AICQT, Maynooth

June 2016

innovating nanoscience

The long way to the discovery of new materials made it short

Stefano Sanvito (<u>sanvitos@tcd.ie</u>) School of Physics and CRANN, Trinity College Dublin, IRELAND

CRANN

Theory activity

Two main pillars

Large-scale electronic structure simulations

Materials Genomics

Theory activity

Spin-transport

Spin excitation/torque

Materials Transport and STM

2D/topological

Magnetic Genoma

and a support of the second of the second second and a second of the second of the second of the second of the

Organics

DNA sequencing

Diffusive Transport

Organic spintronics

Quantum playground 1 H on Si (100)

B. Naydenov, M. Mantega, I. Rungger, SS and J.J. Boland, Phys. Rev. B 84, 195321 (2011)

H on Si (100)

J.E. Northrup, Phys. Rev. B 47, 10032 (1993)

H on Si (100): single centre

3 nm

H on Si (100): single centre

Scattering analysis

H on Si (100): heterostructures

Theory

H on Si (100): heterostructures

PRB 84, 195321 (2011)

Nano Lett. **15**, 2881 (2015)

Quantum playground 2 Topological surfaces

Awadhesh Narayan, Ivan Rungger and SS, PRB 86, 201402(R) (2012); PRB 90, 205431 (2014)

0.4

0.2

-0.

-0.4

K

 $E-E_{F}(eV)$

Simulated ARPES

Nature **466**, 343 (2012)

PRB 86, 201402(R) (2012)

Ē

Sb (111): scattering at step edge

Sb (111): scattering at step edge

Can we find new quantum playgrounds?

Suppose you have a new application what is its ideal material(s) ?

Take the example of magnetism

Fe, Co, Ni, Nd₂Fe₁₄B, LaMnO₃, Fe₃O₄

Magnetism is rare

Magnetism is complicated

C. Franchini, T. Archer, J. He, X.-Q. Chen, A. Filippetti and S. Sanvito, Phys. Rev. B 83, 220402(R) (2011)

with Stefano Curtarolo, Duke

CRANN nature REVIEW ARTICLE Finding *descriptors* materials UBLISHED ONLINE: 20 FEBRUARY 2013 [DOI: 10.1038/NMAT36 The high-throughput highway to computational materials design Stefano Curtarolo^{12*}, Gus L. W. Hart^{2,3}, Marco Buongiorno Nardelli^{24,5}, Natalio Mingo²⁶, Materials selection Stefano Sanvito2.7 and Ohad Levy12.8 Search the database for 1) new materials, 2) physical insights Database Creation (AFLOW) Rational materials storage Creating searchable database where to store information Virtual Materials Growth Simulating existing materials Simulating new materials Robust electronic structure method: density functional theory (VASP)

REVIEW ARTICLE

The high-throughput highway to computational materials design

Stefano Curtarolo^{1,2*}, Gus L. W. Hart^{2,3}, Marco Buongiorno Nardelli^{2,4,5}, Natalio Mingo^{2,6}, Stefano Sanvito^{2,7} and Ohad Levy^{1,2,8} Finding *descriptors*

Materials selection Search the database for 1) new materials, 2) physical insights

Database Creation (AFLOW)

nature

materials

Rational materials storage Creating searchable database where to store information

Virtual Materials Growth

Simulating existing materials
Simulating new materials

tronic structure method: tional theory (VASP)

The AFLOW consortium

www.aflowlib.org

S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comp. Mat. Sci. **58**, 227 (2012)

Virtual Materials Growth (existing materials)

Only ~150,000 are known to us

ICSD: Inorganic Crystal Structure Database

- 1,616 crystal structures of the elements
- 28,354 records for binary compounds
- 55,436 records for ternary compounds
- 54,144 records for quarternary and quintenary
- About 113,000 entries (75.6%) have been assigned a structure type.
- There are currently 6,336 structure prototypes.
- Lots of redundancy

Virtual Materials Growth (existing materials)

Duke calculated single elements, binary, ternary and some quaternary (about 50,000)

Calculations:

- AFLOW manages the run (large code)
- DFT done with VASP (pseudo-potential, plane-wave)
- Calculations at the DFT GGA-PBE level
- Relaxation performed \rightarrow new space group worked out
- Basic electronic structures collected (including: spinpolarization, effective mass, magnetic moment, etc.)

S. Curtarolo, W. Setyawan, G. L. W. Hart, M. Jahnatek, R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang, O. Levy, M. Mehl, H. T. Stokes, D. O. Demchenko, and D. Morgan, Comp. Mat. Sci. **58**, 218 (2012)

Heusler alloys

~1000 claimed ...

