Jack wavefunctions and ${\mathcal W}$ theories

Benoit Estienne joint work with Raoul Santachiara

LPTHE Université Pierre et Marie Curie, Paris-6

• In the lowest Landau level, wavefunctions are analytic

Model wavefunctions can be constructed using Conformal field theory

Parafermions and the Read-Rezayi states

Ground state wavefunctions are polynomials satisfying specific clustering properties: they vanish as a cluster of *k*-1-1 particles come together

 ⇒ Jack polynomials with generalized clustering properties: they vanish with power r as a cluster of k + 1 particles come together

Jack wavefunction

Connection with CFT: these Jacks are described as correlators of certain CFTs called ${\cal W}$ theories

- In the lowest Landau level, wavefunctions are analytic
- Model wavefunctions can be constructed using Conformal field theory

Parafermions and the Read-Rezayi states

Ground state wavefunctions are polynomials satisfying specific clustering properties: they vanish as a cluster of k + 1 particles come together

 ⇒ Jack polynomials with generalized clustering properties: they vanish with power r as a cluster of k + 1 particles come together

Jack wavefunction

Connection with CFT: these Jacks are described as correlators of certain CFTs called $\mathcal W$ theories

- In the lowest Landau level, wavefunctions are analytic
- Model wavefunctions can be constructed using Conformal field theory

Parafermions and the Read-Rezayi states

Ground state wavefunctions are polynomials satisfying specific clustering properties: they vanish as a cluster of k+1 particles come together

 ⇒ Jack polynomials with generalized clustering properties: they vanish with power r as a cluster of k + 1 particles come together

Jack wavefunction

Connection with CFT: these Jacks are described as correlators of certain CFTs called ${\cal W}$ theories

- In the lowest Landau level, wavefunctions are analytic
- Model wavefunctions can be constructed using Conformal field theory

Parafermions and the Read-Rezayi states

Ground state wavefunctions are polynomials satisfying specific clustering properties: they vanish as a cluster of k + 1 particles come together

 ⇒ Jack polynomials with generalized clustering properties: they vanish with power r as a cluster of k + 1 particles come together

Jack wavefunction

Connection with CFT: these Jacks are described as correlators of certain CFTs called ${\cal W}$ theories

- In the lowest Landau level, wavefunctions are analytic
- Model wavefunctions can be constructed using Conformal field theory

Parafermions and the Read-Rezayi states

Ground state wavefunctions are polynomials satisfying specific clustering properties: they vanish as a cluster of k + 1 particles come together

 ⇒ Jack polynomials with generalized clustering properties: they vanish with power r as a cluster of k + 1 particles come together

Jack wavefunction

Connection with CFT: these Jacks are described as correlators of certain CFTs called \mathcal{W} theories (Estienne, Santchiara, arXiv:0906.1969)

- In the lowest Landau level, wavefunctions are analytic
- Model wavefunctions can be constructed using Conformal field theory

Parafermions and the Read-Rezayi states

Ground state wavefunctions are polynomials satisfying specific clustering properties: they vanish as a cluster of k + 1 particles come together

⇒ Jack polynomials with generalized clustering properties: they vanish with power r as a cluster of k + 1 particles come together

Jack wavefunction

Connection with CFT: these Jacks are described as correlators of certain CFTs called \mathcal{W} theories (Estienne, Santchiara, arXiv:0906.1969)

- In the lowest Landau level, wavefunctions are analytic
- Model wavefunctions can be constructed using Conformal field theory

Parafermions and the Read-Rezayi states

Ground state wavefunctions are polynomials satisfying specific clustering properties: they vanish as a cluster of k + 1 particles come together

⇒ Jack polynomials with generalized clustering properties: they vanish with power r as a cluster of k + 1 particles come together

Jack wavefunction

Connection with CFT: these Jacks are described as correlators of certain CFTs called ${\cal W}$ theories $({\sf Estienne}, {\sf Santchiara}, {\sf arXiv:0906.1969})$

- In the lowest Landau level, wavefunctions are analytic
- Model wavefunctions can be constructed using Conformal field theory

Parafermions and the Read-Rezayi states

Ground state wavefunctions are polynomials satisfying specific clustering properties: they vanish as a cluster of k + 1 particles come together

⇒ Jack polynomials with generalized clustering properties: they vanish with power r as a cluster of k + 1 particles come together

Jack wavefunction

Connection with CFT: these Jacks are described as correlators of certain CFTs called \mathcal{W} theories (Estienne, Santchiara, arXiv:0906.1969)

Link between these objects

Jack polynomials

- $J^{\alpha}_{\lambda}(z_1, \cdots, z_N)$
- eigenvector of the Calogero-Sutherland Hamiltonian

Correlation functions

- $\langle \Psi(z_1)\Psi(z_2)\ldots\Psi(z_N)\rangle$
- Ψ has degenerate descendants
 ⇒ correlation functions satisfy
 a PDE

Link between these objects

Jack polynomials

•
$$J^{\alpha}_{\lambda}(z_1,\cdots,z_N)$$

 eigenvector of the Calogero-Sutherland Hamiltonian

Correlation functions

- $\langle \Psi(z_1)\Psi(z_2)\ldots\Psi(z_N)\rangle$
- Ψ has degenerate descendants
 ⇒ correlation functions satisfy
 a PDE

Link between these objects

Jack polynomials

- $J^{\alpha}_{\lambda}(z_1, \cdots, z_N)$
- eigenvector of the Calogero-Sutherland Hamiltonian

Correlation functions

- $\langle \Psi(z_1)\Psi(z_2)\ldots\Psi(z_N)\rangle$
- Ψ has degenerate descendants \Rightarrow correlation functions satisfy a PDE

Link between these objects

Jack polynomials

- $J^{\alpha}_{\lambda}(z_1, \cdots, z_N)$
- eigenvector of the Calogero-Sutherland Hamiltonian

Correlation functions

- $\langle \Psi(z_1)\Psi(z_2)\ldots\Psi(z_N)\rangle$
- Ψ has degenerate descendants \Rightarrow correlation functions satisfy a PDE

Link between these objects

- 2 Jack Polynomials at $\alpha = -(k+1)/(r-1)$
- Parafermionic theories and clustering properties

W theories

- k = 2 : Virasoro algebra
- k = 3 : W_3 algebra
- General case

5 Conclusion

6 Perspectives

Monomial basis $\{m_{\lambda}\}$

The monomial function m_{λ} is a symmetric polynomial in n variables $\{z_i, i = 1, ..., n\}$:

$$m_{\lambda}(\{z_i\}) = \mathcal{S}(\prod_{i=1}^{n} z_i^{\lambda_i})$$

Partitions
$$\lambda = (\lambda_1, \dots, \lambda_N)$$

• λ_i are positive integers
• $\lambda_i > \lambda_{i+1}$

For
$$\lambda = (4, 4, 2, 1, 1)$$
 :
 $m_{\lambda} = S\left(z_1^4 z_2^4 z_3^2 z_4 z_5\right)$

Monomial basis $\{m_{\lambda}\}$

The monomial function m_{λ} is a symmetric polynomial in n variables $\{z_i, i = 1, ..., n\}$:

$$m_{\lambda}(\{z_i\}) = \mathcal{S}(\prod_{i=1}^{n} z_i^{\lambda_i})$$

Partitions
$$\lambda = (\lambda_1, \dots, \lambda_N)$$

• λ_i are positive integers
• $\lambda_i > \lambda_{i+1}$

For
$$\lambda = (4, 4, 2, 1, 1)$$
 :
 $m_{\lambda} = S\left(z_1^4 z_2^4 z_3^2 z_4 z_5\right)$

Monomial basis $\{m_{\lambda}\}$

The monomial function m_{λ} is a symmetric polynomial in n variables $\{z_i, i = 1, ..., n\}$:

$$m_{\lambda}(\{z_i\}) = \mathcal{S}(\prod_{i=1}^{n} z_i^{\lambda_i})$$

Partitions $\lambda = (\lambda_1, \dots, \lambda_N)$ • λ_i are positive integers

•
$$\lambda_i > \lambda_{i+1}$$

For
$$\lambda = (4, 4, 2, 1, 1)$$
 : $m_{\lambda} = \mathcal{S}\left(z_1^4 z_2^4 z_3^2 z_4 z_5
ight)$

Monomial basis $\{m_{\lambda}\}$

The monomial function m_{λ} is a symmetric polynomial in n variables $\{z_i, i = 1, ..., n\}$:

$$m_{\lambda}(\{z_i\}) = \mathcal{S}(\prod_{i=1}^{n} z_i^{\lambda_i})$$

Partitions
$$\lambda = (\lambda_1, \dots, \lambda_N)$$

• λ_i are positive integers

•
$$\lambda_i > \lambda_{i+1}$$

For
$$\lambda = (4, 4, 2, 1, 1)$$
 :

$$m_{\lambda} = \mathcal{S}\left(z_1^4 z_2^4 z_3^2 z_4 z_5\right)$$

symmetric and homogeneous polynomials of N variables

- indexed by partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_N)$
- depend rationally on a parameter α : the expansion over the m_{λ} basis takes the form

$$J^{lpha}_{\lambda}=m_{\lambda}+\sum_{\mu<\lambda}u_{\lambda\mu}(lpha)m_{\mu}.$$

The Jacks J^{lpha}_{λ} are eigenfunctions of the Calogero-Sutherland Hamiltonian :

$$\mathcal{H}^{\mathsf{CS}}(\alpha) = \sum_{i=1}^{N} (z_i \partial_i)^2 + \frac{1}{\alpha} \sum_{i < j} \frac{z_i + z_j}{z_i - z_j} (z_i \partial_i - z_j \partial_j)$$

- symmetric and homogeneous polynomials of N variables
- indexed by partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_N)$
- depend rationally on a parameter α : the expansion over the m_{λ} basis takes the form

$$J^{lpha}_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} u_{\lambda \mu}(lpha) m_{\mu}.$$

The Jacks J^{α}_{λ} are eigenfunctions of the Calogero-Sutherland Hamiltonian :

$$\mathcal{H}^{\mathsf{CS}}(\alpha) = \sum_{i=1}^{N} (z_i \partial_i)^2 + \frac{1}{\alpha} \sum_{i < j} \frac{z_i + z_j}{z_i - z_j} (z_i \partial_i - z_j \partial_j)$$

- symmetric and homogeneous polynomials of N variables
- indexed by partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_N)$
- depend rationally on a parameter α : the expansion over the m_{λ} basis takes the form

$$J^{lpha}_{\lambda}=m_{\lambda}+\sum_{\mu<\lambda}u_{\lambda\mu}(lpha)m_{\mu}.$$

The Jacks J^{α}_{λ} are eigenfunctions of the Calogero-Sutherland Hamiltonian :

$$\mathcal{H}^{\mathsf{CS}}(\alpha) = \sum_{i=1}^{N} (z_i \partial_i)^2 + \frac{1}{\alpha} \sum_{i < j} \frac{z_i + z_j}{z_i - z_j} (z_i \partial_i - z_j \partial_j)$$

- symmetric and homogeneous polynomials of N variables
- indexed by partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_N)$
- depend rationally on a parameter α : the expansion over the m_{λ} basis takes the form

$$J^{lpha}_{\lambda} = m_{\lambda} + \sum_{\mu < \lambda} u_{\lambda \mu}(lpha) m_{\mu}.$$

The Jacks J_{λ}^{α} are eigenfunctions of the Calogero-Sutherland Hamiltonian :

$$\mathcal{H}^{\mathsf{CS}}(\alpha) = \sum_{i=1}^{N} (z_i \partial_i)^2 + \frac{1}{\alpha} \sum_{i < j} \frac{z_i + z_j}{z_i - z_j} (z_i \partial_i - z_j \partial_j)$$

Jack Polynomials with (k, r) clustering properties

- ullet for the special value lpha=-(k+1)/(r-1)
- ullet and for a (k,r) admissible partition λ

- These Jacks are well defined.
- They have generalized *clustering* properties : they vanish as r powers when k + 1 particles come to the same point.

