Quantum metrology gets real

Konrad Banaszek Faculty of Physics, University of Warsaw, Poland

All-Ireland Conference on Quantum Technologies Maynooth University I June 2016

Phase measurement

Estimation procedure

Fisher information

$$\mathsf{F}(\phi) = \sum_{r} p(r|\phi) \left(\frac{\partial}{\partial \phi} \ln p(r|\phi)\right)^2$$

Cramér-Rao bound: for unbiased estimators

Shot noise limit: for ${\cal N}$ independently used photons

 $\mathsf{F}(\phi) = N$

Two-photon interferometry

Experiment

J. G. Rarity et al., Phys. Rev. Lett. 65, 1348 (1990)

Two photons sent one-by-one (shot noise limit): F = 2

Two-photon interference:

$$F = 4$$

General picture

where Quantum Fisher information reads

$$\mathsf{F}_{Q}(\phi) = 4 \left(\langle \partial_{\phi} \psi | \partial_{\phi} \psi \rangle - | \langle \psi(\phi) | \partial_{\phi} \psi \rangle |^{2} \right)$$

Heisenberg limit $\Delta \tilde{\phi} \cdot \Delta n_s \geq \frac{1}{2}$

 $\Delta n_{\mathcal{S}}$ – photon number uncertainty in the sensing arm $\Delta \tilde{\phi}$ – precision of phase estimation

N independently used photons (shot noise limit):

$$\Delta \tilde{\phi} = \frac{1}{\sqrt{N}}$$

Maximum possible Δn_s defines the Heisenberg limit:

$$\Delta \tilde{\phi} = \frac{1}{N}$$

J. J. Bollinger *et al.*, Phys. Rev. A **54**, R4649(R) (1996) J. P. Dowling, Phys. Rev. A **57**, 4736 (1998)

Numerical optimisation

U. Dorner, R. Demkowicz-Dobrzański *et al.*, Phys. Rev. Lett. **102**, 040403 (2009)

R. Demkowicz-Dobrzański, U. Dorner *et al.*, Phys. Rev. A **80**, 013825 (2009)

Two-photon experiment

M. Kacprowicz et al., Nature Photon. 4, 357 (2010)

Shot noise

2-NOON

Optimal

Scaling

UNIVERSITY OF WARSAW

K.Banaszek, R. Demkowicz-Dobrzański, and I. Walmsley, Nature Photon. **3**, 673 (2009)

General picture

R. Demkowicz-Dobrzański, J. Kołodyński, and M. Guţă, Nature Commun. 3, 1063 (2012)

Actual value ϕ

 $\hat{\varrho}_{\phi} = \Lambda_{\phi} \big(|\psi\rangle \langle \psi| \big)$

UNIVERSITY OF WARSAW

 $\Lambda_{\phi} \approx p_{+}(\phi)\Lambda_{-}$ $+p_{-}(\phi)\Lambda_{-}$

Table 1 | Precision bounds of the most relevant models inquantum-enhanced metrology.

Channel considered	Classical simulation	Channel extension
Depolarisation	$\sqrt{(1-\eta)(1+3\eta)/4\eta^2}$	$\sqrt{(1\!-\!\eta)(1\!+\!2\eta)/2\eta^2}$
Dephasing	$\sqrt{1-\eta^2/\eta}$	$\sqrt{1-\eta^2/\eta}$
Spontaneous emission	NA	$(1/2)\sqrt{1-\eta/\eta}$
Lossy interferometer	NA	$\sqrt{1-\eta/\eta}$

NA, not available.

The bounds are derived using the two methods discussed in the paper. All the bounds are of the form $\Delta \varphi_N \ge (\text{const}/\sqrt{N})$, where constant factors are given in the table. Classical simulation method does not provide bounds for spontaneous emission and lossy interferometer, as these channels are φ -extremal. For the dephasing model, it surprisingly yields an equally tight bound as the more powerful channel extension method.

