Tyndall
Single quantum dots as artificicial atoms, quantum optics and quantum cryptography at the Tyndall National Institute.

E. Pelucchi

Collaborators: T. H. Chung, G. Juska, V. Dimastrodonato, S. T. Moroni, A. Pescaglini, E. Mura and A. Gocalinska

Epitaxy and Physics of Nanostructures, Tyndall National Institute, University College Cork, "Lee Maltings", Dyke Parade , Cork, Ireland

Tyndalll (at University College Cork)

Excellence in ICT research

Tyndall

Tyndlall Photonics Research Capabilities
E_{i}

BRINGING PHOTONICS TO LIFE

Tyndall Photonics: a few examples

Epitaxial material transfer

Pick-up of GaAs Chiplets
Silicon Wafer Populated with GaAs Chiplets

Integrated DQPSK Transmitter

High speed EAM integrated with SOAs

Fibre coupling of Silicon photonic waveguides at Tyndall (patent application PCT/EP2011/068240)

For the moment Tyndall is the only place in Ireland with experimentral aunantum information

Indexing terms: Interferometers, Optical communication, Cryp tography
Single-photon bility were measured using a fringes with greater than 90% visi ometer. The experiment employed a pulsed semiconductor laser source operating at a wavelength of $1.3 \mu \mathrm{~m}$ and a novel single-photon counting scheme using high-speed germanium avalanche photodiodes. Interferometers of this type could form the basis of future quantum cryptography systems.

The security of any key-based cryptography system depend ultimately on the secrecy of the key. Quantum cryptography is a radical new technique for the distribution of cryptographic mechanics to guarantee the secrecy of the key [1-5]. The mechanics to guarantee the secrecy of the key [1-5]. The involves the transmission of a random bit sequence from a source A to a receiver B using a single photon to carry each it of data. This binary data can be encoded using, fo example, either the polarisation states $[1-4]$ or phase states of the photons [6, 7]. Random switching between orthogonal phase or polarisation coding bases provides protection agains cavesdroppers. In performing measurements on the channel, n eavesdropper causes unavoidable changes in the photon cmparison of a fraction of the sent and received bits. If the legitimate users of the channel fail to detect an eavesdroppe they can use the remaining data to generate a cryptographic they can use the remaining data to generate a cryptographic
key. Unlike in conventional key distribution techniques, the secrecy of the key is now guaranteed by the fundamental laws of physics.
In a recent pioneering experiment, Bennett et al. [1] have emonstrated the operation of a quantum cryptographic channel, which was used to transmit a secret key over a free space link about 30 cm in length at a data rate of approx mately $10 \mathrm{bit} / \mathrm{s}$. In this Letter, we characterise th performance of an optical-fibre-based single-photon commu res that the transmission medium for a future quantum ryptographic system would require. As illustrated in Fig 1, the channel takes the form of an extended time-division Mach-Zehnder interferometer [6]. In this format, the MachZehnder can be very long and yet remain stable against
 ,

The source used in the experiment was a gain-switched semiconductor laser operating at a wavelength of $1.3 \mu \mathrm{~m}$, which produced pulses of 30 ps duration at a repetition rate of 105 MHz . The output from this laser was strongly attenuated no mber of photons per pulse transmission fibre the average choice of a small μ value was required to obtain a reasonable approximation to a single photon source. In this case a laser exhibiting Poissonian photon number fluctuations produces only a small fraction of pulses $\sim \mu^{2} / 2$ containing on average two or more photons. However, this situation is obtained at the expense of a large fraction of pulses $\sim(1-\mu)$ containing on average zero photons [1]. After attenuation, the incoming pulses were split by the first fibre-coupler (nominally $50 / 50$) between a short fibre path S_{1}, and a longer fibre path L_{1}, in order to form a temporally separated pulse pair. Path L_{1} contained a phase shifter consisting of a short free space link the length of which could be varied by means of a were chosen such that a relative time delay of 1.1 ns was obtained between the pair of pulses coupled into the transmission fibre via the second coupler. After propagation through 10 km of standard communications fibre, the pulses were again split between short and long paths of length $S_{2}\left(=S_{1}\right)$ and $L_{2}\left(=L_{1}\right)$, respectively, and then combined at the final coupler. The output from the final coupler thus consisted of hree temporal pulses each separated by $1 \cdot 1 \mathrm{~ns}$. The central pulse was made up of two temporally coincident components that arrived via the $S_{1} L_{2}$ and the $L_{1} S_{2}$ paths, respectively, and hence exhibited interference behaviour as the relative optical hase was varied by means of the PZT.
Single photon counting was carried out using a high-speed germanium avalanche photodiode cooled to 77 K and oper-
ating in the Geiger mode with passive quenching via a $33 \mathrm{k} \Omega$ resistor [8]. After amplification and leading edgediscrimination, the signals from the detector were used as start pulses for a time-interval analyser (HP 53310A). For each

Tyndall

Photonic Systems:

Extensive facilities ("best in europe")

Photonic Systems: Quantum information to the home

Iris Choi, Robert J Young and Paul D Townsend, New Journal of Physics 13 (2011) 063039
First Demonstration of QKD on GE-PON with simultaneous conventional data transmission

Tyndall

A quick reminder

steps organise and evolve: step bunching, steps coalescence, periodic features....