Jack Polynomials with (k, r) clustering properties

- ullet for the special value lpha=-(k+1)/(r-1)
- ullet and for a (k,r) admissible partition λ

- These Jacks are well defined.
- They have generalized *clustering* properties : they vanish as r powers when k + 1 particles come to the same point.

Jack Polynomials with (k, r) clustering properties

- ullet for the special value lpha=-(k+1)/(r-1)
- ullet and for a (k,r) admissible partition λ

- These Jacks are well defined.
- They have generalized *clustering* properties : they vanish as r powers when k + 1 particles come to the same point.

Jack Polynomials with (k, r) clustering properties

- ullet for the special value lpha=-(k+1)/(r-1)
- ullet and for a (k,r) admissible partition λ

- These Jacks are well defined.
- They have generalized *clustering* properties : they vanish as r powers when k + 1 particles come to the same point.

Jack Polynomials with (k, r) clustering properties

- for the special value $\alpha = -(k+1)/(r-1)$
- and for a (k, r) admissible partition λ

- These Jacks are well defined.
- They have generalized *clustering* properties : they vanish as r powers when k + 1 particles come to the same point.

Jack Polynomials with (k, r) clustering properties

• for the special value $\alpha = -(k+1)/(r-1)$

• and for a (k, r) admissible partition λ

- These Jacks are well defined.
- They have generalized *clustering* properties : they vanish as r powers when k + 1 particles come to the same point.

Jack Polynomials with (k, r) clustering properties

- for the special value $\alpha = -(k+1)/(r-1)$
- and for a (k, r) admissible partition λ

[Feigin et al (2001)]

• These Jacks are well defined.

 They have generalized *clustering* properties : they vanish as r powers when k + 1 particles come to the same point.

Benoit Estienne (LPTHE)

Jack Polynomials with (k, r) clustering properties

- for the special value $\alpha = -(k+1)/(r-1)$
- and for a (k, r) admissible partition λ

[Feigin et al (2001)]

• These Jacks are well defined.

• They have generalized *clustering* properties : they vanish as *r* powers when *k* + 1 particles come to the same point.

Benoit Estienne (LPTHE)

Jack Polynomials with (k, r) clustering properties

- for the special value $\alpha = -(k+1)/(r-1)$
- and for a (k, r) admissible partition λ

[Feigin et al (2001)]

- These Jacks are well defined.
- They have generalized *clustering* properties : they vanish as *r* powers when *k* + 1 particles come to the same point.

Benoit Estienne (LPTHE)

Jack Polynomials with (k, r) clustering properties

- for the special value $\alpha = -(k+1)/(r-1)$
- and for a (k, r) admissible partition λ

[Feigin et al (2001)]

- These Jacks are well defined.
- They have generalized *clustering* properties : they vanish as *r* powers when *k* + 1 particles come to the same point.

Benoit Estienne (LPTHE)

Jack Polynomials at $\alpha = -(k+1)/(r-1)$

Densest (k, r) admissible partitions

The root partition for the wavefunction with the highest density is given by the occupation numbers

$$\lambda = [k \underbrace{00 \dots 0}_{r-1} k \underbrace{00 \dots 0}_{r-1} k \dots]$$

Trial wavefunctions generalizing the Read-Rezayi states

These Jacks have been considered as trial many-body wavefunctions for non-Ablian FQH states [Bernevig and Haldane (2007)]

• at (bosonic) filling fraction u = k/r

- r = 2 boils down to the Read-Rezayi \mathbb{Z}_k state
- ullet conjectured to be connected to ${\mathcal W}$ conformal field theories

Jack Polynomials at $\alpha = -(k+1)/(r-1)$

Densest (k, r) admissible partitions

The root partition for the wavefunction with the highest density is given by the occupation numbers

$$\lambda = [k \underbrace{00 \dots 0}_{r-1} k \underbrace{00 \dots 0}_{r-1} k \dots]$$

Trial wavefunctions generalizing the Read-Rezayi states

These Jacks have been considered as trial many-body wavefunctions for non-Ablian FQH states [Bernevig and Haldane (2007)]

• at (bosonic) filling fraction u=k/r

- r = 2 boils down to the Read-Rezayi \mathbb{Z}_k state
- conjectured to be connected to W conformal field theories

Jack Polynomials at $\alpha = -(k+1)/(r-1)$

Densest (k, r) admissible partitions

The root partition for the wavefunction with the highest density is given by the occupation numbers

$$\lambda = [k \underbrace{00 \dots 0}_{r-1} k \underbrace{00 \dots 0}_{r-1} k \dots]$$

Trial wavefunctions generalizing the Read-Rezayi states

These Jacks have been considered as trial many-body wavefunctions for non-Ablian FQH states [Bernevig and Haldane (2007)]

• at (bosonic) filling fraction $\nu = k/r$

- r = 2 boils down to the Read-Rezayi \mathbb{Z}_k state
- ullet conjectured to be connected to ${\mathcal W}$ conformal field theories
Jack Polynomials at $\alpha = -(k+1)/(r-1)$

Densest (k, r) admissible partitions

The root partition for the wavefunction with the highest density is given by the occupation numbers

$$\lambda = [k \underbrace{00 \dots 0}_{r-1} k \underbrace{00 \dots 0}_{r-1} k \dots]$$

Trial wavefunctions generalizing the Read-Rezayi states

These Jacks have been considered as trial many-body wavefunctions for non-Ablian FQH states [Bernevig and Haldane (2007)]

• at (bosonic) filling fraction
$$\nu = k/r$$

- r = 2 boils down to the Read-Rezayi \mathbb{Z}_k state
- ullet conjectured to be connected to ${\mathcal W}$ conformal field theories

Jack Polynomials at $\alpha = -(k+1)/(r-1)$

Densest (k, r) admissible partitions

The root partition for the wavefunction with the highest density is given by the occupation numbers

$$\lambda = [k \underbrace{00 \dots 0}_{r-1} k \underbrace{00 \dots 0}_{r-1} k \dots]$$

Trial wavefunctions generalizing the Read-Rezayi states

These Jacks have been considered as trial many-body wavefunctions for non-Ablian FQH states [Bernevig and Haldane (2007)]

• at (bosonic) filling fraction $\nu = k/r$

• r = 2 boils down to the Read-Rezayi \mathbb{Z}_k state

ullet conjectured to be connected to $\mathcal W$ conformal field theories

Jack Polynomials at $\alpha = -(k+1)/(r-1)$

Densest (k, r) admissible partitions

The root partition for the wavefunction with the highest density is given by the occupation numbers

$$\lambda = [k \underbrace{00 \dots 0}_{r-1} k \underbrace{00 \dots 0}_{r-1} k \dots]$$

Trial wavefunctions generalizing the Read-Rezayi states

These Jacks have been considered as trial many-body wavefunctions for non-Ablian FQH states [Bernevig and Haldane (2007)]

• at (bosonic) filling fraction $\nu = k/r$

- r = 2 boils down to the Read-Rezayi \mathbb{Z}_k state
- \bullet conjectured to be connected to ${\mathcal W}$ conformal field theories

Conformal field theories as wavefunctions generators

To describe a N particles quantum Hall ground state, a polynomial $P_N(\{z_i\})$ has to be a SU(2) spin singlet :

$$L^{-}P_{N} = \sum_{i} \partial_{i}P_{N}(\{z_{i}\}) = 0$$

$$L^{z}P_{N} = \sum_{i} \left(z_{i}\partial_{i} - \frac{N_{\phi}}{2}\right)P_{N}(\{z_{i}\}) = 0$$

$$L^{+}P_{N} = \sum_{i} \left(-z_{i}^{2}\partial_{i} + z_{i}N_{\phi}\right)P_{N}(\{z_{i}\}) = 0$$

All these properties are automatically ensured by global conformal invariance for **single channel** correlators :

$$\langle \Phi(z_1) \dots \Phi(z_N) \rangle \prod_{i < j} (z_i - z_j)^\gamma$$

Conformal field theories as wavefunctions generators

To describe a *N* particles quantum Hall ground state, a polynomial $P_N(\{z_i\})$ has to be a SU(2) spin singlet :

$$L^{-}P_{N} = \sum_{i} \partial_{i} P_{N}(\{z_{i}\}) = 0$$

$$L^{z}P_{N} = \sum_{i} \left(z_{i}\partial_{i} - \frac{N_{\phi}}{2}\right) P_{N}(\{z_{i}\}) = 0$$

$$L^{+}P_{N} = \sum_{i} \left(-z_{i}^{2}\partial_{i} + z_{i}N_{\phi}\right) P_{N}(\{z_{i}\}) = 0$$

All these properties are automatically ensured by global conformal invariance for **single channel** correlators :

$$\langle \Phi(z_1) \dots \Phi(z_N)
angle \prod_{i < j} (z_i - z_j)^\gamma$$

Conformal field theories as wavefunctions generators

To describe a *N* particles quantum Hall ground state, a polynomial $P_N(\{z_i\})$ has to be a SU(2) spin singlet :

$$L^{-}P_{N} = \sum_{i} \partial_{i} P_{N}(\{z_{i}\}) = 0$$

$$L^{z}P_{N} = \sum_{i} \left(z_{i}\partial_{i} - \frac{N_{\phi}}{2}\right) P_{N}(\{z_{i}\}) = 0$$

$$L^{+}P_{N} = \sum_{i} \left(-z_{i}^{2}\partial_{i} + z_{i}N_{\phi}\right) P_{N}(\{z_{i}\}) = 0$$

