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ENTANGLEMENT IN SPIN CHAINS
For an introduction see: Amico, Fazio, Osterloh, Vedral, RMP 2008 

next section we approach the same problem by looking
at the block entropy.5

Pairwise entanglement close to quantum phase transi-
tions was originally analyzed by Osborne and Nielsen
!2002", and Osterloh et al. !2002" for the Ising model in
one dimension. Below we summarize their results in this
specific case. The concurrence tends to zero for !"1
and !#1, the ground state of the system is fully polar-
ized along the x axes !z axes". Moreover, the concur-
rence is zero unless the two sites are at most next-
nearest-neighbors, we therefore discuss only the nearest
neighbor concurrence C!1" !see, however, Sec. IV.A.1
for cases where there is a longer-range pairwise en-
tanglement". The concurrence itself is a smooth function
of the coupling with a maximum close to the critical
point !see the right inset of Fig. 2"; it was argued that the
maximum in the pairwise entanglement does not occur
at the quantum critical point because of the monogamy
property !it is the global entanglement that should be
maximal at the critical point". The critical properties of
the ground state are captured by the derivatives of the
concurrence as a function of !. The results for systems of
different size !including the thermodynamic limit" are
shown in Fig. 2. For the infinite chain !!C!1" diverges on
approaching the critical value as

!!C!1" #
8

3$2 ln$! − !c$ . !39"

For a finite system the precursors of the critical behavior
can be analyzed by means of finite size scaling. In the
critical region the concurrence depends only on the
combination N1/%!!−!m", where % is the critical expo-
nent governing the divergence of the correlation length
and !m is the position of the minimum !see the left inset
of Fig. 2". In the case of log divergence the scaling ansatz
has to be adapted and takes the form !!C!1"!N ,!"
−!!C!1"!N ,!0"#Q%N1/%&m!&−Q%N1/%&m!0&, where !0 is
some noncritical value, &m!!"=!−!m, and Q!x"
#Q!'"ln x !for large x". Similar results have been ob-
tained for the XY universality class !Osterloh et al.,
2002". Although the concurrence describes short-range
properties, nevertheless scaling behavior typical of con-
tinuous phase transition emerges.

For this class of models the concurrence coincides
with CI in Eq. !7" indicating that the spins can only be
entangled in an antiparallel way !this is a peculiar case
of (=1; for generic anisotropies the parallel entangle-
ment is also observed". The analysis of the finite size
scaling in the, so-called, period-2 and period-3 chains
where the exchange coupling varies every second and
third lattice sites, respectively, leads to the same scaling
laws in the concurrence !Zhang and Burnett, 2005".

The concurrence was found to be discontinuous at the
first order ferromagnetic transition )=−1 in the XXZ
chain !Gu et al., 2003" %see Glaser et al. !2003" for ex-
plicit formulas relating the concurrence and correlators
for the XXZ model in various regimes&. This result can
be understood in terms of the sudden change of the
wave function occurring because of the level crossing
characterizing these types of quantum critical points.
The behavior of the two-site entanglement at the con-
tinuous quantum critical point of the Kosterlitz-
Thouless type )=1 separating the XY and the antiferro-
magnetic phases is more complex. In this case the
nearest-neighbor concurrence !that is the only nonvan-
ishing one" reaches a maximum as shown in Fig. 3. Fur-
ther understanding of such behavior can be achieved by
analyzing the symmetries of the model. At the antiferro-
magnetic point the ground state is an su!2" singlet where
nearest-neighbor spins tend to form singlets; away from
)=1, this behavior is “deformed” and the system has the
tendency to reach a state of the type ! $*q

j ' made of
q-deformed singlets corresponding to the quantum alge-
bra suq!2" with 2)=q+q−1 !Pasquier and Saleur, 1990".
This allows one to rephrase the existence of the maxi-
mum in the concurrence as the loss of entanglement as-
sociated to the q-deformed symmetry of the system
away from )=1 !note that q-singlets are less entangled
than undeformed ones". This behavior can be traced
back to the properties of the finite size spectrum !Gu et
al., 2007". In fact, at )=1 the concurrence can be related
to the eigenenergies. The maximum arises since both the
transverse and longitudinal orders are power law decay-

5QPTs were also studied by looking at quantum fidelity
!Cozzini et al., 2006; Zanardi et al., 2006" or the effect of single
bit operations !Giampaolo, Illuminati, and Sienga, 2006; Giam-
paolo et al., 2008".
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FIG. 2. !Color online" The derivative of the nearest-neighbor
concurrence as a function of the reduced coupling strength.
The curves correspond to different lattice sizes. On increasing
the system size, the minimum gets more pronounced and the
position of the minimum tends !see the left-hand side inset"
towards the critical point where for an infinite system a loga-
rithmic divergence is present. The right-hand side inset shows
the behavior of the concurrence for the infinite system. The
maximum is not related to the critical properties of the Ising
model. From Osterloh et al., 2002.
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where C is the concurrence given by

C ! 0 if e8J!kT # 3 ,

!
e8J!kT 2 3

1 1 e22B!kT 1 e2B!kT 1 e8J!kT if e8J!kT . 3 .

(5)

Figure 1 shows the plot of this entanglement as a function
of magnetic field and temperature.