An example of InP
(100) $0.4^{\circ} \mathrm{A}$
misorientation

GaAs (100) surfaces with different substrate miscut

Our single quantum dots (which sometimes are actually decent "artificial atoms"......)
(111)B substrate patterning; (photo)lithography+wet etching

MOVPE growth: QW like

GaAs (111)B

Post processing to enhance extraction
"apex up" or "back etching", prevents total internal reflection

System of interconnected

 nanostructures*
side view

InGaAs dots in GaAs barriers...

AFM cross section

Purity and uniformity (typically ~ 4 meV)...

Record linewidths for any sitecontrolled dots

10 Kelvin!!!!

Best numbers to date, non resonant pumping, measured using interferometry: $\sim 10 \mu \mathrm{eV}$
L.O. Mereni, V. Dimastrodonato, R.J. Young and E. Pelucchi, Appl. Phys. Lett. 94, 223121 (2009).

How they grow...like in V-grooves quantum wires....

In 3D... (similarly in 2D): it gives 2D diffusion , which one solves for stationary solution putting appropriate boundary conditions (111B/111A)

$$
\text { पा } \mathbf{J}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}} \mathrm{\square} \quad \underline{n_{i}}=0, \quad \mathbf{J}_{\mathrm{i}}=\square \mathrm{D}_{\mathrm{i}} \square \mathrm{n}_{\mathrm{i}}
$$

τ_{i}
Decomposition rate anisotropy: $\mathrm{r}=\frac{\mathrm{F}_{\mathrm{s}}}{\mathrm{F}_{\mathrm{b}}}>1$
Surface diffusion (+ "capillarity"): $\mathrm{D}_{\mathrm{i}}=\mathrm{a}^{2} v \exp \left(\mathrm{DE} \mathrm{E}_{\mathrm{i}} / \mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{G}}\right)$
Incorporation rate: $\tau_{i}=C_{\tau} \exp \left(E_{i}^{\tau} / \mathrm{k}_{\mathrm{B}} \mathrm{T}_{\mathrm{G}}\right)$
$\mathrm{R}_{\mathrm{i}}=\frac{\mathrm{dz}_{\mathrm{i}}}{\mathrm{dt}}=\Omega_{0} \frac{\mathrm{n}_{\mathrm{i}}}{\tau_{\mathrm{i}}}$

Precursors decomposition only appear as an extra deposition flux, F...
V. Dimastrodonato, E. Pelucchi, and D. D. Vvedensky, "Self-limiting profile evolution of seeded twoand three- dimensional nanostructures during metalorganic vapour-phase epitaxy", Phys. Rev. Lett. 96, 130501 (2012).

Pyramids...self limited profile prediction Note: much more difificult the VQWR concentration

V. Dimastrodonato, E. Pelucchi, and D. D. Vvedensky, "Self-limiting profile evolution of seeded two- and three-dimensional nanostructures during metalorganic vapor-phase epitaxy", Phys. Rev. Lett. 96, 130501 (2012).

Self-limited regime: growth temperature

Self-limited regime: Ga segregation

We can reproduce also InGaAs in V-grooves

Stefano Moroni et al., Journal of Applied Physics 117, 164313 (2015).

Fig. - Transient fit

Original figure from Lelarge et al., Applied Physics Letters 75, 3300 (1999): only the TEM model is original

Why it is not too bad to call QDs artificial atoms....

Tyndall

So, entangled photons....not our

 idea..since dots are "artificial atoms"...One can use the transition from a "singlet state" (an "entangled" state because of indistinguishability, text book physics)

Just considering the two electrons

$$
\frac{1}{\sqrt{2}}(|0\rangle|1\rangle-|1\rangle|0\rangle)
$$

BiExcitonic State: 2X, two degenerate levels artisuifomiund fotulanged

Two exchangeable electrons, and two exchangeable holes...
appropriate parity under particle exchange

It has been done with real atoms in the early seventies..

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(\left|L_{X X} R_{X}\right\rangle+\left|R_{X X} L_{X}\right\rangle\right)
$$

Parenthesis...

It is clear from what I said that a biexciton (and not only one confined in a dot) is not a separable state (D. A. Kleinman Phys. Rev. B 28, $87 \mathbf{1}$ (1983) and many more)

And... the which path information story....at the beginning the community sort of "were puzzled".. because of asymmetry: must be a which path information (the jargon used)

Long story short if you have FSS...

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|H H\rangle+e^{i 2 \pi F S S \tau / h}|V V\rangle\right)
$$

R. Mark Stevenson et al. Phys Rev. Lett. 101, 170501 (2008)

When a FSS splitting is present the state tomography procedure averages over several randomly dlistributed/emitted dififerent entangled states, practically resulting in an apparent classical state..... one is left with a statistical mixture...