All these properties are automatically ensured by global conformal invariance for **single channel** correlators :

$$\langle \Phi(z_1) \dots \Phi(z_N) \rangle \prod_{i < j} (z_i - z_j)^{\gamma}$$

• additional \mathbb{Z}_k symmetry encoded in the fusion rules of a set of chiral operators $\Psi_q(z)$:

$$[\Psi_n] \times [\Psi_m] = [\Psi_{n+m}]$$

consistency (bootstrap) fixes the conformal dimensions :

$$\Delta_n = \frac{r}{2} \frac{n(k-n)}{k}$$

- r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)]
 ⇒ Read-Rezayi states
- r = 3: (for k even) non unitary [Jacob, Mathieu (2002)] \Rightarrow Gaffnian
- r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)]

• additional \mathbb{Z}_k symmetry encoded in the fusion rules of a set of chiral operators $\Psi_q(z)$:

$$[\Psi_n] \times [\Psi_m] = [\Psi_{n+m}]$$

consistency (bootstrap) fixes the conformal dimensions :

$$\Delta_n = \frac{r}{2} \frac{n(k-n)}{k}$$

- r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)]
 ⇒ Read-Rezayi states
- r = 3: (for k even) non unitary [Jacob, Mathieu (2002)] \Rightarrow Gaffnian
- r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)]

• additional \mathbb{Z}_k symmetry encoded in the fusion rules of a set of chiral operators $\Psi_q(z)$:

$$[\Psi_n] \times [\Psi_m] = [\Psi_{n+m}]$$

consistency (bootstrap) fixes the conformal dimensions :

$$\Delta_n = \frac{r}{2} \frac{n(k-n)}{k}$$

- r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)]
 ⇒ Read-Rezayi states
- r = 3: (for k even) non unitary [Jacob, Mathieu (2002)] \Rightarrow Gaffnian
- r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)]

• additional \mathbb{Z}_k symmetry encoded in the fusion rules of a set of chiral operators $\Psi_q(z)$:

$$[\Psi_n] \times [\Psi_m] = [\Psi_{n+m}]$$

consistency (bootstrap) fixes the conformal dimensions :

$$\Delta_n = \frac{r}{2} \frac{n(k-n)}{k}$$

- r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)]
 ⇒ Read-Rezayi states
- r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)]
 ⇒ Gaffnian
- r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)]

• additional \mathbb{Z}_k symmetry encoded in the fusion rules of a set of chiral operators $\Psi_q(z)$:

$$[\Psi_n] \times [\Psi_m] = [\Psi_{n+m}]$$

consistency (bootstrap) fixes the conformal dimensions :

$$\Delta_n = \frac{r}{2} \frac{n(k-n)}{k}$$

- *r* = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)]
 ⇒ Read-Rezayi states
- r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)]
 ⇒ Gaffnian
- r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)]

• additional \mathbb{Z}_k symmetry encoded in the fusion rules of a set of chiral operators $\Psi_q(z)$:

$$[\Psi_n] \times [\Psi_m] = [\Psi_{n+m}]$$

consistency (bootstrap) fixes the conformal dimensions :

$$\Delta_n = \frac{r}{2} \frac{n(k-n)}{k}$$

- $r \ge 2$ is an integer :
 - r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)]
 ⇒ Read-Rezayi states
 - r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)]
 ⇒ Gaffnian
 - r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)]

• additional \mathbb{Z}_k symmetry encoded in the fusion rules of a set of chiral operators $\Psi_q(z)$:

$$[\Psi_n] \times [\Psi_m] = [\Psi_{n+m}]$$

consistency (bootstrap) fixes the conformal dimensions :

$$\Delta_n = \frac{r}{2} \frac{n(k-n)}{k}$$

- $r \ge 2$ is an integer :
 - r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)]
 ⇒ Read-Rezayi states
 - r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)]
 ⇒ Gaffnian
 - *r* = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)]

Benoit Estienne (LPTHE)

• additional \mathbb{Z}_k symmetry encoded in the fusion rules of a set of chiral operators $\Psi_q(z)$:

$$[\Psi_n] \times [\Psi_m] = [\Psi_{n+m}]$$

consistency (bootstrap) fixes the conformal dimensions :

$$\Delta_n = \frac{r}{2} \frac{n(k-n)}{k}$$

- $r \ge 2$ is an integer :
 - r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)]
 ⇒ Read-Rezayi states
 - r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)]
 ⇒ Gaffnian
 - r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)]

Benoit Estienne (LPTHE)

Parafermionic correlators and clustering properties

Parafermionic correlators

Let's consider a parafermionic CFT $\mathbb{Z}_k^{(r)}$. The following function is a symmetric polynomial

$$\begin{array}{ll} \mathcal{P}_{\mathcal{N}}^{(k,r)}(\{z_i\}) & \triangleq & \langle \Psi(z_1) \dots \Psi(z_{\mathcal{N}}) \rangle \prod_{i < j} (z_i - z_j)^{2\Delta_1 - \Delta_2} \\ \\ & = & \langle \Psi(z_1) \dots \Psi(z_{\mathcal{N}}) \rangle \prod_{i < j} (z_i - z_j)^{r/k} \, . \end{array}$$

and is a SU(2) singlet.

Clustering properties

More interestingly, this polynomial vanishes as r powers when k + 1 particles come to the same point !

Parafermionic correlators and clustering properties

Parafermionic correlators

Let's consider a parafermionic CFT $\mathbb{Z}_k^{(r)}$. The following function is a symmetric polynomial

$$\begin{array}{ll} \mathcal{P}_{\mathcal{N}}^{(k,r)}(\{z_i\}) & \triangleq & \langle \Psi(z_1) \dots \Psi(z_{\mathcal{N}}) \rangle \prod_{i < j} (z_i - z_j)^{2\Delta_1 - \Delta_2} \\ \\ & = & \langle \Psi(z_1) \dots \Psi(z_{\mathcal{N}}) \rangle \prod_{i < j} (z_i - z_j)^{r/k} \,. \end{array}$$

and is a SU(2) singlet.

Clustering properties

More interestingly, this polynomial vanishes as r powers when k + 1 particles come to the same point !

Extended conformal symmetry

- These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W_3 theory
- generalized to any k by Fateev and Lykyanov (1988)
- they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T(z), the chiral algebra contains k − 2 currents W^(s)(z) of integer spin s = 3,..., k − 1.

Minimal models

For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the $WA_{k-1}(p, p')$ models is:

$$c(p,p') = (k-1)\left(1 - \frac{k(k+1)(p-p')^2}{pp'}\right)$$

u and ho' are coprimes, and these models are unitary for ho'=
ho+1.

Extended conformal symmetry

- These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W_3 theory
- generalized to any k by Fateev and Lykyanov (1988)
- they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T(z), the chiral algebra contains k − 2 currents W^(s)(z) of integer spin s = 3,..., k − 1.

Minimal models

For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the $WA_{k-1}(p, p')$ models is:

$$c(p, p') = (k - 1) \left(1 - \frac{k(k + 1)(p - p')^2}{pp'} \right)$$

ho and ho' are coprimes, and these models are unitary for ho'=
ho+1.

Extended conformal symmetry

- These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W_3 theory
- generalized to any k by Fateev and Lykyanov (1988)
- they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T(z), the chiral algebra contains k − 2 currents W^(s)(z) of integer spin s = 3,..., k − 1.

Minimal models

For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the $WA_{k-1}(p, p')$ models is:

$$c(p, p') = (k - 1) \left(1 - \frac{k(k + 1)(p - p')^2}{pp'} \right)$$

u and ho' are coprimes, and these models are unitary for ho'=
ho+1.

Extended conformal symmetry

- These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W_3 theory
- generalized to any k by Fateev and Lykyanov (1988)
- they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T(z), the chiral algebra contains k − 2 currents W^(s)(z) of integer spin s = 3,..., k − 1.

Minimal models

For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the $WA_{k-1}(p, p')$ models is:

$$c(p, p') = (k - 1) \left(1 - \frac{k(k + 1)(p - p')^2}{pp'} \right)$$

ho and ho' are coprimes, and these models are unitary for ho'=
ho+1.

Extended conformal symmetry

- These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W_3 theory
- generalized to any k by Fateev and Lykyanov (1988)
- they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T(z), the chiral algebra contains k − 2 currents W^(s)(z) of integer spin s = 3,..., k − 1.

Minimal models

For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the $WA_{k-1}(p, p')$ models is:

$$c(p,p') = (k-1)\left(1 - rac{k(k+1)(p-p')^2}{pp'}
ight)$$

 ${m
ho}$ and ${m
ho}'$ are coprimes, and these models are unitary for ${m
ho}'={m
ho}+1$.

Extended conformal symmetry

- These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W_3 theory
- generalized to any k by Fateev and Lykyanov (1988)
- they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T(z), the chiral algebra contains k − 2 currents W^(s)(z) of integer spin s = 3,..., k − 1.

Minimal models

For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the $WA_{k-1}(p, p')$ models is:

$$c(p,p') = (k-1)\left(1 - rac{k(k+1)(p-p')^2}{pp'}
ight)$$

p and p' are coprimes, and these models are unitary for p' = p + 1.

Extended conformal symmetry

- These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W_3 theory
- generalized to any k by Fateev and Lykyanov (1988)
- they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T(z), the chiral algebra contains k − 2 currents W^(s)(z) of integer spin s = 3,..., k − 1.

Minimal models

For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the $WA_{k-1}(p, p')$ models is:

$$c(p,p') = (k-1)\left(1 - rac{k(k+1)(p-p')^2}{pp'}
ight)$$

p and p' are coprimes, and these models are unitary for p' = p + 1.