For B ! 0, the singlet is the ground state and the triplets
are the degenerate excited states. In this case, the maxi-
mum entanglement is at T ! 0 and it decreases with T
due to mixing of the triplets with the singlet. For a higher
value of B, however, the triplet states split, and j00" be-
comes the ground state. In that case there is no entangle-
ment at T ! 0, but increasing T increases entanglement by
bringing in some singlet component into the mixture. On
the other hand, as B is increased at T ! 0, the entangle-
ment vanishes suddenly as B crosses a critical value of
Bc ! 4J when j00" becomes the ground state. This special
point T ! 0, B ! Bc, at which entanglement undergoes a
sudden change with variation of B, is the point of a quan-
tum phase transition [21] (phase transitions taking place
at zero temperature due to variation of interaction terms in
the Hamiltonian of a system). At any finite T , however,
entanglement decays off analytically after B crosses Bc.
In the ferromagnetic case, the state of the system at B ! 0
and T ! 0 is an equal mixture of the three triplet states.
This state is disentangled [7]. Increasing B increases the
proportion of j00" in the state which cannot make it en-
tangled. Increasing T increases the proportion of singlet
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FIG. 1. We have plotted the entanglement E between two
qubits interacting according to the antiferromagnetic Heisenberg
model as a function of the external field B and temperature (mul-
tiplied by the Boltzmann’s constant) kT with coupling J ! 1.
The B ! 4.6 line pointed out in the figure shows that for cer-
tain values of B it is possible to increase E by increasing T . At
T ! 0, E has a sharp transition from 1 to 0 as B crosses the
critical value of Bc ! 4. E always becomes zero for values of
T exceeding Tc ! 8!k ln3.

in the state which can only decrease entanglement by mix-
ing with the triplet. Thus we never find any entanglement
in the 2-qubit ferromagnet. These features of the 2-qubit
Heisenberg model are also present in the N qubit model
(which we investigate numerically) along with additional
features, which we describe next.

We first plot (Fig. 2) how the entanglement between
nearest, next nearest, and next to next nearest neighbors
in an antiferromagnet vary with B for a finite but low T
(so that the entanglement is predominantly determined
by the ground state). For the nearest neighbor entan-
glement there are dips in the entanglement at certain
points. These dips are due to the mixing of two different
entangled ground states at these points. After exceeding
a certain value of B (say, BE , which might depend
on N ), an equal superposition of states with only one
spin up becomes the ground state. This state jCsym" !

1p
N #j100 · · · 0" 1 j010 · · · 0" 1 · · · 1 j000 · · · 1"$ has en-

tanglement between any two pairs. Thus we see the next
nearest and the next to next nearest neighbor entanglement
becoming finite only after B crosses BE . One can call this
entanglement between non-nearest neighbors magnetic
entanglement as it is brought about by increasing B.
When B is increased further, beyond a critical value
Bc ! 2J%1 1

11#21$N

2 1
12#21$N

2 cosp!N& # 4J the dis-
entangled state j00 · · · 0" becomes the ground state. At
precisely T ! 0, crossing Bc ensures the complete van-
ishing of all types of entanglement. For finite T , all types
of entanglement decay to zero gradually after Bc. This is
illustrated in Fig. 3. An interesting point, shown by all our
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FIG. 2. The topmost plot shows the variation of nearest neigh-
bor entanglement E with B for N ! 6, kT ! 0.1, and J ! 1.
The middle and the bottommost plot show the same for next
nearest and next to next nearest neighbors, respectively. The
reason for the shapes of the curves is presented in the text. Note
that lE is 1 lattice spacing for all values of B below BE ! 3.24
and changes to 3 lattice spacings for a range of B after BE . This
means one can magnetically tune in the entanglement between
any two qubits by increasing B. We also see the decay of all
types of entanglement shortly after B ! Bc ! 4.
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FIG. 5: Next-nearest-neighbour concurrence C at zero tem-
perature for the XY model

sites is shown in Fig. 4 and Fig. 5 respectively. The con-
currences are a complicated function of the parameters,
reflecting the competition between the various different
noncommuting terms in the Hamiltonian as the parame-
ters are varied.

The completely isotropic limit, γ = 0, is the most in-
teresting parameter region besides the transverse Ising
model. Direct calculation along the lines already pre-
sented shows that two-party entanglement exists between
all pairs for all separations at this point. Wootters [55]
has made a study of the correlations in one- and two-
dimensional lattices and he has found interesting connec-
tions between the two-party correlations in the isotropic
XY model and the bounds of entanglement sharing. Fur-
ther investigations along these lines could provide ev-
idence that critical quantum lattice systems are maxi-
mally entangled in the sense of entanglement sharing.

IV. THERMAL ENTANGLEMENT IN THE
TRANSVERSE ISING MODEL

In this section we discuss the entanglement present in
the thermal state of the transverse Ising model. We find
that the largest amount of entanglement is present in
the parameter region close to the critical point. This
region is found to correspond with the quantum critical
region introduced by Sachdev ([16], pg. 58). We also find
parameter values for which the entanglement increases
as the temperature is increased. Finally, we discuss the
persistence of quantum effects in the thermal state as the
temperature is increased.

