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Overview

e Rotating Atomic Bose Gases: Continuum vs Lattice
e Condensed Phases

e Novel FQH States

e Summary



Rotating Atomic Bose Gases: Continuum

Q
Rotation frequency, (2

density of quantized vortices Ny

Rapidly rotating gas is characterized by the “filling factor”

Strong correlation regime: v < v, ~ 6
—=-Bosonic versions of fractional quantum Hall states, conventional (Laughlin,
composite fermion) and exotic ( “non-abelian”) + ...7 [Many refs...]
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The challenge: the interaction scale at v ~ 1 is small ~ Waspaq ~ Shy | .
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Rotating Atomic Gases: Lattice

Bose-Hubbard model with “magnetic field” (square lattice)

H = —J;% {di&jemm + h.c.} + %Uzﬁz(ﬁz —1) - Mzﬁz‘
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Particle density, n @ @

Vortex density, n.
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Time-dependent modulation of tunneling/site energies [Jaksch & Zoller, NJP 5, 56 (2003);
Mueller, PRA 70, 041603 (2004); Sgrensen, Demler & Lukin, PRL 94, 086803 (2005)]

Rotating lattice [Tung, Schweikhard, Cornell, PRL 97, 240402 (2006); Hafezi, Sgrensen, Demler & Lukin, PRA
76, 023613 (2007)]

n, Ny < 1 =continuum limit [Sgrensen, Demler & Lukin, PRL 94, 086803 (2005); Palmer & Jaksch,
PRL 96, 180407 (2006), PRA 78, 013609 (2008); Hafezi, Sgrensen, Demler & Lukin, PRA 76, 023613 (2007)]

What are the new features/phases on the lattices?



Hard-core limit, U > J
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Spin-1/2 system: 57 = n; —

H=—J) [5f57¢ +hc]—p) 5 + const.
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Mean-field theory: §= S(sinf cos ¢, sin 6 sin ¢, cos )

H=—-JS? D iy Sin0;sin b cos(¢; — ¢j + Aij) — pS ), coso;
-J
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@ @ Frustrated quantum spin system.
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? Q+A12 Are there any “spin-liquid” phases?



Overview of Results

Exact-diagonalization studies reveal:

Iy 1 . . _ 1
(1) “Fully-frustrated” limit, n, = 3:

— groundstate is a BEC (vortex lattice) for all n;
— ordered magnetic groundstate.

(I1) Novel strongly-correlated states at certain (n,n,).

— Fractional quantum Hall states that exist only on the lattice;
— “spin-liquid” phases.



Numerical Methods

: - O—O—O—0O—0O— kL
L, x L, square lattice, with
periodic boundary conditions.
) e e e ) 2
W/ W/ O/ / /
Number of part_lcles, N =nL,L, e S N N N
Number of vortices, Ny, = n,L,L,
1 2 L,

Translational symmetry =-energy eigenstates characterized by a conserved
momentum K.

Single-particle density matrix of the groundstate(s)
pij = <‘I’0\&I&j|‘1’0>

Simple BEC =-one eigenvalue of order V.
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(1) Condensed states at n, = ;

n=1/4,n,=1/2 (N =2,4,6,8)

e Two quasi-degenerate groundstates, e.g. N =4

KO — (0,0),Kl — (1, 1), with: (El — EQ) ~ 015(E2 — E())

e Each has two large eigenvalues of the single particle density matrix.

P\ = 2.309 x 2,0.416 x 4,0.283 x 2...
piy) = 2.617 x 2,0.290 x 4,0.192 x 2...

“Fragmented” BEC?



Translational symmetry breaking

V) = a|¥o) + 5|¥1)

Single-particle density matrix has a one large eigenvalue.
=-simple BEC with translational symmetry breaking.

Two degenerate condensate wavefunctions:
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Consistent with mean field theory.