Virasoro algebra

The conformal symmetry is encoded in a single current : the stress-enery tensor T(z). Its mode obey the celebrated Virasoro algebra :

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}n(n^2 - 1)\delta_{n+m,0}$$

Primary fields

$$T(z)\Phi_{\Delta}(0) = rac{\Delta}{z^2}\Phi_{\Delta}(0) + rac{1}{z}\partial\Phi_{\Delta}(0) + O(1)$$

Virasoro algebra

The conformal symmetry is encoded in a single current : the stress-enery tensor T(z). Its mode obey the celebrated Virasoro algebra :

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}n(n^2-1)\delta_{n+m,0}$$

Primary fields

$$T(z)\Phi_{\Delta}(0)=rac{\Delta}{z^2}\Phi_{\Delta}(0)+rac{1}{z}\partial\Phi_{\Delta}(0)+O(1)$$

Virasoro algebra

The conformal symmetry is encoded in a single current : the stress-enery tensor T(z). Its mode obey the celebrated Virasoro algebra :

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}n(n^2-1)\delta_{n+m,0}$$

Primary fields

$$T(z)\Phi_{\Delta}(0) = \frac{\Delta}{z^2}\Phi_{\Delta}(0) + \frac{1}{z}\partial\Phi_{\Delta}(0) + O(1)$$

Virasoro algebra

The conformal symmetry is encoded in a single current : the stress-enery tensor T(z). Its mode obey the celebrated Virasoro algebra :

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{c}{12}n(n^2-1)\delta_{n+m,0}$$

Primary fields

$$\mathcal{T}(z)\Phi_{\Delta}(0)=rac{\Delta}{z^2}\Phi_{\Delta}(0)+rac{1}{z}\partial\Phi_{\Delta}(0)+O(1)$$

central charge

$$c=1-rac{6(p-p')^2}{pp'}$$

• finite number of primary fields $\Phi_{(n|n')}$ labeled by the Kac table :

 $1 \le n \le p' - 1$ $1 \le n' \le p - 1$

• with conformal dimension

$$\Delta_{(n,n')} = \frac{(np - n'p')^2 - (p - p')^2}{4pp'}$$

central charge

$$c=1-rac{6(p-p')^2}{pp'}$$

• finite number of primary fields $\Phi_{(n|n')}$ labeled by the Kac table :

 $1 \le n \le p' - 1$ $1 \le n' \le p - 1$

• with conformal dimension

$$\Delta_{(n,n')} = \frac{(np - n'p')^2 - (p - p')^2}{4pp'}$$

central charge

$$c=1-rac{6(p-p')^2}{pp'}$$

• finite number of primary fields $\Phi_{(n|n')}$ labeled by the Kac table :

$$1 \le n \le p' - 1$$
$$1 \le n' \le p - 1$$

• with conformal dimension

$$\Delta_{(n,n')} = \frac{(np - n'p')^2 - (p - p')^2}{4pp'}$$

central charge

$$c=1-rac{6(p-p')^2}{pp'}$$

• finite number of primary fields $\Phi_{(n|n')}$ labeled by the Kac table :

$$1 \le n \le p' - 1$$
$$1 \le n' \le p - 1$$

with conformal dimension

$$\Delta_{(n,n')} = \frac{(np - n'p')^2 - (p - p')^2}{4pp'}$$

Fermionic field $\Phi_{(1|2)}$

In the theory $\mathrm{WA}_1(3,2+r)$ the field $\Psi=\Phi_{(1|2)}$ obey the fusion rules :

 $\Psi \times \Psi = \mathbb{I}$

and its conformal dimension is $\Delta_{(1|2)} = \frac{r}{4}$

Fermionic field $\Phi_{(1|2)}$

In the theory $\mathrm{WA}_1(3,2+r)$ the field $\Psi=\Phi_{(1|2)}$ obey the fusion rules :

 $\Psi \times \Psi = \mathbb{I}$

and its conformal dimension is $\Delta_{(1|2)} = \frac{r}{4}$

Fermionic field $\Phi_{(1|2)}$

In the theory $\mathrm{WA}_1(3,2+r)$ the field $\Psi=\Phi_{(1|2)}$ obey the fusion rules :

 $\Psi \times \Psi = \mathbb{I}$

and its conformal dimension is $\Delta_{(1|2)} = \frac{r}{4}$

Fermionic field $\Phi_{(1|2)}$

In the theory $WA_1(3, 2+r)$ the field $\Psi = \Phi_{(1|2)}$ obey the fusion rules :

 $\Psi \times \Psi = \mathbb{I}$

and its conformal dimension is $\Delta_{(1|2)} = \frac{r}{4}$

Fermionic field $\Phi_{(1|2)}$

In the theory $WA_1(3, 2 + r)$ the field $\Psi = \Phi_{(1|2)}$ obey the fusion rules :

 $\Psi imes \Psi = \mathbb{I}$

and its conformal dimension is $\Delta_{(1|2)} = rac{r}{4}$
$WA_1(3, 2 + r)$ theories and parafermions

Fermionic field $\Phi_{(1|2)}$

In the theory $WA_1(3, 2 + r)$ the field $\Psi = \Phi_{(1|2)}$ obey the fusion rules :

 $\Psi\times\Psi=\mathbb{I}$

and its conformal dimension is $\Delta_{(1|2)}=rac{r}{4}$

$WA_1(3, 2 + r)$ theories and parafermions

Fermionic field $\Phi_{(1|2)}$

In the theory $WA_1(3, 2 + r)$ the field $\Psi = \Phi_{(1|2)}$ obey the fusion rules :

 $\Psi\times\Psi=\mathbb{I}$

and its conformal dimension is $\Delta_{(1|2)}=\frac{r}{4}$

$WA_1(3, 2 + r)$ theories and parafermions

Fermionic field $\Phi_{(1|2)}$

In the theory $\operatorname{WA}_1(3,2+r)$ the field $\Psi = \Phi_{(1|2)}$ obey the fusion rules :

 $\Psi\times\Psi=\mathbb{I}$

and its conformal dimension is $\Delta_{(1|2)}=\frac{r}{4}$

Null vector at level 2 for the field $\Psi = \Phi_{(1|2)}$

The following field

$$\chi_2 = \left(L_{-2} - \frac{3}{r+2}L_{-1}^2\right)\Psi$$

This degeneracy translates into a PDE for correlators:

$$\partial^2 \langle \Psi(z) \Phi_1(w_1) \Phi_2(w_2) \cdots \rangle = rac{r+2}{3} \langle L_{-2} \Psi(z) \Phi_1(w_1) \Phi_2(w_2) \cdots \rangle$$

Virasoro modes have a geometric interpretation

$$\langle (L_{-2}\Phi(z))\Phi_1(w_1)\Phi_2(w_2)\cdots\rangle = \sum_j \hat{\mathcal{D}}_j \langle \Phi(z)\Phi_1(w_1)\Phi_2(w_2)\cdots\rangle$$

where \mathcal{D}_j are differential operators acting on the j^{th} field:

$$\hat{\mathcal{D}}_j = \frac{1}{(z - w_j)^2} \Delta_j + \frac{1}{(z - w_j)} \partial_{w_j}$$

Null vector at level 2 for the field $\Psi = \Phi_{(1|2)}$

The following field

$$\chi_2 = \left(L_{-2} - \frac{3}{r+2}L_{-1}^2\right)\Psi$$

This degeneracy translates into a PDE for correlators:

$$\partial^2 \langle \Psi(z) \Phi_1(w_1) \Phi_2(w_2) \cdots \rangle = rac{r+2}{3} \langle L_{-2} \Psi(z) \Phi_1(w_1) \Phi_2(w_2) \cdots \rangle$$

Virasoro modes have a geometric interpretation

$$\langle (L_{-2}\Phi(z))\Phi_1(w_1)\Phi_2(w_2)\cdots\rangle = \sum_j \hat{\mathcal{D}}_j \langle \Phi(z)\Phi_1(w_1)\Phi_2(w_2)\cdots\rangle$$

where \mathcal{D}_j are differential operators acting on the j^{th} field:

$$\hat{\mathcal{D}}_j = \frac{1}{(z - w_j)^2} \Delta_j + \frac{1}{(z - w_j)} \partial_{w_j}$$

Null vector at level 2 for the field $\Psi = \Phi_{(1|2)}$

The following field

$$\chi_2 = \left(L_{-2} - \frac{3}{r+2}L_{-1}^2\right)\Psi$$

This degeneracy translates into a PDE for correlators:

$$\partial^2 \langle \Psi(z) \Phi_1(w_1) \Phi_2(w_2) \cdots \rangle = rac{r+2}{3} \langle L_{-2} \Psi(z) \Phi_1(w_1) \Phi_2(w_2) \cdots \rangle$$

Virasoro modes have a geometric interpretation

$$\langle (L_{-2}\Phi(z))\Phi_1(w_1)\Phi_2(w_2)\cdots \rangle = \sum_j \hat{\mathcal{D}}_j \langle \Phi(z)\Phi_1(w_1)\Phi_2(w_2)\cdots \rangle$$

where \mathcal{D}_j are differential operators acting on the j^{th} field:

$$\hat{\mathcal{D}}_j = rac{1}{(z-w_j)^2} \Delta_j + rac{1}{(z-w_j)} \partial_{w_j}$$

$WA_1(3, 2 + r)$ theories and PDE

Null vector at level 2

$$\sum_{i=1}^{N} z_i^2 \partial_i^2 \langle \Psi(z_1) \Psi(z_2) \cdots \Psi(z_N) \rangle = \frac{r+2}{3} \sum_{i=1}^{N} z_i^2 \mathcal{L}_{-2}^{(i)} \langle \Psi(z_1) \Psi(z_2) \cdots \Psi(z_N) \rangle$$

translates into the following PDE :

$$\mathcal{H}^{\mathrm{WA}_1}(r)\langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_N)
angle=0$$

\mathcal{H}^{WA_1} is a differential operator of order 2:

$$\sum_{i} (z_{i}\partial_{i})^{2} + \gamma_{1}(r) \sum_{i \neq j} \frac{z_{j}^{2}}{(z_{j} - z_{i})^{2}} + \gamma_{2}(r) \sum_{i \neq j} \frac{z_{i}z_{j}(\partial_{j} - \partial_{i})}{(z_{j} - z_{i})} + N\gamma_{3}(r)$$
$$\gamma_{1} = -\frac{r(r+2)}{12}, \qquad \gamma_{2} = \frac{r+2}{6} \quad \text{et} \quad \gamma_{3} = -\frac{r(r-1)}{12}$$

Benoit Estienne (LPTHE)

$WA_1(3, 2 + r)$ theories and PDE

Null vector at level 2

$$\sum_{i=1}^{N} z_i^2 \partial_i^2 \langle \Psi(z_1) \Psi(z_2) \cdots \Psi(z_N) \rangle = \frac{r+2}{3} \sum_{i=1}^{N} z_i^2 \mathcal{L}_{-2}^{(i)} \langle \Psi(z_1) \Psi(z_2) \cdots \Psi(z_N) \rangle$$

translates into the following PDE :

$$\mathcal{H}^{\mathrm{WA}_1}(r)\langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_N)
angle=0$$

$\mathcal{H}^{\mathrm{WA_1}}$ is a differential operator of order 2:

$$\sum_{i} (z_{i}\partial_{i})^{2} + \gamma_{1}(r) \sum_{i \neq j} \frac{z_{j}^{2}}{(z_{j} - z_{i})^{2}} + \gamma_{2}(r) \sum_{i \neq j} \frac{z_{i}z_{j}(\partial_{j} - \partial_{i})}{(z_{j} - z_{i})} + N\gamma_{3}(r)$$
$$\gamma_{1} = -\frac{r(r+2)}{12}, \qquad \gamma_{2} = \frac{r+2}{6} \quad \text{et} \quad \gamma_{3} = -\frac{r(r-1)}{12}$$