It is desirable to determine when a condensed-matter
system will behave quantum-mechanically. This is par-
ticularly important because the validity of various ansatz
methods depends on whether they take account of possi-
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FIG. 6: Nearest-neighbour concurrence C at nonzero temper-
ature for the transverse Ising model
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FIG. 7: Next-nearest-neighbour concurrence C at nonzero
temperature for the transverse Ising model

ble quantum effects. When a system is in its ground state
quantum effects will certainly be important, as evidenced
by the quantum phase transition in the XY model. The
zero-temperature calculations of the last section repre-
sent a highly idealised situation, however, and it is un-
clear whether they have any relevance to the system at
nonzero temperature. It turns out that the properties
of a quantum system for low temperatures are strongly
influenced by nearby (in parameter space) quantum crit-
ical points [16, 17]. It is tempting to attribute the effect
of nearby critical points to persistent mixed-state entan-
glement in the thermal state. In order to investigate
this, we calculate the two-party entanglement present at
a nonzero temperature T .
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THE ISING MODEL
H = −J
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1 J/Bz

ν = 1

Correlations

�σi
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ISING: SCHMIDT GAP (SCALING)

β = 0.124 ν = 1.00

Fitting results:Finite Size Scaling
(Fisher & Barber 1972)
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INSTANTANEOUS QUENCHES

Dynamics of the entanglement spectrum in spin chains 3

reduced density matrix in the quantum Ising model. On the other hand, quasi adiabatic

sweeps of a Hamiltonian parameter across the transition reveals universal dynamics ruled

by the Kibble-Zurek mechanism (see [27] for recent reviews).

In this work we analyse the time evolution of the ES in a system of 1D spin chains

after instantaneous or quasi-adiabatic quenches in one parameter of the Hamiltonian.

We first study the 1D Ising model that can be exactly diagonalised and we show results

on the evolution of the ES after a sudden change of the magnetic field. We show that

when the magnetic field is changed from the paramagnetic phase to the ferromagnetic

phase, the ES levels cross each other and the corresponding Schmidt gap oscillates. The

oscillations are equivalent to the oscillations of the spontaneous magnetisation after a

similar quench. We also analyse the evolution of ES after a quasi-adiabatic quench and

show the appearance of an algebraic dependence of the Schmidt gap with the rate of

change of the magnetic field when crossing the quantum phase transition.

We then move to the XXZ model in which we quench the value of the anisotropy

parameter. The unitary evolution of the ground state in this case was calculated using

the time-dependent density matrix renormalisation group (tDMRG) algorithm [28]. In

this case however we do not observe crossing of the eigenvalues but rather a tendency of

them to become degenerate and at the same time decreasing exponentially with time.

The paper is organised as follows: in Sec. 2 we present the models we consider in

this work and review the basic properties of the ES; in Sec. 3 we present our results for

the dynamics of the Ising model; in Sec. 4 we pass to the ES of the XXZ model and in

Sec. 5 we summarise and conclude. In the Appendix, details of the diagonalisation of

the Ising model can be found.

2. Preliminaries

In this paper, we will study the Hamiltonian of two spin chain models. The first is the

spin-1/2 transverse field Ising model described by the quantum Hamiltonian:

Ĥ(h) = −1

2

�L−1�

i=1

σ̂x
i σ̂

x
i+1 + h

L�

i=1

σ̂z
i

�
h > 0. (1)

with L the number of spins in the chain and h proportional to the magnetic field

oriented in the z direction and throughout this paper we always assume open boundary

conditions. Operators σ̂x,y,z
i are the Pauli spin operators of site i. As the parameter h

approaches 1 (quantum critical point), the system undergoes a quantum phase transition

between a ferromagnetic phase (h < 1) and a quantum paramagnetic phase (h > 1). In

the paramagnetic phase the ground state is Z2 invariant, and thus completely disordered,

while for the ferromagnetic phase, in the thermodynamic limit, the ground state breaks

Z2 invariance (see for example [29]). This model is integrable and can be exactly

diagonalised using the well known Jordan-Wigner and Bogoliubov transformations, as

described in Sec. 3.

Ising model

From the
Paramagnetic phase

h0=1.5

Dynamics of the entanglement spectrum in spin chains 5

3.1. Results for the Ising model: instantaneous quenches

In this section we discuss the results obtained for the ES after an instantaneous quench

h0 → h1 for L = 200. The first quenches we consider are from the paramagnetic to the
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Figure 1. Dynamics of entanglement spectrum and Schmidt gap (inset) for the
quenches h0 = 1.5 to h1 = 1.2 (a), 1.0 (b), 0.8 (c), 0.5 (d) as a function of time.

ferromagnetic phase, with h0 = 1.5 and h1 = 1.2, 1.0, 0.8, 0.5. As show in Fig. 1 the ES

dynamics strongly depends on whether the system is quenched within the same phase

(paramagnetic in this case) or in the other. On one hand, when the final Hamiltonian

magnetic field h1 ≥ 1 pertains to the paramagnetic phase, the Schmidt gap decreases

almost monotonically (insets a-b). On the other hand when h1 < 1, the Schmidt gap

oscillates, with a series of zeros (insets c-d), inside the ferromagnetic phase. In the latter

case, the ES exhibits, a series of crossings in time between the eigenvalues λk(t). We

observe that the frequency of the crossings increases lowering h1 and going further deep

in the ferromagnetic phase while it vanishes as h1 → 1 at the quantum critical point.

