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Distinguishable bosons 
[Continuous Variables (CVs), qumodes] 

What can we do with many qumodes?

Gu et al., PRA (2009)
Chiaverini  et al., PRA (2008)

Freidenauer at al, Nat. Phys (2008)

 Quantum computation over CVs   Quantum simulators over CVs



  

Models of computation

Measurement-Based 
Quantum Computation (MBQC)

(cluster states)

 
Circuit-Based 

Quantum Computation

Lloyd & Braunstein 
PRL (1999)

Menicucci et al.
PRL (2006)

Gottesman, Kitaev, Preskill 
PRA (2001)

 Lund, Ralph, Haselgrove, 
PRL (2008)

Menicucci
PRL (2014)

Continuous 
Variables

Fault tolerant
(with finite energy)



  

Cluster states with traveling light modes:
recent experimental progresses

60-mode
graph states

Temporal encoding

Pulsed squeezed states  
[Yokoyama et al., Nature 

Photonics (2013)]

Frequency encoding

Single crystal & freq comb 
[Chen et al., PRL (2014)]

  10,000-mode 
graph states

500+ 
entangled partitions

Frequency encoding

Single crystal & freq comb 
[Roslund et al., Nature 

Photonics (2014)]



  

Why interesting?

Confined systems can be scaled/integrated more easily

 
Trapped Ions

Also interesting alternative platforms: 
confined/massive continuous variables

Circuit-QED

Optomechanics

Cavity-QED

Atomic ensembles



  

Outline

Measurement-based quantum computation with CVs

Generation of universal resources for CV quantum computation:

 

Quantum tomography for confined CVs

● Adiabatic generation of cluster states

● Optomechanical cluster-state generation 
 via reservoir engineering 

● A single qubit to read them all

● A single qumode to read them all
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Continuous Variables (distinguishable bosons)

Position and momentum operators

Computational basis

Entangling gate



  

Ideal measurement-based quantum computation

CV cluster state: the universal resource for computation 

 Prepare each node in zero-momentum  
 eigenstate

[Zhang and Braunstein, PRA (2006); Menicucci et al., PRL (2006)]



  

 Prepare each node in zero-momentum  
 eigenstate

 Entangle connected nodes with 

 

[Zhang and Braunstein, PRA (2006); Menicucci et al., PRL (2006)]
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 Prepare each node in zero-momentum  
 eigenstate

 Entangle connected nodes with 

 

CV cluster state

Ideal measurement-based quantum computation

[Zhang and Braunstein, PRA (2006); Menicucci et al., PRL (2006)]

CV cluster state: the universal resource for computation 



  

 Prepare each node in zero-momentum  
 eigenstate

 Entangle connected nodes with 

 
 Measure each node locally 

 Arbitrary (non-Gaussian) measurements  
 plus feed forward in a lattice guarantee  
 universality 

[Zhang and Braunstein, PRA (2006); Menicucci et al., PRL (2006)]

CV cluster state

X

X

X

X

Y

Y

Y

Ideal measurement-based quantum computation

CV cluster state: the universal resource for computation 



  

Continuous Variables (with finite energy)

Squeezing operator

The physically relevant states are finitely squeezed ones

Fault tolerance is guaranteed for large enough squeezing

Position and momentum basis are infinitely squeezed:



  

Gaussian states

Restricting to quadratic operations (CZ ) 
and finite energy (squeezed states)

Full quantum mechanics Gaussian world

Density operator First and second moments

Unitaries Symplectic

States

Closed
Dynamics



  

Finite energy CV graph states are Gaussian 

Consider the union

of vertices    and edges    with associated 

adjacency matrix A:

Associated ideal graph state (infinite energy):

Associated finite-energy graph state:
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For confined CVs it would be convenient to have 
an alternative way to generate large graph states:

a Hamiltonian system whose ground 
state is the desired graph state

Ex: generation by cooling of a 
Bose-Einstein condensate 
by cooling to the ground state.



  

 Desiderata 

- Two-body interactions       (easier to find in “natural” systems)

- Local interactions              (experimental compactness)         

- Gapped Hamiltonian         (adiabatic cooling)  

- Frustration Free                (the ground state minimize each local term;
                                             robustness against local perturbation)  



  

 Desiderata 

 Discrete variables (qubits): 

              No-go result 
              “There is no two-body frustration-free     
               Hamiltonian with genuinely entangled 
               non-degenerate ground state”

[Nielsen, quant-ph/0504097;
 Bartlett & Rudolph, PRA ('06); 
 Van den Nest et al., PRA ('08); 
 X. Chen et al. PRL ('09); 
 J. Cai et al. PRA ('10);
 J. Chen et al., PRA ('11)]

- Two-body interactions       (easier to find in “natural” systems)

- Local interactions              (experimental compactness)         

- Gapped Hamiltonian         (adiabatic cooling)  

- Frustration Free                (the ground state minimize each local term;
                                             robustness against local perturbation)  



  

A CV Hamiltonian with all the desiderata

- Two-body interactions  (quadratic, the graph state is Gaussian)

- Local interactions         (nearest- and next-to-nearest-neighbours)       

- Frustration Free            (local terms commute)
             
- Gapped Hamiltonian      

The ground state is 
the CV graph state
(with squeezing r)

[Aolita, Roncaglia, AF, Acin, PRL '11]

Note: mixed momentum/position interaction



  

Possible experimental platforms 

Natural interactions

 
Trapped Ions Circuit-QED

How to implement also

between the desired modes (n-neighbours and n-n-neighbours)? 