Two-arm losses

For a quantum state with $\langle N
angle\,$ average photon number

Shot noise limit

Ultimate quantum limit

$$\Delta ilde{\phi} \geq rac{1}{\sqrt{\eta \langle N
angle}}$$

 $\Delta ilde{\phi} \ge \sqrt{rac{1-\eta}{\eta \langle N
angle}}$

*Assuming no external phase reference is available: M. Jarzyna and R. Demkowicz-Dobrzański, Phys. Rev. A **85**, 011801(R) (2012)

Shot noise revisited

Gravitational wave detection

J. Abadie et al. (The LIGO Scientific Collaboration), Nature Phys. 7, 962 (2011)

Noise analysis

R. Demkowicz-Dobrzański, K. Banaszek, and R. Schnabel, Phys. Rev. A 88, 041802(R) (2013)

When most power comes from the laser beam

$$\Delta \tilde{\phi} \approx \sqrt{rac{1 - \eta + 2\eta (\Delta p)^2}{\eta \langle N \rangle}}$$

OF WARSAW

Optimality of squeezed states

R. Demkowicz-Dobrzański, K. Banaszek, and R. Schnabel, Phys. Rev. A 88, 041802(R) (2013)

Operating point

UNIVERSITY

OF WARSAW

Partial spectral distinguishability

Fisher information

 $\mathcal{V} = |\langle \bullet | \bullet \rangle|^2 = 93\%$

One- and two-photon interference

UNIVERSITY OF WARSAW

π

 $3\pi/4$

 $\pi/4$

0

 $\pi/2$

Transverse displacement

Fisher information $\pi/4$ $\pi/2$ $3\pi/4$ π

Partial transverse overlap

Coherent superposition

Fisher information

Coherent superposition

No postselection or any attempt to resolve the spectral degree of freedom inducing $\ \mathcal{V} < 1 \ !!!!!$

Optimal measurement

Projection basis

Enhancement

Relative uncertainty $\varepsilon = \Delta^{\mathrm{pair}} / \Delta^{\mathrm{shot}}$

point

UNIVERSITY Of Warsaw

Shot-by-shot imaging

R. Chrapkiewicz, W. Wasilewski, and K. Banaszek, Opt. Lett. **39**, 5090 (2014)

M. Jachura and R. Chrapkiewicz, Opt. Lett. **40**, 1540 (2015)

Imaging experiment

UNIVERSITY OF WARSAW

Coincidence events

Transverse displacement

OF WARSAW

Coincidence events

M. Jachura et al., Nature Commun. 7, 11411 (2016)

Relative uncertainty

M. Jachura et al., Nature Commun. 7, 11411 (2016)

UNIVERSITY OF WARSAW

M. Jachura et al., Nature Commun. 7, 11411 (2016)

1

0.75

0.5

0.25

0

0

π/2

Φ

 $\pi/4$

Conclusions

- Benefit analysis of quantum metrology needs to take into account noise and imperfections
- Even in noisy scenarios quantum enhancement is possible – and worthwhile!
- (Nearly) optimal operation can be achieved with (relatively) modest means
- Applications where fixed-scale enhancement is useful / critical
- Qubits live in a vast physical space explore!

Acknowledgements

Radosław Chrapkiewicz Rafał Demkowicz-Dobrzański Michał Jachura Marcin Jarzyna Jan Kołodyński Wojciech Wasilewski *Uniwersytet Warszawski*

Marcin Kacprowicz Uniwersytet Mikołaja Kopernika w Toruniu Uwe Dorner Brian Smith Jeff Lundeen Ian A. Walmsley University of Oxford

Mădălin Guță University of Nottingham

> Roman Schnabel Universität Hannover

Fundacja na rzecz Nauki Polskiej

FNP

UNIA EUROPEJSKA

EUROPEJSKI FUNDUSZ

ROZWOJU REGIONALNEGO