Such behaviour follows from the single particle eigenvalues εk of K̂, since the smallest

one (which is the most important due to the exponential form of the reduced density

matrix) goes periodically to zero, as plotted in Fig. 2. As we see, the Schmidt gap (black

dashed curve) matches perfectly the oscillating behaviour of the lowest eigenvalue ε1.

To better understand the nature of these crossings we can look at the time tcrossing
when the first crossing between the two largest eigenvalues occurs (i.e. the first zero of

the Schmidt gap), as a function of the final Hamiltonian parameter h1. As expected

the crossing time diverges algebraically as the post-quench regime gets closer to the

h1=1.2
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Figure 1. Dynamics of entanglement spectrum and Schmidt gap (inset) for the
quenches h0 = 1.5 to h1 = 1.2 (a), 1.0 (b), 0.8 (c), 0.5 (d) as a function of time.

ferromagnetic phase, with h0 = 1.5 and h1 = 1.2, 1.0, 0.8, 0.5. As show in Fig. 1 the ES

dynamics strongly depends on whether the system is quenched within the same phase

(paramagnetic in this case) or in the other. On one hand, when the final Hamiltonian

magnetic field h1 ≥ 1 pertains to the paramagnetic phase, the Schmidt gap decreases

almost monotonically (insets a-b). On the other hand when h1 < 1, the Schmidt gap

oscillates, with a series of zeros (insets c-d), inside the ferromagnetic phase. In the latter

case, the ES exhibits, a series of crossings in time between the eigenvalues λk(t). We

observe that the frequency of the crossings increases lowering h1 and going further deep

in the ferromagnetic phase while it vanishes as h1 → 1 at the quantum critical point.

Such behaviour follows from the single particle eigenvalues εk of K̂, since the smallest

one (which is the most important due to the exponential form of the reduced density

matrix) goes periodically to zero, as plotted in Fig. 2. As we see, the Schmidt gap (black

dashed curve) matches perfectly the oscillating behaviour of the lowest eigenvalue ε1.

To better understand the nature of these crossings we can look at the time tcrossing
when the first crossing between the two largest eigenvalues occurs (i.e. the first zero of

the Schmidt gap), as a function of the final Hamiltonian parameter h1. As expected

the crossing time diverges algebraically as the post-quench regime gets closer to the

h1=1
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dashed curve) matches perfectly the oscillating behaviour of the lowest eigenvalue ε1.
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The lowest single particle eigenvalue goes to zero periodically
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CROSSING TIME
Close to the critical point the first crossing time diverges!
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Figure 2. Time evolution of the first four eigenenergies εk for the quenches h0 = 1.5
to h1 = 1.2 (a) and 0.5 (b). The black dashed curve in b is the Schmidt gap.

quantum critical point. The result is shown in Fig. 3 where the numerical data for the

crossing times are plotted against 1− h1 and compared to the simple scaling function:

tcrossing(h1) =
1√

1− h1
. (7)

Notice that one would be tempted to associate a critical exponent to the power 1/2 that

we find. However this is not the case because as we are quenching the system across the

phase transition the evolved quantum state of the system is quite far from equilibrium

and thus a description in terms of quasi-equilibrium critical exponents should not be

adequate.

We would like to highlight a very close resemblance of the results for the Schmidt

gap and those for the spontaneous magnetisation �σ̂x
(t)� for a quench across the

transition h0 → h1 [30, 31]. These authors predict and observe numerically that the
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Figure 3. Crossing time tcrossing at which the first zero of the Schmidt gap occurs as a
function of (1−h1) (dots) and the function t̃(h1) (see Eq. (7), solid line) in logarithmic
scale. In the inset the crossing time in linear scale. We set h0 = 1.5.

tcrossing(h1) ≈
1√

1− h1
.

similar to the magnetisation
M. Heyl, A. Polkovnikov, S. Kehrein, Phys. Rev. Lett. 110, 135704 (2013)

P. Calabrese, F. H. L. Essler, M. Fagotti, J. Stat. Mech. (2012) P07016
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First finite size scaling analysis of the entanglement spectrum

Extraction of the critical exponents 

Entanglement Spectrum Dynamics (also XXZ) 

Slow quenches: Kibble-Zurek mechanism 

Open Questions: dynamics in non-integrable models? random 
systems?
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QUANTUM CORRELATIONS 
AND DISCORD

Entanglement does not capture all quantum correlations,   
especially for thermal states:                                                                             
a non-entangled state can still be quantum correlated

Many forms of quantum correlations have been proposed.               
Here we consider quantum discord                                                    
(Ollivier-Zurek 2001; Henderson-Vedral 2001)

QD (and not entanglement) is a resource for certain quantum 
computational tasks (DQC1)

Interestingly QD doesn’t fulfil monogamy relations



BIPARTITE QUANTUM DISCORD
Quantum discord is the difference of two classically 
equivalent ways to measure correlations:

I(ρAB) = S(ρA) + S(ρB)− S(ρAB)mutual information {

conditional entropy

3

lowest-energy state of many-body systems truly involve (quasi-)long-range influences among
the parties. Such an analysis is made very difficult, both at a theoretical and computational
levels, by the lack of unambiguous measures of multipartite entanglement in mixed states.