The challenge
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Generate arbitrary graph states of mechanical 
oscillators exploiting the open dynamics of 

optomechanical systems 

Dissipation-driven
Steady state

Generic 
graph state

Optomechanical array

[Houhou, Aissaoui, AF, PRA '15]



  

Exploiting the open-system dynamics 

Assume the two-mode Hamiltonian system

with losses on mode    only

The dynamics preserves Gaussianity:

of squeezing

The system is dissipatively driven to a unique and squeezed steady state



  

Exploiting the open-system dynamics 



  

Exploiting the open-system dynamics 

Woolman et al., 

Science 349, 952 (2015) 

Pirkkallainen et al., 

PRL 115, 243601 (2015)



  

Exploiting the open-system dynamics (graph)

Consider an arbitrary N-mode graph state (with finite squeezing)

where U is given by the polar decomposition (given adjacency matrix A):

With N Hamiltonian switching steps, one can exploiting the dissipation to 
drive each collective mode at a time into a squeezed state:

local

collective

Hence the local modes will be in the desired graph state!
[ Li, Ke, and Ficek, PRA (2009); Ikeda & Yamamoto, PRA (2013)]



  

How can we implement the Hamiltonian switch?

Consider the set of Hamiltonians with free parameters                 :

local

collective

arbitrary graph

At each step k set the 
free parameters as follows:



  

Example: 4-mode linear graph



  

Example: 4-mode linear graph

(fixed switching time                  )

Real time evolution of the fidelity:

Finite-time evolution is 
enough to reach the 
target state



  

Hamiltonian engineering in optomechanics

Inspired by 1- and 2-mode schemes [Clerck, Hartmann, Marquardt, Meystre, Vitali,...]

- Linearizing

- Non-overlapping mechanical frequencies

- Rotating wave approximation
Two drives per mechanical mode



  

Effects of mechanical noise: examples

Fidelity
0.99

0.9

0.8The higher the 
target squeezing 
the less the 
tolerable noise
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Quantum tomography for confined CVs

The problem

Tomography is a well 
established framework:

(Multi-mode)
 Homodyne 
tomography

But how do we perform tomography on confined CVs 
– i.e., in the absence of optical homodyne?

Use a single qubit/qumode probe that tunably interacts 
with the confined system 

Our solution



  

The proposal

The confined CV system that we want to reconstruct:
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The proposal

The confined CV system that we want to reconstruct:

At t=0, “turn on” a constant harmonic interaction among the modes
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At t=T measure the qubit probe (and iterate the procedure).



  

Why should it work?

Local mode picture

 Nodes are mutually interacting 

 The qubit interacts with a single node

Normal mode picture

 Nodes are non-interacting

 The qubit interacts with all the nodes (*)

 Each node has a different frequency (**)



  

The proposal
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At t=T measure the qubit probe (and iterate the procedure).



  

The proposal (qumode-probe)

The confined CV system that we want to reconstruct:

At t=0, “turn on” a constant harmonic interaction among the modes
(typically available for confined CVs) and a tunable interaction with a 
single qumode probe

At t=T measure the qumode probe (and iterate the procedure).



  

Main result

The evolution is a conditional displacement in the phase space

[Tufarelli, AF, Kim, Bose, PRA '12] [Moore, Tufarelli, Paternostro, AF, arXiv:1606XXX ]



  

Explicit formula for the coupling g(s)

Where S and M depend on the the structure of the network only.

Only necessary for the 
qumode-probe case



  

Tunable coupling
Qubit controlled 
displacements

Phase space picture (qubit case)



  

Tunable coupling
Qubit controlled 
displacements

Preparing the qubit in state       one can measure 
directly the Characteristic Function: 

Phase space picture (qubit case)



  

Phase space picture (qubit case)

Tunable coupling
Qubit controlled 
displacements

Preparing the qubit in state       one can measure 
directly the Characteristic Function: Varying g(s) one can sample 

the Characteristic Function: 



  

Phase space picture (qumode case)

Tunable coupling
Qubit controlled 
displacements



  

Phase space picture (qumode case)

Tunable coupling
Qubit controlled 
displacements

Preparing the qumode-probe in the vacuum state, its momentum at time T 
acquires information about any desired quadrature of the mechanical oscillator:

Varying g(s) one can 
sample any mechanical 
quadrature 



  

Reconstruction algorithm

Point-wise reconstruction of the 
multi-mode Characteristic Function

T

T



  

The tomographic protocol is minimal:

 Access to only one confined mode

 The probe is single qubit/qumode

 Tune only one parameter g(s)

[Tufarelli, AF, Kim, Bose, PRA '12]

[Moore, Tufarelli, Paternostro, AF, arXiv:1606XXX ]



  

Trapped ion implementation

The network

The qubit

Motional state of the ions around equilibrium 
position plus Coulomb interaction

Electronic transition of a chosen ion

The tunable coupling

Place the chosen ion at the node of a 
resonant laser standing wave.

Laser power modulation determines g(t)



  

Opto-mechanical implementation

The networkThe probe

Mechanical oscillatorsCavity output mode

The tunable coupling

Laser power modulation determines g(t)



  

Qubit-probe example: linear chain (10 oscillators)

 Prepare

 Evolve with g(s)=

 Measure either               and repeat

 Statistics over many repetitions provides

Suppose that we want to know 



  

Qumode-probe example
F

id
el

ity

# measurements
0 10000 20000

1 mechanical oscillator 2 mechanical oscillators

Squeezed thermal state Thermal twin-beam state



  

Confined 
Continuous Variables

Advanced Quantum 
Information Tasks

To Conclude

A. Acin (ICFO), L. Aolita (UF Rio de Janeiro), S. Bose (UCL), C. Gallagher (QUB)

O. Houhou (U Constantine), M.S. Kim (ICL), D. Moore (QUB), M. Paternostro (QUB)

A. Roncaglia (U Buenos Aires),  T. Tufarelli (U Nottingham)

generation

tomography
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