During the cascade and the "flying" period, it stays as an entangled state

So, long story short: it is easier with a symmetric dot to "see "the entanglement

Pyramids should have $C_{3 V}$ symmetry which should ensure

suppression of the FSS.
Singh, R., et al. Phys. Rev. Lett., 2009, 103(6),
Schliwa, A., et al. Phys. Rev. B, 2009, 80(16),
Karlsson, K.F., et al. Phys. Rev. B, 2010, 81(16).

$$
\begin{aligned}
& \| n_{0,25} G_{0,75} A s_{1-.8} N_{c} \ldots \\
& \text { some interesting unexpected features }
\end{aligned}
$$

Measuring the fine structure splitting....

This is unusual, we normally have some splitting (i.e. X and $X X$ photons are linearly polarized... not circularly polarized as they would be in a perfectly symmetric system)

Difference in energy between the exciton and the biexciton for one dot plotted as a function of the half wave plate angle, in a standard InGaAs (no nitrogen) and $\mathbf{I n}_{0.25} \mathbf{G a}_{0.75} \boldsymbol{A s}_{1-\varepsilon} \boldsymbol{N}_{\varepsilon}$ dots

Can we electrically inject?

If you think about it, it should not work.....

Current prefers to go through the sides...shorter path (a factor of 3 or so!!!)..

Device falbrication....issues

Apex-up geometry is essential to ensure high light extraction efficiency.

Issues:

- Non-planar structure
- Current leakage outside QD region

How to make it work... engineered injection...VQWR..

Selective injection of QDs

Simulation of current density distribution within the pyramid-like structure.

Diode processing

LED production steps:

Electroluminescence

Symmetry

- A single QD electro-luminescence

- FSS values

- Functional $\mu \mathrm{LED}$ distribution and FSS values

Tyndall

Entangled photon emission

Fidelity of unpolarized source:
$F=\left(1+C_{L}+C_{D}-C_{C}\right) / 4$
Degree of correlation:
$C_{b a s i s}=\left(g_{x x, x}^{(2)}-g_{x x, \bar{x}}^{(2)}\right) /\left(g_{x x, x}^{(2)}+g_{x x, \bar{x}}^{(2)}\right)$

Tyndall

Triggered entangled photon emission

- Pulsed injection:

$$
C_{\text {basis }}=\left(g_{x, x, x}^{(2)}-g_{x x, x}^{(2)}\right) /\left(g_{x, x}^{(2)}+g_{x x, x}^{(2)}\right)
$$

- Correlations:

With 1.5 ns window and
75\% intensity preserved:
$S_{R D}=2.053 \pm 0.070$
$S_{D C}=2.191 \pm 0.075$
$S_{R C}=2.239 \pm 0.074$

- Simplified estimations of Bell's inequality: (Young, R. J. PRL 102, 030406,2009)

$$
\begin{aligned}
& S_{R C}=\sqrt{2}\left(C_{R}-C_{C}\right) \leq 2 \\
& S_{R D}=\sqrt{2}\left(C_{R}+C_{D}\right) \leq 2 \\
& S_{D C}=\sqrt{2}\left(C_{D}-C_{C}\right) \leq 2
\end{aligned}
$$

Tyndall

Short term future

Integration of QDs on piezoelectric actuators:

- Tuning emission energy.
- Tuning the fine-structure splitting.

Collaboration with JKU Linz (A. Rastelli, R. Trotta, et al.)

Adding local metallic contacts:

- Electric injection of carriers.
- Tuning emission energy.
- Tuning the fine-structure splitting.
- Electrical manipulation of spins.

Back to surfaces...

Normally..

$\mathrm{Al}_{48 \%} \mathrm{In}_{52 \%} \mathrm{As}(2 \mathrm{~nm})$ on InP

A dififerent way of growing clots..

InP on $\mathrm{Al}_{48 \%} \mathrm{In}_{52 \%} \mathbf{A s}$

A dififerent way of growing dots..ll

AFM morphologies (signal amplitudes) and corresponding zoom-in 3D reconstructions of 1 nm InP layer deposited on LM AllnAs after 5 sec mixed AsH_{3} and PH_{3} growth interruption. Samples grown on SO $=(100)$ at $T=630^{\circ} \mathrm{C}, \mathrm{Gr}=0.7 \mu / \mathrm{h}$, V/III = 180 and then a) immediately cooled down under PH_{3}, b)exposed to AsH_{3} at growth temperature for 5 minutes and then cooled down under $\mathrm{PH}_{3}, \mathrm{c}$) exposed to AsH_{3} at growth temperature for 1 minute and then cooled down under AsH_{3}.

Part of the low temperature photoluminescence spectrum of nominally $1 \mathrm{~nm} \operatorname{InP}$ in $\mathrm{In}_{0.9} \mathrm{Ga}_{0.1} \mathrm{P}$ and $A I_{0.48} I_{0.52} A s$ barriers, after exposing the QDs layer to arsine overflow. Top left insert shows zoom in to the spectrum detail with FWHM stated for each line, top central and right inserts show power dependence of the peak intensity, allowing for identification of the individual peaks as corresponding to exciton (X) and biexciton $(X X)$ transitions.

Thanks