In this paper, we study the relation between criticality and global quantum correlations in
finite-size systems at non-zero temperature by using a measure of global quantum correlations
recently put forward in [20] and employed by some of us in [11] for a quantum many-body
system at zero temperature. As canonical examples, we study one-dimensional models that are
of genuine physical interest due to the non-trivial features of their phase diagrams, such as the
transverse-field Ising model, the open-boundary XX model in transverse magnetic field [21],
and the so-called cluster-Ising model introduced in [22]. The latter interpolates between the
standard antiferromagnetic Ising Hamiltonian and a topologically ordered cluster phase. Our
study shows the ability of global discord to detect critical points. Moreover, for specific cases
among the examples addressed in our work, we bring evidence of a finite-size scaling for global
discord and its derivative that are closely related to the behavior of macroscopic features such
as the magnetization.

The rest of this paper is organized as follows. In section 1, we start our study by introducing
both quantum discord and its global version. In section 2 we then move to the description of a
set of physically relevant interacting quantum many-body models that will be studied against the
content of global quantum correlations of equilibrium states at temperature T �= 0 and present
our results. Finally, in section 3 we draw up our conclusions and discuss a few open questions
that are left to be addressed in the future.

1. Tools for quantifying quantum correlations

In this section we introduce the fundamental mathematical tools used in our study. We recall
the definition of global discord given in [20], and present a more agile expression for the
case of multipartite qubit systems. For the sake of completeness we briefly review the original
formulation of quantum discord valid in the bipartite scenario.

1.1. Quantum discord

We begin by recalling that, as originally proposed in [4], quantum discord is linked to the
discrepancy between two quantum extensions of the concept of conditional entropy that are
classically equivalent. Let us consider a bipartite system described by the density operator ρAB

with ρA (ρB) denoting the reduced state of system A (B). The total correlations between A and
B are quantified by the mutual information

I (ρAB) = S(ρA) − S(ρA|ρB), (1)

where S(ρA) = −Tr[ρAlog2 ρA] is the von Neumann entropy and S(ρA|ρB) = S(ρAB) − S(ρB)
is the conditional entropy. By using a measurement-based approach, a second definition of
conditional entropy can be formulated. The application of a local projective measurement,
described by the set of projectors {�̂ j

B} on part B of the system, results in the conditional post-
measurement density operator ρAB| j = (1̂1A ⊗ �̂

j
B)ρAB(1̂1A ⊗ �̂

j
B)/p j , where p j = Tr[(1̂1A ⊗

�̂
j
B)ρAB] is the probability associated with the measurement outcome j . We can thus

New Journal of Physics 15 (2013) 043033 (http://www.njp.org/)
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BIPARTITE QUANTUM DISCORD

A BΠj
B

j

S(ρA|j)

S(ρAB |Πj
B) =

�

j

pjS(ρA|j)

one-way classical information

J(ρAB) = S(ρA)− S(ρAB |Πj
B)

4

define the measurement-based conditional entropy S(ρAB|�̂ j
B) =

�
j p j S(ρA| j) with ρA| j =

Tr[�̂
j
BρAB]/p j , which leads us to the so-called one-way classical information [5]

J (ρAB) = S(ρA) − S(ρAB|�̂ j
B). (2)

The difference between quantum mutual information and classical correlations, minimized

over the whole set of orthogonal projective measurements performed on B, defines quantum

discord as

DB→A(ρAB) = inf

{�̂ j
B}

[I (ρAB) − J (ρAB)]. (3)

By noticing that the original definition of discord [4] can be rewritten in terms of

relative entropy S(ρ1||ρ2) = Tr[ρ1log
2
ρ1] − Tr[ρ1log

2
ρ2] between two generic states ρ1 and

ρ2 [20] and by symmetrizing its definition through the introduction of bilateral measurements

�̂
j
A ⊗ �̂k

B [23], we introduce

DAB(ρAB) = min

{�̂ j
A⊗�̂k

B}
[S(ρAB||�(ρAB)] −

�

j=A,B

S(ρ j ||�̂ j(ρ j)) (4)

with �̂(ρAB) =
�

j,k(�̂
j
A ⊗ �̂k

B)ρAB(�̂
j
A ⊗ �̂k

B). Equation (4) expresses discord as the

difference between the content of quantum correlations ascribed to a multi-local measurement

process and the sum of the relative entropies for each reduced state of the system. The

minimization is required, clearly, to remove any dependence on the local measurement bases.

The absence of global quantum correlations would make equation (4) identically null.

1.2. Global quantum discord

Equation (4) is the starting point for the formulation of global discord (GD) [20]

GD(ρT ) = min
{�̂k}




S
�
ρT ||�̂(ρT )

�
−

N�

j=1

S
�
ρ j ||�̂ j(ρ j)

�



 , (5)

which quantifies the global content of non-classical correlations in the state ρT of an N -party

system. Here ρ j = Tr
�
[ρT ] is the reduced state of qubit j (we use Tr

�
for the trace over all the

qubits but the j th), �̂ j(ρ j) =
�

l �̂
l
jρ j�̂

l
j , �̂(ρT ) =

�
k �̂kρT �̂k

, �̂k = ⊗N
l=1

�̂kl
l , and k stands

for the string of indices (k1, . . . , kN ). The minimization inherent in equation (5) is performed

over all possible multi-local projectors �̂k
. In [20] it is shown that GD(ρT )� 0, its maximum

value depending on the dimension of the total Hilbert space at hand. Recently, a monogamy

relation relating global quantum discord in a multipartite setting and pairwise correlations

evaluated by quantum discord has been introduced in [24].