Benoit Estienne (LPTHE)

$WA_1(3, 2 + r)$ theories and PDE

Null vector at level 2

$$\sum_{i=1}^{N} z_i^2 \partial_i^2 \langle \Psi(z_1) \Psi(z_2) \cdots \Psi(z_N) \rangle = \frac{r+2}{3} \sum_{i=1}^{N} z_i^2 L_{-2}^{(i)} \langle \Psi(z_1) \Psi(z_2) \cdots \Psi(z_N) \rangle$$

translates into the following PDE :

$$\mathcal{H}^{\mathrm{WA}_1}(r)\langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_N)
angle=0$$

\mathcal{H}^{WA_1} is a differential operator of order 2:

$$\sum_{i} (z_{i}\partial_{i})^{2} + \gamma_{1}(r) \sum_{i \neq j} \frac{z_{j}^{2}}{(z_{j} - z_{i})^{2}} + \gamma_{2}(r) \sum_{i \neq j} \frac{z_{i}z_{j}(\partial_{j} - \partial_{i})}{(z_{j} - z_{i})} + N\gamma_{3}(r)$$
$$\gamma_{1} = -\frac{r(r+2)}{12}, \qquad \gamma_{2} = \frac{r+2}{6} \quad \text{et} \quad \gamma_{3} = -\frac{r(r-1)}{12}$$

Benoit Estienne (LPTHE)

$WA_1(3, 2 + r)$ theories and Jacks [Cardy (2004)]

Jack polynomial

By restauring the charge part, we consider the following polynomial wavefunction :

$$P_N = \langle \Psi(z_1) \dots \Psi(z_N) \rangle \prod_{i < j} (z_i - z_j)^{r/2}.$$

 \Rightarrow It is an eigenvalue of the Calogero-Sutherland Hamiltonian for $\alpha = -\frac{2+1}{r-1}$, corresponding to the densest (2, r) admissible partition !

This proves the following relation :

$$\langle \Psi(z_1) \dots \Psi(z_N) \rangle \prod_{i < j} (z_i - z_j)^{r/2} \dots = J_{[20^{r-1}20^{r-1}\dots 2]}^{-3/(r-1)}$$

$WA_1(3, 2 + r)$ theories and Jacks [Cardy (2004)]

Jack polynomial

By restauring the charge part, we consider the following polynomial wavefunction :

$$P_N = \langle \Psi(z_1) \dots \Psi(z_N) \rangle \prod_{i < j} (z_i - z_j)^{r/2}.$$

 \Rightarrow It is an eigenvalue of the Calogero-Sutherland Hamiltonian for $\alpha = -\frac{2+1}{r-1}$, corresponding to the densest (2, r) admissible partition !

This proves the following relation :

$$\langle \Psi(z_1) \dots \Psi(z_N) \rangle \prod_{i < j} (z_i - z_j)^{r/2} \dots = J_{[20^{r-1}20^{r-1}\dots 2]}^{-3/(r-1)}$$

$WA_1(3, 2 + r)$ theories and Jacks [Cardy (2004)]

Jack polynomial

By restauring the charge part, we consider the following polynomial wavefunction :

$$P_N = \langle \Psi(z_1) \dots \Psi(z_N) \rangle \prod_{i < j} (z_i - z_j)^{r/2}.$$

 \Rightarrow It is an eigenvalue of the Calogero-Sutherland Hamiltonian for $\alpha = -\frac{2+1}{r-1}$, corresponding to the densest (2, r) admissible partition !

This proves the following relation :

$$\langle \Psi(z_1) \dots \Psi(z_N) \rangle \prod_{i < j} (z_i - z_j)^{r/2} \dots = J_{[20^{r-1}20^{r-1}\dots 2]}^{-3/(r-1)}$$

WA_2 algebra

The algebra is generated by two currents T(z) and W(z):

$$\begin{split} [L_n, L_m] &= (n-m)L_{n+m} + \frac{c}{12}n(n^2-1)\delta_{n+m,0} \\ [L_n, W_m] &= (2n-m)W_{n+m} \\ [W_n, W_m] &= \frac{16}{22+5c}(n-m)\Lambda_{n+m} + \frac{c}{360}n(n^2-1)(n^2-4)\delta_{n+m,0} \\ &+ (n-m)\left[\frac{(n+m+2)(n+m+3)}{15} - \frac{(n+2)(m+2)}{6}\right]L_{n+m} \end{split}$$

Primary fields $\Phi_{\Delta,\omega}$

$$T(z)\Phi_{\Delta,\omega}(0) = \frac{\Delta\Phi(0)}{z^2} + \frac{\partial\Phi(0)}{z} + \dots$$
$$W(z)\Phi_{\Delta,\omega}(0) = \frac{\omega\Phi(0)}{z^3} + \frac{W_{-1}\Phi(0)}{z^2} + \frac{W_{-2}\Phi(0)}{z} + \dots$$

Benoit Estienne (LPTHE)

WA_2 algebra

The algebra is generated by two currents T(z) and W(z):

$$\begin{split} [L_n, L_m] &= (n-m)L_{n+m} + \frac{c}{12}n(n^2-1)\delta_{n+m,0} \\ [L_n, W_m] &= (2n-m)W_{n+m} \\ [W_n, W_m] &= \frac{16}{22+5c}(n-m)\Lambda_{n+m} + \frac{c}{360}n(n^2-1)(n^2-4)\delta_{n+m,0} \\ &+ (n-m)\left[\frac{(n+m+2)(n+m+3)}{15} - \frac{(n+2)(m+2)}{6}\right]L_{n+m} \end{split}$$

Primary fields $\Phi_{\Delta,\omega}$

$$T(z)\Phi_{\Delta,\omega}(0) = \frac{\Delta\Phi(0)}{z^2} + \frac{\partial\Phi(0)}{z} + \dots$$

$$W(z)\Phi_{\Delta,\omega}(0) = \frac{\omega\Phi(0)}{z^3} + \frac{W_{-1}\Phi(0)}{z^2} + \frac{W_{-2}\Phi(0)}{z} + \dots$$

Benoit Estienne (LPTHE)

WA_2 algebra

The algebra is generated by two currents T(z) and W(z):

$$\begin{split} [L_n, L_m] &= (n-m)L_{n+m} + \frac{c}{12}n(n^2-1)\delta_{n+m,0} \\ [L_n, W_m] &= (2n-m)W_{n+m} \\ [W_n, W_m] &= \frac{16}{22+5c}(n-m)\Lambda_{n+m} + \frac{c}{360}n(n^2-1)(n^2-4)\delta_{n+m,0} \\ &+ (n-m)\left[\frac{(n+m+2)(n+m+3)}{15} - \frac{(n+2)(m+2)}{6}\right]L_{n+m} \end{split}$$

Primary fields $\Phi_{\Delta,\omega}$

$$T(z)\Phi_{\Delta,\omega}(0) = \frac{\Delta\Phi(0)}{z^2} + \frac{\partial\Phi(0)}{z} + \dots$$

$$W(z)\Phi_{\Delta,\omega}(0) = \frac{\omega\Phi(0)}{z^3} + \frac{W_{-1}\Phi(0)}{z^2} + \frac{W_{-2}\Phi(0)}{z} + \dots$$

Benoit Estienne (LPTHE)

central charge

$$c = 2\left(1 - \frac{12(p-p')^2}{pp'}\right)$$

• finite number of primary fields $\Phi_{(n_1,n_2|n_1',n_2')}$ labeled by the Kac table :

$$n_1 + n_2 \le p' - 1$$

 $n'_1 + n'_2 \le p - 1$

$$\Delta_{(n_1,n_2|n_1',n_2')} = \frac{(\vec{n}p - \vec{n}'p')^2 - \vec{\rho}^2(p - p')^2}{2pp'}$$

• central charge

$$c = 2\left(1 - \frac{12(p-p')^2}{pp'}\right)$$

• finite number of primary fields $\Phi_{(n_1,n_2|n'_1,n'_2)}$ labeled by the Kac table :

$$n_1 + n_2 \le p' - 1$$

 $n'_1 + n'_2 \le p - 1$

$$\Delta_{(n_1,n_2|n_1',n_2')} = \frac{(\vec{n}p - \vec{n}'p')^2 - \vec{\rho}^2(p - p')^2}{2pp'}$$

central charge

$$c=2\left(1-rac{12(
ho-
ho')^2}{
hop'}
ight)$$

• finite number of primary fields $\Phi_{(n_1,n_2|n_1',n_2')}$ labeled by the Kac table :

$$n_1 + n_2 \le p' - 1$$

 $n'_1 + n'_2 \le p - 1$

$$\Delta_{(n_1,n_2|n_1',n_2')} = \frac{(\vec{n}p - \vec{n}'p')^2 - \bar{\rho}^2(p - p')^2}{2pp'}$$

central charge

$$c=2\left(1-rac{12(
ho-
ho')^2}{
hop'}
ight)$$

• finite number of primary fields $\Phi_{(n_1,n_2|n_1',n_2')}$ labeled by the Kac table :

$$n_1 + n_2 \le p' - 1$$

 $n'_1 + n'_2 \le p - 1$

$$\Delta_{(n_1,n_2|n_1',n_2')} = rac{(ec{n} p - ec{n}' p')^2 - ec{
ho}^2 (p-p')^2}{2pp'}$$

Parafermionic fields $\Psi = \Phi_{(1,1|2,1)}$ and $\Psi^{\dagger} = \Phi_{(1,1|1,2)}$

In the theory $WA_2(4, 3 + r)$ the field $\Psi = \Phi_{(1|2)}$ obey the fusion rules :

 $egin{array}{rcl} \Psi & imes \Psi & = & \Psi^{\dagger} \ \Psi & imes \Psi^{\dagger} & = & \mathbb{I} \ \Psi^{\dagger} imes \Psi^{\dagger} & = & \Psi \end{array}$

and their conformal dimension is $\Delta_{(1,1|2,1)}=\Delta_{(1,1|1,2)}=\frac{r}{3}$

Parafermionic fields $\Psi = \Phi_{(1,1|2,1)}$ and $\Psi^{\dagger} = \Phi_{(1,1|1,2)}$

In the theory $\operatorname{WA}_2(4,3+r)$ the field $\Psi=\Phi_{(1|2)}$ obey the fusion rules :

$$\begin{split} \Psi & imes \Psi & = & \Psi^{\dagger} \\ \Psi & imes \Psi^{\dagger} & = & \mathbb{I} \\ \Psi^{\dagger} & imes \Psi^{\dagger} & = & \Psi \end{split}$$

and their conformal dimension is $\Delta_{(1,1|2,1)} = \Delta_{(1,1|1,2)} = \frac{r}{3}$

Parafermionic fields $\Psi = \Phi_{(1,1|2,1)}$ and $\Psi^{\dagger} = \Phi_{(1,1|1,2)}$

In the theory $\operatorname{WA}_2(4,3+r)$ the field $\Psi=\Phi_{(1|2)}$ obey the fusion rules :

 $\Psi \times \Psi = \Psi^{\dagger}$ $\Psi \times \Psi^{\dagger} = \mathbb{I}$ $\Psi^{\dagger} \times \Psi^{\dagger} = \Psi$

and their conformal dimension is $\Delta_{(1,1|2,1)}=\Delta_{(1,1|1,2)}=\frac{r}{3}$

Parafermionic fields $\Psi = \Phi_{(1,1|2,1)}$ and $\Psi^{\dagger} = \Phi_{(1,1|1,2)}$

In the theory $\operatorname{WA}_2(4,3+r)$ the field $\Psi=\Phi_{(1|2)}$ obey the fusion rules :

$$\begin{split} \Psi & imes \Psi & = & \Psi^{\dagger} \\ \Psi & imes \Psi^{\dagger} & = & \mathbb{I} \\ \Psi^{\dagger} & imes \Psi^{\dagger} & = & \Psi \end{split}$$

and their conformal dimension is $\Delta_{(1,1|2,1)}=\Delta_{(1,1|1,2)}=\frac{r}{3}$

Null vectors... but !