~90 magnetic ...

Heusler alloys

					5*	h	1		7								CRAI	VIN
hydrogen 1	19 - 19 A					\sim		\mathcal{P}	/								12256	hallum 2
H							17		/									He
Rhium 3	beryllium 4				4		L						toron 5	carbon 6	nitrogen 7	angen 8	fluotine 9	10
Li	Be						а						В	С	Ν	0	F	Ne
6.941 sodium	9.0122 nagresium 4.2		_	ູງງ	6 (~~		lat				aluninium	12.011 silicon	phosphorus	15.999 suffer 4.6	dhiorine	20.180 argon 4.9
Na	Ma			-23	ο,ι		Ca	ICU	IIdl	eu			AI	Si	P	S	ČI.	År
22,990	24.305												26.982	28.095	30.974	32.065	35.453	39,948
potasatum 19	20		21	22	23	24	25	26	27	28	29	30	31	germanium 32	arsenic 33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
20.048 n.tidum	40.078 strontium		44.956 311940	47.867 zirconium	50.942 nicbium	51,996 molybdanum	54.938 Nichnolium	55.845 ruthenium	58,923 modum	58,600 palacium	63.546 silver	65.29 cadmium	69.723 indiana	72.61 lin	74.922 antimoty	78.96 Naturium	79.904 iodine	83.90 300001
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
05.468 Caosium	batum		lutetiare	91.224 hathium	92.906 Lantakum	55.94 lungston	thonium	SURAR	102.91 Indum	106.42 piateners	107.87 gold	112.41 morcury	114.82 Ihailium	198,71 load	121.76 bismuth	127.60 polonium	126.90 astatino	131.29 radon
55	56	57-70	71	72	73	74	75	76	17	78	79	80	81	82	83	84	85	86
US	ва	*	LU	HT	la	VV	Re	US	Ir	Pt	Au	Hg	201.10	PD	BI	PO	At	Rn
trancium	radum	80.100	lawrencium	rutherfordium	dubrium	seaborgium	tohiun	hassium	meilheitum	unannikra 0110	unununlum	ununbium	204.35	unesquaden	2019.05	1203	1210	1444
Er.	Do	89-102	103	Df	Dh	Ser	Dh	He	8.44	Line	11	Llub		Line	2			
12231	Ra	* *	1267	INI DEL	DD	Sg	DI	IS	IVIL	oun	ouu	Jub		ouq				
1.8.0	1.00		12.041	1000	1.1%	10000	1004	1000	10.003	10.7 10	10/10	10773		1.00				

l anthanida carias	lanthaturn 57	cation 58	praseodymiem 59	neodymium 60	promethium 61	sanarium 62	europium 63	gadulinium 64	terbium 65	dysprosium 66	hdminn 67	erteum 68	thuium 69	ytlerbium 70	ĺ
Lanthanide series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	
	138.91	148.12	140,91	144.24	[145]	150.36	151.96	157,25	158.93	162.50	164.93	167.26	168.93	173.04	l
*Actinide series	actinium 89	thorium 90	protactinium 91	urantum 92	neptunium 93	philonium 94	amentolum 95	outen 96	berkellum 97	calfornium 98	einsteintum 99	fermium 100	mendelevium 101	nobelium 102	
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	
	[227]	232.04	231.04	238.03	[23.7]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[250]	[250]	l

Rational materials storage

www.aflowlib.org

S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comp. Mat. Sci. **58**, 227 (2012)

... and one theory for find them all

ELECTRONIC PROPERTIES

Band Gap:
Magnetic Moment:
Electron Mass(FIX):
Spin Polarization (E _F):

0.000 eV (metal) 7.382 μ_B XXX (m₀) 0.666

Fit Band Gap:
Magnetic Moment/atom:
Hole Mass(FIX):
Spin Decomposition per atoms:

0.000 eV 1.845 μ_B/atom XXX (m₀) {1.758,1.758,4.019,-0.054} μ_B

Comp. Mat. Sci. 49, 299-312 (2010)

Finding *descriptors*

The high-throughput highway to computational materials design

Stefano Curtarolo^{1,2}*, Gus L. W. Hart^{2,3}, Marco Buongiorno Nar Stefano Sanvito^{2,3} and Ohad Levy^{1,2,8}

nature

materials

<u>Materials selection</u>

Database Creation (AFLOV materials, 2) physical insights

<u>Rational materials storage</u> Creating searchable database where to store information

REVIEW ARTICLE

Virtual Materials Growth

- 1) Simulating existing materials
- 2) Simulating new materials

Robust electronic structure method: density functional theory (VASP)

Property: Can be made ?