The explicit computation of the formula in equation (5) is in general a difficult problem.

However, the task can be greatly simplified by writing the multi-qubit projective operators as

�̂k = R̂|k��k|R̂†
. Here {|k�} are separable eigenstates of �̂z = ⊗N

j=1
σ̂ z

j with σ̂
q
j the q = x, y, z

Pauli operator, and R̂ is a local multi-qubit rotation R̂= ⊗N
j=1

R̂ j(θ j , φ j) with R̂ j(θ j , φ j) =
cos θ j 1̂1 + i sin θ j cos φ j σ̂y + i sin θ j sin φ j σ̂x the rotation operator (of angles θ and φ j ) acting on

the j th qubit. Analogously, the set of local projective operators on the j th qubit is written as

�̂l
j = R̂ j |l��l|R̂†

j with |l� (l = 0, 1) the eigenstates of σ̂ z
j and where, for convenience, we have

New Journal of Physics 15 (2013) 043033 (http://www.njp.org/)
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DISCORD FOR SPIN-1 CHAINS

2

orthogonal projective measurements on B

D
B→A

(ρAB) = inf

{Π
j
B}

[I(ρAB) − J(ρAB)]. (4)

This definition is not symmetric under the exchange of A
and B as the measurements are performed on system B only.

A symmetrized version of the QD can be obtained with a

bi-local measurement Πi j = Π
i
A ⊗ Π

j
B such that Π(ρAB) =�

i j Πi jρABΠi j. We define the symmetric QD

D2(ρAB) = min
{Π}


S (ρAB||Π(ρAB)) −

�

α=A,B

S (ρα||Π
α
(ρα))


 ,

(5)

where we have introduced the relative entropy:

S (ρ||σ) = Tr[ρ log
2
ρ] − Tr[ρ log

2
σ], (6)

which vanishes as σ approaches ρ. Eq. (5) can be interpreted

as the difference between the first term, that is global on A
and B, and the second term, which is the sum of two local

contributions. Eq. (5) was shown to be generalizable to mul-

tipartite states [38]. For a quantum system comprising of N
subsystems we define the global quantum discord (GQD)

DN(ρN) = min
{Π}

�
S (ρN ||Π(ρN)) −

N�

α=1

S (ρα||Π
α
(ρα))

�
, (7)

In order to evaluate Eqs. (5) and (7) for the spin-1 system pre-

sented in the following section, we require suitable projective

measurements. In Ref. [21] the parametrization of local or-

thogonal measurements for spin-1 particles was given. We use

the spin-1 operators S x,y,z
fulfilling the normal angular mo-

mentum commutation relations. For simplicity, we define the

eigenstates of the z-component of the angular momentum as:

S z |m� = m |m� with m = −1, 0,+1. A projective measure-

ment for three-level systems is specified by three orthogonal

projectors summing to the identity matrix

�

m=0,±1

|mA� �mA| = 11, (8)

where A is a unitary matrix and we have defined the trans-

formed basis states as

|mA� = A |m� . (9)

Contrary to spin-1/2 systems, the norm of the Bloch vector

for pure states, P = �S� is not always 1 for spin-1 systems, i.e.

they are not always coherent states. This is related to the fact

that, while for spin-1/2 particles unitaries can always be writ-

ten as spin rotations (apart from an irrelevant phase factor), for

spin-1 there exist more general unitaries related to quadrupo-

lar operators, which induce spin squeezing. Thus, the most

general unitary should be written as the exponential of a poly-

nomial of degree 2 in the spin operators. Alternatively one

can split this exponential as the product of the exponentials of

simpler combinations of spin operators.

Following Ref. [21], we first define the states

|mr� = exp[i(γ(S 2

z − 1) − φ0S z)] ×
× exp[−iα(S xS y + S yS x)] ×
× exp[iβ/

√
2(S y + S yS z + S zS y)] |m� . (10)

Then the most general basis is obtained by rotating the states

|mr� in any possible direction using the following combination

of rotations:

|mA� = e−iψS x e−iθS y e−iφS z |mr� . (11)

It is therefore sufficient to parametrize the most general or-

thonormal basis of spin-1 systems with six coefficients (since

φ0 is constrained by the other parameters [21]).

III. THE MODEL

We conduct our analysis on the ground and thermal states

of a spin-1 chain described by the Heisenberg Hamiltonian

with uniaxial anisotropy of strength U

H =
�

i

S x
i S x

i+1
+ S y

i S y
i+1
+ S z

i S
z
i+1
+ U
�

i

�
S z

i

�2
, (12)

and we will consider both open and closed boundary condi-

tions. When U < 0 (U > 0) the anisotropy is usually referred

to as “easy-axis” (“easy-plane”) anisotropy. The ground state

phase diagram consists of three phases: for U � 0.968 the

system is in the “large D” phase [41] in which the ground

state has a strong component onto the |00 . . . 0� state. For

U < −0.315 the system is in the Néel antiferromagnetic phase,

characterized by the staggered magnetization. For the inter-

mediate values of U ∈ [−0.315, 0.968] the system is in the

Haldane phase, a symmetry protected phase, characterized

by the absence of local ordering, a nonlocal string-order pa-

rameter and an entanglement spectrum with even degenera-

cies [31, 35]. The transition separating the Néel and Haldane

phases is of the Ising type with the staggered magnetization

ordering in the Néel phase. The transition from Haldane to

large D is of Gaussian type and has been recently studied in

[36]. The entanglement properties of spin-1 chains have been

studied using the block entropy and entanglement spectrum

[27, 31, 35], thus connecting with predictions from conformal

field theory.