Null vectors at level 1 and 2 for the field $\Psi = \Phi_{(1,1|2,1)}$

The parafermionic field admits the following null vectors :

$$\left(W_{-1} - \frac{3\omega}{2\Delta}L_{-1}\right)\Psi = 0$$
$$\left(W_{-2} - \frac{12\omega}{\Delta(5\Delta+1)}L_{-1}^2 - \frac{6\omega(\Delta+1)}{\Delta(5\Delta+1)}L_{-2}\right)\Psi = 0$$

But !

No geometrical interpretation of the modes W_n ...

How to get rid of these modes ?

Using the asymptotic behavior of the current W(z)

Null vectors... but !

Null vectors at level 1 and 2 for the field $\Psi = \Phi_{(1,1|2,1)}$

The parafermionic field admits the following null vectors :

$$\left(W_{-1} - \frac{3\omega}{2\Delta}L_{-1}\right)\Psi = 0$$
$$\left(W_{-2} - \frac{12\omega}{\Delta(5\Delta+1)}L_{-1}^2 - \frac{6\omega(\Delta+1)}{\Delta(5\Delta+1)}L_{-2}\right)\Psi = 0$$

But !

No geometrical interpretation of the modes W_n ...

How to get rid of these modes ?

Using the asymptotic behavior of the current W(z)

Null vectors... but !

Null vectors at level 1 and 2 for the field $\Psi = \Phi_{(1,1|2,1)}$

The parafermionic field admits the following null vectors :

$$\left(W_{-1} - \frac{3\omega}{2\Delta}L_{-1}\right)\Psi = 0$$
$$\left(W_{-2} - \frac{12\omega}{\Delta(5\Delta+1)}L_{-1}^2 - \frac{6\omega(\Delta+1)}{\Delta(5\Delta+1)}L_{-2}\right)\Psi = 0$$

But !

No geometrical interpretation of the modes W_n ...

How to get rid of these modes ?

Using the asymptotic behavior of the current W(z)

$$W(z) = \sum_{n} \frac{W_n}{z^{n+3}}$$
 and $W(z) \stackrel{z \to \infty}{\sim} \frac{1}{z^6}$

Correlation functions of the form $\langle W(z)\Phi_1(z_1)\cdots\Phi_N(z_N)\rangle$ can be expanded into :

$$\langle W(z)\Phi_1(z_1)\cdots\Phi_N(z_N)\rangle = \\ \sum_{j=1}^N \left(\frac{\omega_j}{(z-z_j)^3} + \frac{W_{-1}^{(j)}}{(z-z_j)^2} + \frac{W_{-2}^{(j)}}{(z-z_j)}\right) \langle \Phi_1(z_1)\cdots\Phi_N(z_N)\rangle$$

$$\sum_{j=1}^{N} \left(z_j^2 W_{-2}^{(j)} + 2 z_j W_{-1}^{(j)} + \omega_j \right) \left\langle \Phi_1(z_1) \Phi_2(z_2) \cdots \Phi_N(z_N) \right\rangle = 0$$

$$W(z) = \sum_{n} \frac{W_n}{z^{n+3}}$$
 and $W(z) \stackrel{z \to \infty}{\sim} \frac{1}{z^6}$

Correlation functions of the form $\langle W(z)\Phi_1(z_1)\cdots\Phi_N(z_N)\rangle$ can be expanded into :

$$\langle W(z)\Phi_1(z_1)\cdots\Phi_N(z_N)\rangle =$$

$$\sum_{j=1}^N \left(\frac{\omega_j}{(z-z_j)^3} + \frac{W_{-1}^{(j)}}{(z-z_j)^2} + \frac{W_{-2}^{(j)}}{(z-z_j)}\right) \langle \Phi_1(z_1)\cdots\Phi_N(z_N)\rangle$$

$$\sum_{j=1}^{N} \left(z_j^2 W_{-2}^{(j)} + 2z_j W_{-1}^{(j)} + \omega_j \right) \left\langle \Phi_1(z_1) \Phi_2(z_2) \cdots \Phi_N(z_N) \right\rangle = 0$$

$$W(z) = \sum_{n} \frac{W_n}{z^{n+3}}$$
 and $W(z) \stackrel{z \to \infty}{\sim} \frac{1}{z^6}$

Correlation functions of the form $\langle W(z)\Phi_1(z_1)\cdots\Phi_N(z_N)\rangle$ can be expanded into :

$$\langle W(z)\Phi_1(z_1)\cdots\Phi_N(z_N)\rangle = \\ \sum_{j=1}^N \left(\frac{\omega_j}{(z-z_j)^3} + \frac{W_{-1}^{(j)}}{(z-z_j)^2} + \frac{W_{-2}^{(j)}}{(z-z_j)}\right) \langle \Phi_1(z_1)\cdots\Phi_N(z_N)\rangle$$

$$\sum_{j=1}^{N} \left(z_j^2 W_{-2}^{(j)} + 2z_j W_{-1}^{(j)} + \omega_j \right) \left\langle \Phi_1(z_1) \Phi_2(z_2) \cdots \Phi_N(z_N) \right\rangle = 0$$

$$W(z) = \sum_{n} \frac{W_n}{z^{n+3}}$$
 and $W(z) \stackrel{z \to \infty}{\sim} \frac{1}{z^6}$

Correlation functions of the form $\langle W(z)\Phi_1(z_1)\cdots\Phi_N(z_N)\rangle$ can be expanded into :

$$\langle W(z)\Phi_1(z_1)\cdots\Phi_N(z_N)\rangle = \\ \sum_{j=1}^N \left(\frac{\omega_j}{(z-z_j)^3} + \frac{W_{-1}^{(j)}}{(z-z_j)^2} + \frac{W_{-2}^{(j)}}{(z-z_j)}\right) \langle \Phi_1(z_1)\cdots\Phi_N(z_N)\rangle$$

$$\sum_{j=1}^{N} \left(z_j^2 W_{-2}^{(j)} + 2 z_j W_{-1}^{(j)} + \omega_j \right) \left\langle \Phi_1(z_1) \Phi_2(z_2) \cdots \Phi_N(z_N) \right\rangle = 0$$

Partial differential equation

Plugging the null vectors

$$\begin{split} W_{-1}\Psi &= \frac{3\omega}{2\Delta}L_{-1}\Psi\\ W_{-2}\Psi &= \left(\frac{12\omega}{\Delta(5\Delta+1)}L_{-1}^2 + \frac{6\omega(\Delta+1)}{\Delta(5\Delta+1)}L_{-2}\right)\Psi \end{split}$$

into the equation

$$\sum_{j=1}^{N} \left(z_j^2 \underbrace{W_{-2}^{(j)}}_{-2} + 2z_j \underbrace{W_{-1}^{(j)}}_{-1} + \omega_j \right) \langle \Psi(z_1) \Psi(z_2) \cdots \Psi(z_N) \rangle = 0$$

\Rightarrow We are left with Virasoro modes only !

and we get a partial differential equation for $\langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_N)
angle$
Partial differential equation

Plugging the null vectors

$$\begin{split} W_{-1}\Psi &= \frac{3\omega}{2\Delta}L_{-1}\Psi\\ W_{-2}\Psi &= \left(\frac{12\omega}{\Delta(5\Delta+1)}L_{-1}^2 + \frac{6\omega(\Delta+1)}{\Delta(5\Delta+1)}L_{-2}\right)\Psi \end{split}$$

into the equation

$$\sum_{j=1}^{N} \left(z_j^2 \underbrace{W_{-2}^{(j)}}_{-2} + 2z_j \underbrace{W_{-1}^{(j)}}_{-1} + \omega_j \right) \langle \Psi(z_1) \Psi(z_2) \cdots \Psi(z_N) \rangle = 0$$

\Rightarrow We are left with Virasoro modes only

and we get a partial differential equation for $\langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_N)
angle$

Partial differential equation

Plugging the null vectors

$$\begin{split} W_{-1}\Psi &= \frac{3\omega}{2\Delta}L_{-1}\Psi\\ W_{-2}\Psi &= \left(\frac{12\omega}{\Delta(5\Delta+1)}L_{-1}^2 + \frac{6\omega(\Delta+1)}{\Delta(5\Delta+1)}L_{-2}\right)\Psi \end{split}$$

into the equation

$$\sum_{j=1}^{N} \left(z_j^2 \underbrace{W_{-2}^{(j)}}_{-2} + 2z_j \underbrace{W_{-1}^{(j)}}_{-1} + \omega_j \right) \langle \Psi(z_1) \Psi(z_2) \cdots \Psi(z_N) \rangle = 0$$

\Rightarrow We are left with Virasoro modes only !

and we get a partial differential equation for $\langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_N)
angle$

Partial differential equation

Plugging the null vectors

$$\begin{split} W_{-1}\Psi &= \frac{3\omega}{2\Delta}L_{-1}\Psi\\ W_{-2}\Psi &= \left(\frac{12\omega}{\Delta(5\Delta+1)}L_{-1}^2 + \frac{6\omega(\Delta+1)}{\Delta(5\Delta+1)}L_{-2}\right)\Psi \end{split}$$

into the equation

$$\sum_{j=1}^{N} \left(z_j^2 \underbrace{W_{-2}^{(j)}}_{-2} + 2z_j \underbrace{W_{-1}^{(j)}}_{-1} + \omega_j \right) \langle \Psi(z_1) \Psi(z_2) \cdots \Psi(z_N) \rangle = 0$$

\Rightarrow We are left with Virasoro modes only !

and we get a partial differential equation for $\langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_N)
angle$

PDE

$$\mathcal{H}^{\mathrm{WA}_2}(r)\langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_N)\rangle=0$$

où \mathcal{H}^{WA_2} is a differential operator of order 2.