Descriptor 0: Enthalpy of formation

Stability analysis

TM³

Look at the transition metal intermetallics

hydrogen 1	100																18704	holium 2
H																		He
Rhium 3	beryllium 4	1							1				toron 5	carbon 6	nitrogen	angen 8	fluorine 9	100/b 10
Li	Be				3	86	54	0					B	C	N	Ó	F	Ne
6.941	9.0122					ς,							10.811	12.011	14.007	15.999	18.998	20.180
11	12												13	14	15	16	17	18
Na	Mg												AI	Si	P	S	CI	Ar
22,990 rofasakan	24.305 roletum		scandum	Horeun	variation	chromagn	POPULATION	ine	rabal	richel.	COLUMN	2010	26.982 adlam	28.095 detroatium	30.974 annexic	32,065 salaritara	35.453 bromine	39,948 kryston
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
29.068 n.bidum	40.078 stontum		44.956 s100um	47.867 ziroonium	50.942 nictium	51,996 molybdonum	54.938 Jachnolium	55.845 Afbecker	58.923 (bodkim	58.600 pata3km	63.546 silver	65.29 cadmium	69.723 indiana	72.61 In	74.922 antimony	78.96 Naturiure	79.904 iodine	83,90
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
85.468	87.62 badum		-88,900 Infeliere	91.224 balkium	92,906 10050kum	95.94 karatatan	190	108.67	102.91	106.42	107.87	112.41	114.82	118.71	121.76 blomath	127.60	126.90	131.29
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	209.98	[209]	[210]	12221
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Er	Ra	* *	1 r	Rf	Dh	Sa	Bh	He	Mt	Hum	Lhun	Hub		Llug				
	I\C	n n				JUU		13	IVIL		JUU			JUU				

*Lanthanida cariac	lanthasun 57	cation 58	praseodymiem 59	neodymium 60	promethium 61	sanarium 62	europium 63	gadulinium 64	terbium 65	dysprosium 66	hdminn 67	erbium 68	thuium 69	ytterbiam 70
cantinanide series	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	148.12	140,91	144.24	[145]	150.36	151.96	157,25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neplunium	plutionium	americians	- curiture	berkellum	calfornium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	123.7	[244]	D43	[247]	[247]	12511	[257]	[257]	1250	1250

36,540 possible \rightarrow 248 stable

22 magnetic \rightarrow 8 Robust

236,000 possible \rightarrow 1550 stable

138 magnetic \rightarrow 50 Robust

Entropic temperature

Descriptor 2: Entropic temperature

CRANN

N=248

Descriptor 2: Entropic temperature

N=8776

Weibull distribution

Descriptor 3: Critical temperature

Known Heusler ferromagnets

Co₂XY Generalized regression model based on valence, volume, spin decomposition Fe₂MnY Prediction of $T_{\rm C}$

Ni₂MnY

 Mn_2XY Rh_2MnY

 Cu_2MnY Pd_2MnY Au₂MnY

Material	V (Å)	μ	ΔE (eV)	Т	 Т
Со	47.85	2.0	-0.30	3007	352
Mn	48.93	2.0	-0.32	3524	760
Mn	54.28	9.03	-0.17	1918	?

Analysis

 $Co_2 YZ$

 $Co_2 YZ$

 X_2 MnZ

 X_2 MnZ

K. Shirakawa et al., J. Magn. Magn. Mater. **70**, 421 (1987)

 Mn_2YZ

OK, but does all that work?

Co₂MnTi

 $T_{C}^{measured} = 940 K$ $T_{C}^{predicted} = 938 K$

Prepared by arc melting in an Ar atmosphere

Courtesy J.M.D. Coey's Lab (P. Tozman, M. Venkatesan)

Bottom line

Did we find one ?

TCD Team:

Duke Team:

Tom Archer, Anurag Tiwari, Mario Zic, Awadhesh Narayan, Ivan Rungger, Mauro Mantega

Stefano Curtarolo, Junkai Xue, Kevin Rasch, Corey Oses

CRANN

Science and Technology

AICQT, Maynooth

June 2016

innovating nanoscience

The long way to the discovery of new materials made it short

Stefano Sanvito (<u>sanvitos@tcd.ie</u>) School of Physics and CRANN, Trinity College Dublin, IRELAND

CRANN