representation of B_8 .
- 3-anyon qubit & 4-anyons qubit: 4-dimensional representation of *B*₇.
- But: $d \ge n 2 \rightarrow 4 \ge 8 2 = 6, 4 \ge 7 2 = 5.$
- Non-Abelian representations of these gates will not exist.
- Also no leakage-free, non-Abelian two-qutrit/qutrit-qubit gates.

・ロト ・回ト ・ヨト ・ヨト

Two-Qudit Gates Two-Qubit Gates Outro

Summary

- Optimal qubit: Should be composed of 3 or 4 anyons.
- Optimal qudit:
 - For braiding: Should be composed of $\leq d + 2$ anyons.
 - In general: Number of "anyons" relates to number of topological charges in model
- Leakage-free 2-qudit gates: Not possible without sacrificing universality.

Two-Qudit Gates Two-Qubit Gates Outro

Future Work

- Find a solution to the problem of how many "anyons" a qudit can contain in general.
- Examine possibilities of leakage-free subgroups.
 - Need only one two-qubit entangling braid to be leakage-free \rightarrow full universal quantum computation.

・ロト ・回ト ・ヨト ・ヨト