Restauring the charge part, this PDE becomes an eigenvector equation for the Calogero-Sutherland Hamiltonian for $\alpha = -\frac{3+1}{r-1}$, corresponding to the densest (3, r) admissible partition !

This proves the conjecture for k = 3:

$$\langle \Psi(z_1) \dots \Psi(z_N) \rangle \prod_{i < j} (z_i - z_j)^{r/2} = J_{[30^{r-1}30^{r-1} \dots 3]}^{-4/(r-1)}$$

PDE

$$\mathcal{H}^{\mathrm{WA}_2}(r)\langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_N)\rangle=0$$

où \mathcal{H}^{WA_2} is a differential operator of order 2.

Restauring the charge part, this PDE becomes an eigenvector equation for the Calogero-Sutherland Hamiltonian for $\alpha = -\frac{3+1}{r-1}$, corresponding to the densest (3, r) admissible partition !

This proves the conjecture for k=3:

$$\langle \Psi(z_1) \dots \Psi(z_N) \rangle \prod_{i < j} (z_i - z_j)^{r/2} = J_{[30^{r-1}30^{r-1} \dots 3]}^{-4/(r-1)}$$

PDE

$$\mathcal{H}^{\mathrm{WA}_2}(r)\langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_N)\rangle=0$$

où \mathcal{H}^{WA_2} is a differential operator of order 2.

Restauring the charge part, this PDE becomes an eigenvector equation for the Calogero-Sutherland Hamiltonian for $\alpha = -\frac{3+1}{r-1}$, corresponding to the densest (3, r) admissible partition !

This proves the conjecture for k = 3:

$$\langle \Psi(z_1) \dots \Psi(z_N) \rangle \prod_{i < j} (z_i - z_j)^{r/2} . = J_{[30^{r-1}30^{r-1} \dots 3]}^{-4/(r-1)}$$

WA_{k-1} algebra

The algebra is generated by k-1 currents $W^{(s)}(z)$:

Commutation relations are rather untractable

Huge number of descendants

Level n	Number of fields $p(n)$	Descendants
	1	φ
1	k-1	$W_{-1}^{(2)}\Phi, W_{-1}^{(3)}\Phi, \dots W_{-1}^{(k)}\Phi$
2	(k-1)(k+2)/2	$W^{(i)}_{-2} \Phi, \; W^{(i)}_{-1} W^{(j)}_{-1} \Phi$

$$\Phi_k(x) = \left(\frac{1}{\varphi(x)}\right)^{k-1} = \prod_{n=1}^{\infty} \left(\frac{1}{1-x^n}\right)^{k-1} = \sum_{n=0}^{\infty} p(n)x^n$$

WA_{k-1} algebra

The algebra is generated by k-1 currents $W^{(s)}(z)$:

 \Rightarrow Commutation relations are rather untractable

Huge number of descendants

Level n	Number of fields $p(n)$	Descendants
	1	φ
1	k-1	$W_{-1}^{(2)}\Phi, W_{-1}^{(3)}\Phi, \dots W_{-1}^{(k)}\Phi$
2	(k-1)(k+2)/2	$W_{-2}^{(i)} \Phi, \ W_{-1}^{(i)} W_{-1}^{(j)} \Phi$

WA_{k-1} algebra

The algebra is generated by k-1 currents $W^{(s)}(z)$:

 \Rightarrow Commutation relations are rather untractable

Huge number of descendants

Level n	Number of fields $p(n)$	Descendants
0	1	Φ
1	k-1	$W_{-1}^{(2)}\Phi, W_{-1}^{(3)}\Phi, \dots, W_{-1}^{(k)}\Phi$
2	(k-1)(k+2)/2	$W_{-2}^{(i)}\Phi, W_{-1}^{(i)}W_{-1}^{(j)}\Phi$

$$\Phi_k(x) = \left(\frac{1}{\varphi(x)}\right)^{k-1} = \prod_{n=1}^{\infty} \left(\frac{1}{1-x^n}\right)^{k-1} = \sum_{n=0}^{\infty} p(n)x^n$$

WA_{k-1} algebra

The algebra is generated by k-1 currents $W^{(s)}(z)$:

 \Rightarrow Commutation relations are rather untractable

Huge number of descendants

Level n	Number of fields $p(n)$	Descendants
0	1	Φ
1	k-1	$W_{-1}^{(2)}\Phi, W_{-1}^{(3)}\Phi, \dots W_{-1}^{(k)}\Phi$
2	(k-1)(k+2)/2	$W_{-2}^{(i)} \Phi, \ W_{-1}^{(i)} W_{-1}^{(j)} \Phi$

$$\Phi_k(x) = \left(\frac{1}{\varphi(x)}\right)^{k-1} = \prod_{n=1}^{\infty} \left(\frac{1}{1-x^n}\right)^{k-1} = \sum_{n=0}^{\infty} p(n)x^n$$

Parafermionic fields in $WA_{k-1}(k+1, k+r)$ theories

Parafermions

The $WA_{k-1}(k+1, k+r)$ theories are a special case of $\mathbb{Z}_{k}^{(r)}$ parafermionic theories, with :

$$\Psi_1 = \Phi_{(1,1,\dots,1|2,1,\dots,1)}$$

$$\Psi_{k-1} = \Phi_{(1,1,\dots,1|1,1,\dots,2)}$$

Null vectors

In order to derive a Calogero-Sutherland type PDE, it is sufficient to show that these parafermionic field have null vectors of the form:

$$\left(W_{-1}^{(3)} + \beta L_{-1} \right) \Psi = 0$$
$$\left(W_{-2}^{(3)} + \mu L_{-1}^2 + \nu L_{-2} \right) \Psi = 0$$

Parafermionic fields in $WA_{k-1}(k+1, k+r)$ theories

Parafermions

The $WA_{k-1}(k+1, k+r)$ theories are a special case of $\mathbb{Z}_{k}^{(r)}$ parafermionic theories, with :

$$\Psi_1 = \Phi_{(1,1,\dots,1|2,1,\dots,1)}$$

$$\Psi_{k-1} = \Phi_{(1,1,\dots,1|1,1,\dots,2)}$$

Null vectors

In order to derive a Calogero-Sutherland type PDE, it is sufficient to show that these parafermionic field have null vectors of the form:

$$\left(W_{-1}^{(3)} + \beta L_{-1} \right) \Psi = 0$$
$$\left(W_{-2}^{(3)} + \mu L_{-1}^2 + \nu L_{-2} \right) \Psi = 0$$

$$\chi_{(\lambda|\mu)}(x) = \Phi_k(x) \sum_{w \in \hat{W}} \epsilon(w) x^{\Delta_{(w(\lambda)|\mu)}}$$

counts the number of descendants of the primary field $\Phi_{(\lambda|\mu)}$

For the field $\Phi_{(1,1,...,1|2,1,...1)}$

The parafermionic field $\Psi = \Phi_{(1,1,\dots,1|2,1,\dots,1)}$ has :

- ullet only has one state at level one: $L_{-1}\Psi$
- ullet two independent states at level two: $L^2_{-1}\Psi$ and $L_{-2}\Psi$

This ensures the existence of null vectors of the desired form

 $\left(W_{-1}^{(3)}+eta L_{-1}
ight)\Psi=0$

$$\left(W_{-2}^{(3)} + \mu L_{-1}^2 + \nu L_{-2} \right) \Psi = 0$$

$$\chi_{(\lambda|\mu)}(x) = \Phi_k(x) \sum_{w \in \hat{W}} \epsilon(w) x^{\Delta_{(w(\lambda)|\mu)}}$$

counts the number of descendants of the primary field $\Phi_{(\lambda|\mu)}$

For the field $\Phi_{(1,1,\ldots,1|2,1,\ldots,1)}$

- The parafermionic field $\Psi = \Phi_{(1,1,\dots,1|2,1,\dots,1)}$ has :
 - only has one state at level one: $L_{-1}\Psi$
 - two independent states at level two: $L_{-1}^2 \Psi$ and $L_{-2} \Psi$

This ensures the existence of null vectors of the desired form

 $\left(W_{-1}^{\left(3
ight)}+eta L_{-1}
ight)\Psi=0$

$$\left(W_{-2}^{(3)} + \mu L_{-1}^2 + \nu L_{-2} \right) \Psi = 0$$

$$\chi_{(\lambda|\mu)}(x) = \Phi_k(x) \sum_{w \in \hat{W}} \epsilon(w) x^{\Delta_{(w(\lambda)|\mu)}}$$

counts the number of descendants of the primary field $\Phi_{(\lambda|\mu)}$

For the field $\Phi_{(1,1,\dots,1|2,1,\dots1)}$

The parafermionic field $\Psi = \Phi_{(1,1,\dots,1|2,1,\dots,1)}$ has :

- only has one state at level one: $L_{-1}\Psi$
- two independent states at level two: $L_{-1}^2 \Psi$ and $L_{-2} \Psi$

This ensures the existence of null vectors of the desired form

 $\left(W_{-1}^{(3)}+eta L_{-1}
ight)\Psi=0$

$$\left(W_{-2}^{(3)} + \mu L_{-1}^2 + \nu L_{-2} \right) \Psi = 0$$

$$\chi_{(\lambda|\mu)}(x) = \Phi_k(x) \sum_{w \in \hat{W}} \epsilon(w) x^{\Delta_{(w(\lambda)|\mu)}}$$

counts the number of descendants of the primary field $\Phi_{(\lambda|\mu)}$

For the field $\Phi_{(1,1,\dots,1|2,1,\dots1)}$

The parafermionic field $\Psi = \Phi_{(1,1,\dots,1|2,1,\dots,1)}$ has :

- only has one state at level one: $L_{-1}\Psi$
- two independent states at level two: $L_{-1}^2 \Psi$ and $L_{-2} \Psi$

This ensures the existence of null vectors of the desired form

 $\left(W_{-1}^{(3)}+eta L_{-1}
ight)\Psi=0$

$$W_{-2}^{(3)} + \mu L_{-1}^2 + \nu L_{-2} \Psi = 0$$

$$\chi_{(\lambda|\mu)}(x) = \Phi_k(x) \sum_{w \in \hat{W}} \epsilon(w) x^{\Delta_{(w(\lambda)|\mu)}}$$

counts the number of descendants of the primary field $\Phi_{(\lambda|\mu)}$

For the field $\Phi_{(1,1,\ldots,1|2,1,\ldots,1)}$

The parafermionic field $\Psi = \Phi_{(1,1,\dots,1|2,1,\dots,1)}$ has :

