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Simulating Anyons

• Anyons can be encoded in 2D systems:

– Superconducting electrons in a strong magnetic field 

(Fractional Quantum Hall Effect)

– Lattice � systems (Kitaev s toric code/hexagonal lattice, Wen, 

Ioffe, Freedman-Nayak-Shtengel, Bombin-Delgado)

• Anyons are quasiparticles that can be identified and 

transported by local operators.

• The quantum states of the corresponding systems are highly 

entangled with long range correlations.

• Anyonic statistics are possible due to entanglement in the 

underlying system.



  

Topological properties of Toric Code

Particles: 1, e (abelian), m (abelian),    (fermion)

Fusion rules:

Braiding:

F-matrices:
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Topological properties of Ising model

Particles: 1,    (non-abelian),    (fermion)

Fusion: 

        

Braiding:

F-matrices:
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S-matrices

• The S-matrix of a model has elements defined by

• For the toric code and Ising model these are
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S-matrices

• These S-matrices may be related by

• These relation suggest that     's are, in some way, like 

superpositions of e's and m's.

• We can find a similar result by looking at the lattices on 

which these anyon models reside.
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Spin Lattice Models

• �Alexei Kitaev s honeycomb lattice model:

– Defined on a honeycomb lattice with 

qubits at the vertices;

– Plaquette operators
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[A. Kitaev, Ann. Phys. 321, 2 (2006)]



  

Spin Lattice Models

• The honeycomb lattice is expected to support the Ising model, 

but the details on the spin representation are illusive.

• We do know that    particles should be detected by the 

plaquette operators.    particles should not.
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Spin Lattice Models

• Wen plaquette model:

– Defined on a bicoloured square lattice with qubits at the 

vertices;

– Supports the abelian toric code model;

– Plaquette operators

detect anyons on each plaquette;

– e anyons live on s plaquettes, m anyons on p plaquettes.

[X. G. Wen, Phys. Rev. Lett. 90, 016803 (2003).]
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Spin Lattice Models

• Consider forming composite plaquettes.

 

• The composite plaquettes form a honeycomb lattice.

 

• We define the plaquette operator to be the product of those 

for the component plaquettes
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Spin Lattice Models

• This shows an interesting relation between the honeycomb 

lattice model and Wen plaquette model:

–      particles can be expressed in terms of e's and m's;

– The toric code fermion, like the Ising fermion, cannot be 

detected by       .

• So perhaps it is possible to build a lattice representation of 

Ising model particles from toric code particles.
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Superposit ion principle: Partic les
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• We will now attempt to do this

– We identify the fermions of the toric code with those of the 

Ising model,         ;

– We identify a pair of    's with the superposition

the relative sign j=+/-1 is a non-local property of the pair. 

What is its significance?
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Superposit ion principle: Fusion

• The state of two pairs is

• Changing the fusion basis
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•  Note that the relative sign is 

determined by those of the initial    

pairs.
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Superposit ion principle: Fusion

• From the F-matrices we know

So states with j=+1 act like a pair created from the vacuum 

and those with j=-1 act like a pair created from a fermion.
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Superposit ion principle: Braiding

• We need to move     particles.

• They cannot simply be moved by Pauli operations.

• Instead we use

and
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Superposit ion principle: Braiding

• The state of two strings is

• Braid the    at 1 with that at 3.

so

• It is easy to verify that

   


�1�2 ; j �
�3� 4 ; j �=
1

2
�
e1e2e3e4 ��
m1m2m3m4 �� j
e1 e2m3m4 �� j
m1m2 e3e4 ��

�

�R� �
1 �2=1,� R� �

� �2=�1

R
1,3

2 
�
1
�

2
; j �
�

3
�

4
; j �=
�

1
�

2
;� j �
�

3
�

4
;� j �

�R� �
� �2=�1,R� �1=�1



  

Framing

• Phase can be added using framing.

• This uses the operations

applied either side of particles.

• A phase of        or       can then

be applied.

• This accounts for braiding and

a twist.
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Conclusions

• From the S-matrices and lattice models, we see that 

relations exist between the toric code and Ising anyons 

model.

• Using a superposition principle, we can demonstrate 

braiding and fusion properties of the Ising model with toric 

code particles. This demonstrates and uses non-local 

properties encoded with the toric code states.

• Could a similar thing be done for other anyon models?


