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Simulating Anyons I
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®* Anyons can be encoded in 2D systems:

— Superconducting electrons in a strong magnetic field
(Fractional Quantum Hall Effect)

— Lattice systems (Kitaev’s toric code/hexagonal lattice, Wen,
loffe, Freedman-Nayak-Shtengel, Bombin-Delgado)

* Anyons are quasiparticles that can be identified and
transported by local operators.

* The quantum states of the corresponding systems are highly
entangled with long range correlations.

* Anyonic statistics are possible due to entanglement in the
underlying system.



Topological properties of Toric Code N
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Particles: 1, e (abelian), m (abelian), € (fermion)

Fusion rules:
mXm=eXe=eXe=1,eXm=€,eXe=m,mXe=e

Braiding:
R..=—1,(R.)=(R.,)=(R;,)=-1R,=R,, =1

F-matrices:

1
e o 7 N\
1 |-
e e



Topological properties of Ising model I
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Particles: 1, o (non-abelian), y (fermion)

Fusion:
oXo=1+y,yXy=1l,0Xp=0

Braiding:

1 —l7T/4 1 2_ —l7T/4 o \2__ |

R =™ (R ) (R )'=—1,R, =-1
F-matrices:
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S-matrices l!
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* The S-matrix of a model has elements defined by
a b

* For the toric code and Ising model these are

1 V2 1 |
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S-matrices l!
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* These S-matrices may be related by
Toric 4+ STorlc

, . ; ; Ising
Ising __ Toric Ising _ qToric S —
Suo =95y Syw =Oce 2y \/2
Toric Toric Toric Toric Toric Toric
Gl _ S+ S glsing _ S+ S S+ S
lo —
V2 7 V2

* These relation suggest that 0's are, in some way, like
superpositions of e's and m's.

* We can find a similar result by looking at the lattices on
which these anyon models reside.



Spin Lattice Models I
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* Alexei Kitaev’s honeycomb lattice model:

— Defined on a honeycomb lattice with
qubits at the vertices;

— Plaquette operators

— X y < X y <

[A. Kitaev, Ann. Phys. 321, 2 (2006)]



Spin Lattice Models I
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* The honeycomb lattice is expected to support the Ising model,
but the details on the spin representation are illusive.

* We do know that o particles should be detected by the
plaquette operators. ¢ particles should not.



Spin Lattice Models I
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Wen plaguette model:

— Defined on a bicoloured square lattice with qubits at the
vertices;

— Supports the abelian toric code model; 2 3, 4

— Plaquette operators 3 p
C oy e 8
A=0,0,050 .
— Y N Y
B, =0,030,0% . ‘ :

detect anyons on each plaquette;

— e anyons live on s plaquettes, m anyons on p plaquettes.
[X. G. Wen, Phys. Rev. Lett. 90, 016803 (2003).]



Spin Lattice Models I
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* Consider forming composite plaquettes.
* The composite plaquettes form a honeycomb lattice.

* We define the plaquette operator to be the product of those
for the component plaguettes

— Y Y A Y e —
AB,=0,0,0;0,0;0,=W,




Spin Lattice Models I
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— Y Y A Y e —
AB,=0,0,0;0,0,0,=W,

* This shows an interesting relation between the honeycomb
lattice model and Wen plaquette model:

— (o particles can be expressed in terms of e's and m's;

— The toric code fermion, like the Ising fermion, cannot be
detected by W .

* So perhaps it is possible to build a lattice representation of
Ising model particles from toric code particles.



Superposition principle: Particles I
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* We will now attempt to do this

— We identify the fermions of the toric code with those of the
Ising model, =€ ;

— We identify a pair ofla 's with the superposition

ﬁ<
the relative sign j=+/-1 is a non-local property of the pair.
What is its significance?

B =i e

oo, j)=—=(lee)+ jlmm))



Superposition principle: Fusion I
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* The state of two pairs is

: N : :
o, 0'2,']>|0'3O'4;]>=5(|eleze3e4>—|—|m1m2m3m4>—|—]|elezm3m4>—|—]|m1mze3e4>)

* Changing the fusion basis

. . 1 .
|U1 (72;]>|U3U4;]>:ﬁ(|0103;1>|(72(74;1>+J|U1U3;W>|0204;W>)

1 3
KE K B
R
B B B
R
ll.

* Note that the relative sign is
determined by those of the initial
pairs.




Superposition principle: Fusion I
UNIVERSITY OF LEEDS

. . 1 .
|U1 (72"]>|U3U4"]>:ﬁ(|0103;1>|0204;1>+J|U1U3;W>|0204;W>)

®* From the F-matrices we know
/\ /\
( > < >w— -
\/

So states with j=+1 act like a pair created from the vacuum
and those with j=-1 act like a pair created from a fermion.



Superposition principle: Braidin I
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* We need to move 0 particles.
* They cannot simply be moved by Pauli operations.

* Instead we use

C.=(1+A,)®1 +(1+A,)®0,

and
D.=0;®|0)(0| +o7|1){1]



Superposition principle: Braiding I
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* The state of two strings is

: N : :
00,7030, 7)== (le e,ese)+mymymym, )+ jle e,mymy )+ jlm m,ese,))

®* Braid theo at 1 with that at 3. g .
(R,,) =1(R),)=—1 EVENYS

: a%ats
Risloy0,; j)loso,;j)=lo o= j)oso,,—j) .".}:.i:.
lll

* |t is easy to verify that

(R, '=—1,R, 1=—1

oy



Framing 3
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Phase can be added using framing.

* This uses the operations
E=1,8|+)(+|+io;®|—)(—
applied either side of particles.
| (a) | SHA

—itr/8

A phase of ¢ ™ *ore”"¢an then

be applied.

This accounts for braiding and
a twist.



Conclusions I
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* From the S-matrices and lattice models, we see that
relations exist between the toric code and Ising anyons
model.

* Using a superposition principle, we can demonstrate
braiding and fusion properties of the Ising model with toric
code particles. This demonstrates and uses non-local
properties encoded with the toric code states.

* Could a similar thing be done for other anyon models?