- only has one state at level one: $L_{-1}\Psi$
- two independent states at level two: $L_{-1}^2 \Psi$ and $L_{-2} \Psi$

This ensures the existence of null vectors of the desired form

$$\left(W_{-1}^{(3)}+\beta L_{-1}\right)\Psi=0$$

$$\left(W_{-2}^{(3)} + \mu L_{-1}^2 + \nu L_{-2}\right)\Psi = 0$$

$$\chi_{(\lambda|\mu)}(x) = \Phi_k(x) \sum_{w \in \hat{W}} \epsilon(w) x^{\Delta_{(w(\lambda)|\mu)}}$$

counts the number of descendants of the primary field $\Phi_{(\lambda|\mu)}$

For the field $\Phi_{(1,1,\ldots,1|2,1,\ldots,1)}$

The parafermionic field $\Psi = \Phi_{(1,1,\dots,1|2,1,\dots,1)}$ has :

- only has one state at level one: $L_{-1}\Psi$
- two independent states at level two: $L_{-1}^2 \Psi$ and $L_{-2} \Psi$

This ensures the existence of null vectors of the desired form

$$\left(W_{-1}^{(3)}+\beta L_{-1}\right)\Psi=0$$

$$\left(W_{-2}^{(3)} + \mu L_{-1}^2 + \nu L_{-2}\right)\Psi = 0$$

Partial differential equation in the general case (k, r)

PDE for parafermionic correlators

$$\mathcal{H}^{\mathrm{WA}_{k-1}}(r)\langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_N)
angle=0$$

where $\mathcal{H}^{WA_{k-1}}$ is a differential operator of order 2:

$$\sum_{j} (z_j \partial_j)^2 + \gamma_1 \sum_{i \neq j} \frac{z_j^2}{(z_j - z_i)^2} + \gamma_2 \sum_{i \neq j} \frac{z_i z_j (\partial_j - \partial_i)}{(z_j - z_i)} + N \gamma_3$$

with

$$\gamma_1(k,r) = -\frac{r(rk - r + k^2 - k)}{k^2(k+1)},$$

$$\gamma_2(k,r) = \frac{r+k}{k(k+1)},$$

$$\gamma_3(k,r) = -\frac{r(k-1)(2rk - k - 2r)}{6k^2}$$

Partial differential equation in the general case (k, r)

PDE for parafermionic correlators

$$\mathcal{H}^{\mathrm{WA}_{k-1}}(r)\langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_N)
angle=0$$

where $\mathcal{H}^{WA_{k-1}}$ is a differential operator of order 2:

$$\sum_{j} (z_j \partial_j)^2 + \gamma_1 \sum_{i \neq j} \frac{z_j^2}{(z_j - z_i)^2} + \gamma_2 \sum_{i \neq j} \frac{z_i z_j (\partial_j - \partial_i)}{(z_j - z_i)} + N \gamma_3$$

with

$$\gamma_1(k,r) = -\frac{r(rk - r + k^2 - k)}{k^2(k+1)},$$

$$\gamma_2(k,r) = \frac{r+k}{k(k+1)},$$

$$\gamma_3(k,r) = -\frac{r(k-1)(2rk - k - 2r)}{6k^2}$$

The polynomial $P_N^{(k,r)}$ defined as :

$$\mathcal{P}_{\mathcal{N}}^{(k,r)} = \langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_{\mathcal{N}})\rangle \prod_{i < j} (z_i - z_j)^{\frac{r}{k}}$$

is an eigenvector of the Calogero-Sutherland Hamiltonian, with the eigenvalue corresponding to the parameters :

$$\alpha = -\frac{k+1}{r-1}$$
$$\lambda = [k \underbrace{00 \dots 0}_{r-1} k \underbrace{00 \dots 0}_{r-1} k \dots]$$

\Rightarrow It is the conjectured Jack polynomial !

Benoit Estienne (LPTHE)

Jack wavefunctions and ${\mathcal W}$ theories

The polynomial $P_N^{(k,r)}$ defined as :

$${\mathcal P}_{{\mathcal N}}^{(k,r)} = \langle \Psi(z_1) \Psi(z_2) \cdots \Psi(z_{{\mathcal N}})
angle \prod_{i < j} (z_i - z_j)^{rac{r}{k}}$$

is an eigenvector of the Calogero-Sutherland Hamiltonian, with the eigenvalue corresponding to the parameters :

$$\alpha = -\frac{k+1}{r-1}$$

$$\lambda = [k \underbrace{00\ldots0}_{r-1} k \underbrace{00\ldots0}_{r-1} k \ldots]$$

\Rightarrow It is the conjectured Jack polynomial !

The polynomial $P_N^{(k,r)}$ defined as :

$${\mathcal P}_{{\mathcal N}}^{(k,r)} = \langle \Psi(z_1) \Psi(z_2) \cdots \Psi(z_{{\mathcal N}})
angle \prod_{i < j} (z_i - z_j)^{rac{r}{k}}$$

is an eigenvector of the Calogero-Sutherland Hamiltonian, with the eigenvalue corresponding to the parameters :

$$\alpha = -\frac{k+1}{r-1}$$

$$\lambda = [k \underbrace{00 \dots 0}_{r-1} k \underbrace{00 \dots 0}_{r-1} k \dots]$$

\Rightarrow It is the conjectured Jack polynomial !

The polynomial $P_N^{(k,r)}$ defined as :

$$\mathcal{P}_{\mathcal{N}}^{(k,r)} = \langle \Psi(z_1)\Psi(z_2)\cdots\Psi(z_{\mathcal{N}})\rangle \prod_{i < j} (z_i - z_j)^{\frac{r}{k}}$$

is an eigenvector of the Calogero-Sutherland Hamiltonian, with the eigenvalue corresponding to the parameters :

$$\alpha = -\frac{k+1}{r-1}$$

$$\lambda = [k \underbrace{00 \dots 0}_{r-1} k \underbrace{00 \dots 0}_{r-1} k \dots]$$

\Rightarrow It is the conjectured Jack polynomial !

Benoit Estienne (LPTHE)

- By using the Ward identities associated to the spin 3 curent W⁽³⁾(z) and the degeneracy properties of the Ψ₁ and Ψ_{k-1} representations, we showed that their N-points correlation functions satisfy a second order differential equation.
- This equation can be transformed into a Calogero Hamiltonian with negative rational coupling $\alpha = -(k+1)/(r-1)$.

 \Rightarrow this proves that the N–points correlation functions of Ψ can be written in term of a single Jack polynomial.

- By using the Ward identities associated to the spin 3 curent W⁽³⁾(z) and the degeneracy properties of the Ψ₁ and Ψ_{k-1} representations, we showed that their N-points correlation functions satisfy a second order differential equation.
- This equation can be transformed into a Calogero Hamiltonian with negative rational coupling $\alpha = -(k+1)/(r-1)$.

 \Rightarrow this proves that the *N*-points correlation functions of Ψ can be written in term of a single Jack polynomial.

- By using the Ward identities associated to the spin 3 curent W⁽³⁾(z) and the degeneracy properties of the Ψ₁ and Ψ_{k-1} representations, we showed that their N-points correlation functions satisfy a second order differential equation.
- This equation can be transformed into a Calogero Hamiltonian with negative rational coupling $\alpha = -(k+1)/(r-1)$.

 \Rightarrow this proves that the *N*-points correlation functions of Ψ can be written in term of a single Jack polynomial.

- By using the Ward identities associated to the spin 3 curent W⁽³⁾(z) and the degeneracy properties of the Ψ₁ and Ψ_{k-1} representations, we showed that their N-points correlation functions satisfy a second order differential equation.
- This equation can be transformed into a Calogero Hamiltonian with negative rational coupling $\alpha = -(k+1)/(r-1)$.

 \Rightarrow this proves that the *N*-points correlation functions of Ψ can be written in term of a single Jack polynomial.

• Wavefunctions with quasiholes are related to the follwing correlators:

$$\langle \sigma(w_1) \cdots \sigma(w_M) \Psi(z_1) \cdots \Psi(z_N) \rangle$$

These correlators also obey a partial differential equation

This could have some interesting applications, even for the Read-Rezayi states !

- Coulomb gas techniques associated with these CFTs :
 - → integral representation of these Jacks
 - ightarrow integral representation of the conformal blocks for quasihole wavefunctions

• Wavefunctions with quasiholes are related to the follwing correlators:

$$\langle \sigma(w_1) \cdots \sigma(w_M) \Psi(z_1) \cdots \Psi(z_N) \rangle$$

These correlators also obey a partial differential equation

This could have some interesting applications, even for the Read-Rezayi states !

- Coulomb gas techniques associated with these CFTs :
 - → integral representation of these Jacks
 - ightarrow integral representation of the conformal blocks for quasihole wavefunctions

• Wavefunctions with quasiholes are related to the follwing correlators:

$$\langle \sigma(w_1) \cdots \sigma(w_M) \Psi(z_1) \cdots \Psi(z_N) \rangle$$

These correlators also obey a partial differential equation

This could have some interesting applications, even for the Read-Rezayi states !

• Coulomb gas techniques associated with these CFTs :

→ integral representation of these Jacks

 \rightarrow integral representation of the conformal blocks for quasihole wavefunctions

• Wavefunctions with quasiholes are related to the follwing correlators:

$$\langle \sigma(w_1) \cdots \sigma(w_M) \Psi(z_1) \cdots \Psi(z_N) \rangle$$

These correlators also obey a partial differential equation

This could have some interesting applications, even for the Read-Rezayi states !

- Coulomb gas techniques associated with these CFTs :
 - \rightarrow integral representation of these Jacks

 \rightarrow integral representation of the conformal blocks for quasihole wavefunctions

• Wavefunctions with quasiholes are related to the follwing correlators:

$$\langle \sigma(w_1) \cdots \sigma(w_M) \Psi(z_1) \cdots \Psi(z_N) \rangle$$

These correlators also obey a partial differential equation

This could have some interesting applications, even for the Read-Rezayi states !

- Coulomb gas techniques associated with these CFTs :
 - \rightarrow integral representation of these Jacks

 \rightarrow integral representation of the conformal blocks for quasihole wavefunctions

• Wavefunctions with quasiholes are related to the follwing correlators:

$$\langle \sigma(w_1) \cdots \sigma(w_M) \Psi(z_1) \cdots \Psi(z_N) \rangle$$

These correlators also obey a partial differential equation

This could have some interesting applications, even for the Read-Rezayi states !

- Coulomb gas techniques associated with these CFTs :
 - \rightarrow integral representation of these Jacks

 \rightarrow integral representation of the conformal blocks for quasihole wavefunctions