When computing discord we need to optimize the basis, so

to minimize the quantities introduced in the previous section.

The ground and thermal states of the real symmetric Hamilto-

nianH can be chosen real. It follows that the optimal basis is

always real as in Ref. [18]. This further reduces the number

of parameters to optimize over since we impose

γ = ψ = φ = φ0 = 0,

so that the basis |mA� is a real superposition of the states |m�.
We remark that this constraint is only applied to the optimiza-

tion of the GQD which, due to computational complexity, ne-

cessitates such simplifications. However, when dealing with

the symmetric QD, Eq. (5), a full minimization with the full

set of angles is tractable.

Spin-1 Heisenberg chain with uniaxial field:

large D

|000 . . . 0�
|−1,+1,−1,+1, . . . �
|+1,−1,+1,−1, . . . �

Néel Haldane

|+1, 0, 0, . . . , 0,−1�
UNH UHL

Ising 
transition

Gaussian, 
3rd order
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FIG. 1: (Color online) Ground state energy levels of Hamiltonian

Eq. (12) with periodic boundary conditions as a function of U for

L = 5. For odd length chains the ground state changes suddenly due

to energy level crossings, here we see the first crossing at U � −1.6
and a second crossing at U � 0.9.

IV. NON-CLASSICALITY IN THE SPIN-1 HEISENBERG
MODEL

When considering finite-length chains, we find an even/odd

parity effect with the total length, the origin of which lies

in a geometrical frustration for odd lengths. In fact, in the

repulsively interacting Heisenberg chain we are considering,

nearest-neighbor spins tend to form strongly correlated pairs,

an effect observed in the alternating behavior of the block en-

tropy and other correlations. Thus, while for an even chain all

spins are paired, for odd chains there is always an unpaired

spin. This frustration gives rise to energy crossings as ob-

served in Fig. 1. This means that, at these energy crossings,

the ground state of the system changes discontinuously with

U. For this reason, we examine even and odd lengths sepa-

rately, as for the latter we will observe discontinuities in the

discord measures. However, we remark that this is a finite size

effect that will vanish in the thermodynamic limit, as the three

phases of the model are all gapped.

A. Nearest-neighbor spins

We begin by analyzing the reduced state of the two central

spins for the thermal ground state when open ended-boundary

conditions are imposed on Eq. (12). Further, to capture the

pertinent features of the model, we consider only even-L and,

thus, avoid pathological features due to energy level crossings

in the ground state when L is odd. Through DMRG calcula-

tions, we are able to determine the reduced state of the two

central spins and calculate the symmetric discord Eq. (5). In

Fig. 2 we plot D2 for L = 8, 16, 32, 64, 128 and 256 spins.

We see several interesting features emerging for increasingly

large chains. For U < −0.6 and U > 1.6, we see the curves for

all lengths have collapsed on top of each other and the reduced

states are virtually identical. This indicates that, in these re-

gions (which are sufficiently far from the QPTs of the model),

already with 8 spins, we are close to the properties of the ther-
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FIG. 2: (Color online) Nearest-neighbor symmetric QD, D2, for the

reduced state of the two central spins of an open-ended chain of

length L = 8 (red), 16 (green), 32 (blue), 64 (gray), 128 (black) and

256 (orange) going from bottom to top. Notice that the curves for

L = 32, 64, 128, and 256 are almost indistinguishable except near

U∼0.3.

modynamic limit. In the intermediate region, U ∈ [−0.6, 1.6],

the curves exhibit a much richer behavior, and as we increase

L the value of the QD increases. A striking feature is the cusp

at U = 0. This corresponds to the point when the optimiz-

ing angles required to minimize D2 change. When U < 0 we

find D2 is optimized when both spins are measured using the

angles θ = α = β = 0, corresponding to a projection onto

the eigenbasis of S z, while for U > 0 we require θ = π/2,

α = β = 0, corresponding to a projection onto the eigenbasis

of S x. For U = 0 both sets of angles give identical values of

D2. Such a sudden change is unsurprising considering that at

this point we are switching from easy-axis for U < 0 to easy-

plane for U > 0 anisotropy. Although U = 0 is not a critical

point, the model, and therefore its ground state, is SU(2) in-

variant, and projective spin measurements differing only by a

spin rotation give the same discord. Indeed, such a behavior is

not uncommon when dealing with nonclassicality indicators

that involve complex parameter optimizations, a similar be-

havior was recently reported in the spin-1/2 XY model when

examining measures of local quantum coherence [42].