MFT for Condensed States

For hardcore bosons, a suitable mean-field-state can be parametrized

W) =[] [sin(ej /2) + cos(6;/2)e™ial]| 0)

J
with particle number conservation N = 3. cos(0;/2)
For this Ansatz minimise K.E. = —J/2) _, . sinf;sin6;cos(x; — x; — Aij)

n=1/4,n,=1/2

Projected onto fixed particle number:
e.g., N =4: [(U,¢|P)]|* = 0.83041844

N = 6: (U |T)[2 = 0.65978873



n=1/2,ny=1/2 [N =8, (Ly,L,) = (4,4)]

e Again, two quasi-degenerate groundstates, at Ky = (0,0), K1 = (1,1)

e.g. N =8: (E1 — E()) ~ O].].(E2 — Eo)
e Again, each has two large eigenvalues of the single particle density matrix.

e MF-GS described by the same condensate phases as n = 1/4

1 !

1 l
Similarly large overlap, e.g., N = 8: [(¥ ¢ |P)|* = 0.81853181

— Condensed state insensitive to particle density (as expected).



(1) Correlated States

Composite Fermions

Composite fermion = bound state of an electron with two “flux quanta”

ngF = Ng — 2N

Interacting electrons =-non-interacting composite fermions.

Filled band for (n,n$ ") =trial incompressible state.



Rotating bosons

Composite fermion = a bound state of a boson with one vortex of the
many-body wavefunction. [NRC & Wilkin, PRB 80, 16279 (1999)]

Filled band (n,nS*") =trial incompressible state.

Continuum:

n
n/nCF::I:p = y=—2 —_F

A%



Lattice: band gaps of the “Hofstadter butterfly”
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There can exist incompressible states with no

counterpart in the continuum




Example CF series
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e Take bosons at 2 5 < Ny < %
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e Read off particle density [linear dependence on n., going through (0,%), (1,1)]:
n=2(ny —1/2)

— CF state predicted for n, = 1 n

1
2 2

e filling factor v = n/n, varies continuously for such states!



Gaps for CFs on the square lattice

band-gaps




Numerical Evidence

Exact diagonalisation results show evidence of strongly-correlated many-body
states at a series of these new cases:

n=1/7,ny =3/7 (N = 3,4,5,6)
n=1/6,n, =5/12 (N = 2,4)
n=1/9,n,=4/9 (N = 3,4,5)

Many-body spectrum has properties similar to those of the Laughlin state.
e Single-particle density matrix has IV eigenvalues of order 1.
e Groundstate has very small overlap with condensed (mft) states.

e Substantial excitation gap above the groundstate =-incompressibility.



Sample data: (n =1/7, ny, =3/7, N =5)

e gap A =~ 0.04¢ (compare to Araugniin ~ 0.18% — naively expect 1/4)

e gap increasing with on-site repulsion U

e five large eigenvalues of p;;: 2 x 0.85426, 0.85325, 2 x 0.83706, ...

e low overlap of MF condensed state and exact low-lying states:

n | E, (Wnir[n)|”
0 | -12.152984 | 0.009608
1| -12.112878 | 0.046826
2 | -12.084556 | 0.044106
3 | -12.078881 | 0.001082
4 | -12.074798 | 0.001507
5 | -12.059628 | 0.054467

0.04

0.02

—=Uncondensed, incompressible fluid — strongly correlated state

e Compatible with existence of QH state, but no proof




Summary

e We have studied the phases of rotating bosons on the lattice (the
Bose-Hubbard model in a magnetic field).

e Taking account of broken translational symmetry, we find evidence for simple
BEC at n, = 1/2 with a two-fold degeneracy. (Condensed, vortex lattice, phase.)

e A generalized composite fermion construction leads to the prediction of
incompressible phases at certain (n,n) stabilized by the lattice.

e We find numerical evidence for uncondensed, incompressible fluids for several of
these predicted cases. These are strongly-correlated phases which have no
counterpart in the continuum.