In Fig. 3 (a) we examine the derivative of the QD with re-

spect to U for each increasingly sized chain. We see a peaked

behavior appearing near U=−0.3, which becomes increasingly

more pronounced for larger L. Such a behavior is consistent

with the signature of a second order QPT [17]: a discontinuity

of the second order derivative of the ground state energy or in

the first derivative of the state (and therefore of discord). We

can accurately predict the critical value for L → ∞ through

finite size extrapolation. In Fig. 3 (b) we disregard the two

smallest sized chains (L = 8 and 16) and find the linear fit for

the remaining four data points which approximately lie on a

straight line giving the critical point position at U = −0.3156,

precisely inline with value determined in [33].

Turning our attention to the Haldane-large D QPT, this tran-

sition is Gaussian and expected to be a third order transition.

Furthermore, the critical region is known to be very tight, and

L=8,16,32,64,128,256

M. Power, S. Campbell, M. Moreno-Cardoner, GDC, PRB 91, 214411 (2015)



FINITE SIZE-SCALING: NEEL-HALDANE
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FINITE SIZE-SCALING: HALDANE-LARGE D
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FIG. 3: (Color online) (a) Derivative of the nearest neighbor sym-

metric QD against U for L = 8 (red), 16 (green), 32 (blue), 64 (gray),

128 (black) and 256 (orange). (b) Finite size scaling of the value of

U that the derivative attains its maximum value against inverse chain

length.

not extending more than ±0.1 from the critical point [36].

This results in its characterization being extremely difficult.

In fact, in Ref. [36] the authors employed a refined DMRG

technique in order to access lengths of up to 20,000 spins to

determine the critical point to a high degree of accuracy, find-

ing U = 0.96845. In [35] the critical value was estimated

to be U = 0.96 by studying the finite size scaling (FSS) of

the entanglement spectrum for up to L = 204, while using

Monte-Carlo simulation the predicted value was found to be

U = 0.971 [30]. As the Haldane-large D transition is third

order it will be signalled by a discontinuity of the third deriva-

tive of the ground state energy or a point of inflection in the

second derivative. Consequently, we expect a discontinuity

in the second derivative or a point of inflection in the first

derivative of the ground state and therefore of D2. Thus, we

anticipate, by examining the second derivative of D2, to find

a minimum. Using finite size extrapolation, as before, even

with the best quadratic rather than linear fit, we find the QPT

predicted at U = 0.994 (results not shown) which is a few

percents off the value predicted in Ref. [36], indicating that

the nature of this QPT will require larger sizes to accurately

locate its critical point using discord. However, a curious re-

sult appears when studying the second derivative. In Fig. 4

we show the behavior of ∂2D2/∂U2
within the critical region.

The various symbols correspond to the numerically calculated

FIG. 4: (Color online) Second derivative of the symmetric QD

with respect to U in the critical region of the Gaussian QPT. The

point markers are the numerically calculated values L=16 (down-

ward green triangles), 32 (blue diamonds), 64 (gray circles), 128

(black squares), and 256 (upward orange triangles). The solid lines

are quadratic functions of best fit for each data set. The vertical red

dashed line at U = 0.9667 is approximately where the curves cross

each other. Inset: finite size scaling of the second derivative of D2

using the estimate for the critical point U = 0.9667 and the fitted

value ν = 1.6 ± 0.1 (see Eq. (13)).

values, while the solid curves are quadratic lines of best fit for

each data set. For all chains with L > 32 we see the second

derivatives cross each other near the same point located at ap-

proximately at U = 0.9667. Smaller chains behave markedly

different, although this is in keeping with the behavior of the

Néel-Haldane transition where L = 8 and 16 were too small

to apply finite extrapolation to. Although we were not able to

find a full explanation for this crossing behavior, we conjec-

ture that the second derivative of the discord behaves critically

as:

∂2D2

∂U2
= f [(U − 0.9667)L1/ν

], (13)

where f is an analytic function close to f [0] and ν is the criti-

cal exponent associated with the divergence of the correlation

length. By fitting the data we find that the value ν = 1.6 ± 0.1
collapses the data for different lengths as shown in the inset

in Fig. 4. The value we find is in agreement with the more

accurate result ν = 1.47 found in Ref. [36]. Therefore, if

our conjecture is correct, discord is not only able to locate the

position of the QPT but also the universal scaling exponents

associated with it.

There is an additional parity effect for these even length

chains. In the above cases we consider chains such that

(L − 2)/2 is odd. Although for all even length chains the

spins form nearest neighbor pairs, in this situation we are ex-

amining (the central) two spins both of which have formed

a pair with their other respective nearest neighbors and not

with each other. This means the correlation between the two

central spins is weaker than with their other respective neigh-

bors. However, the larger we take L the smaller this difference

becomes and we see the behavior reported in Fig. 2 (a), i.e.

increasing QD for increasing L. In contrast, when (L − 2)/2
is even (i.e. L =6, 10, 14, . . . ) the two central spins corre-

spond exactly to a dimer formed in the chain, and this results

[1] Hu, Normand, Wang, Yu, PRB (2011)

3rd order-Gaussian transition at U = 0.96845 [1]

at criticality: a point of 
inflection in the second 

order derivative of discord

L=16

L=256



TEMPERATURE EFFECTS
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Discord increases 
with temperature!



CONCLUSIONS (II)
Entanglement is not the end of the story!

Quantum correlations could be more useful in the case of 
thermal states.

In the many-body case and like entanglement there is no unique 
definition and calculations are demanding.

M. Power, S. Campbell, M. Moreno-Cardoner, GDC, 
PRB 91, 214411 (2015)


