Correlated Phases of Atomic Bose Gases on a Rotating Lattice

Gunnar Möller T.C.M. Group, Cavendish Laboratory, University of Cambridge

DaQuist: Sixth Symposium on Topological Quantum Computation 17 Sept. 2008.

Gunnar Möller & NRC (unpublished)

Engineering and Physical Sciences Research Council

Overview

- Rotating Atomic Bose Gases: Continuum vs Lattice
- Condensed Phases
- Novel FQH States
- Summary

Rotating Atomic Bose Gases: Continuum

Rapidly rotating gas is characterized by the "filling factor"

$$\nu \equiv \frac{n_{\rm 2d}}{n_{\rm v}}$$

Strong correlation regime: $\nu \leq \nu_{\rm c} \simeq 6$

 \Rightarrow Bosonic versions of fractional quantum Hall states, conventional (Laughlin, composite fermion) and exotic ("non-abelian") + ...? [Many refs...]

The challenge: the interaction scale at $\nu \sim 1$ is small $\sim \frac{\hbar^2 a_s}{M} n_{3d} \sim \frac{a_s}{a_{\parallel}} \hbar \omega_{\perp}$.

Rotating Atomic Gases: Lattice

Bose-Hubbard model with "magnetic field" (square lattice)

Time-dependent modulation of tunneling/site energies [Jaksch & Zoller, NJP 5, 56 (2003); Mueller, PRA 70, 041603 (2004); Sørensen, Demler & Lukin, PRL 94, 086803 (2005)] Rotating lattice [Tung, Schweikhard, Cornell, PRL 97, 240402 (2006); Hafezi, Sørensen, Demler & Lukin, PRA 76, 023613 (2007)]

 $n, n_{\rm v} \ll 1 \Rightarrow$ continuum limit [Sørensen, Demler & Lukin, PRL 94, 086803 (2005); Palmer & Jaksch, PRL 96, 180407 (2006), PRA 78, 013609 (2008); Hafezi, Sørensen, Demler & Lukin, PRA 76, 023613 (2007)]

What are the new features/phases on the lattices?

Hard-core limit, $U \gg J$

Spin-1/2 system:
$$\hat{s}_i^z = \hat{n}_i - \frac{1}{2}$$
, $\hat{s}_i^+ = \hat{a}^\dagger$, $\hat{s}_i^- = \hat{a}$

$$H = -J\sum_{\langle i,j\rangle} \left[\hat{s}_i^+ \hat{s}_j^- e^{iA_{ij}} + h.c. \right] - \mu \sum_i \hat{s}_i^z + \text{const.}$$

Mean-field theory: $\vec{s} = S(\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$

$$H = -JS^2 \sum_{\langle i,j \rangle} \sin \theta_i \sin \theta_j \cos(\phi_i - \phi_j + A_{ij}) - \mu S \sum_i \cos \theta_i$$

Frustrated quantum spin system.

Are there any "spin-liquid" phases?

Overview of Results

Exact-diagonalization studies reveal:

- (I) "Fully-frustrated" limit, $n_v = \frac{1}{2}$:
- groundstate is a BEC (vortex lattice) for all n;
- ordered magnetic groundstate.

(II) Novel strongly-correlated states at certain (n, n_v) .

- Fractional quantum Hall states that exist only on the lattice;
- "spin-liquid" phases.

Numerical Methods

 $L_x \times L_y$ square lattice, with periodic boundary conditions.

Number of particles, $N = nL_xL_y$ Number of vortices, $N_v = n_vL_xL_y$

Translational symmetry \Rightarrow energy eigenstates characterized by a conserved momentum K.

Single-particle density matrix of the groundstate(s)

 $\rho_{ij} = \langle \Psi_0 | \hat{a}_i^{\dagger} \hat{a}_j | \Psi_0 \rangle$

Simple BEC \Rightarrow one eigenvalue of order N.

(I) Condensed states at $n_{\rm v} = \frac{1}{2}$

 $n = 1/4, n_v = 1/2$ (N = 2, 4, 6, 8)

• Two quasi-degenerate groundstates, e.g. N = 4

 $K_0 = (0,0), K_1 = (1,1), \text{ with: } (E_1 - E_0) \sim 0.15(E_2 - E_0)$

• Each has two large eigenvalues of the single particle density matrix.

e.g.,
$$N = 8$$
: $\rho_{ij}^{(0)} \Rightarrow 2.309 \times 2, 0.416 \times 4, 0.283 \times 2...$
 $\rho_{ij}^{(1)} \Rightarrow 2.617 \times 2, 0.290 \times 4, 0.192 \times 2...$

"Fragmented" BEC?

 $|\Psi\rangle = \alpha |\Psi_0\rangle + \beta |\Psi_1\rangle$

Single-particle density matrix has a *one* large eigenvalue.

⇒simple BEC with translational symmetry breaking.

Two degenerate condensate wavefunctions:

Consistent with mean field theory.

MFT for Condensed States

For hardcore bosons, a suitable mean-field-state can be parametrized

$$|\Psi_{\rm mft}\rangle = \prod_{j} \left[\sin(\theta_j/2) + \cos(\theta_j/2) e^{i\chi_j} a_j^{\dagger} \right] |0\rangle$$

with particle number conservation $N = \sum_{j} \cos(\theta_j/2)^2$

For this Ansatz minimise K.E. = $-J/2 \sum_{\langle i,j \rangle} \sin \theta_i \sin \theta_j \cos(\chi_i - \chi_j - A_{ij})$

 $n = 1/4, n_{\rm v} = 1/2$

Projected onto fixed particle number:

e.g., N = 4: $|\langle \Psi_{\rm mft} | \Psi \rangle|^2 = 0.83041844$

 $N = 6: |\langle \Psi_{\rm mft} | \Psi \rangle|^2 = 0.65978873$

 $n = 1/2, n_v = 1/2$ [N = 8, (L_x, L_y) = (4, 4)]

• Again, *two* quasi-degenerate groundstates, at $K_0 = (0,0), K_1 = (1,1)$

e.g. N = 8: $(E_1 - E_0) \sim 0.11(E_2 - E_0)$

- Again, each has two large eigenvalues of the single particle density matrix.
- MF-GS described by the same condensate phases as n = 1/4

Similarly large overlap, e.g., N = 8: $|\langle \Psi_{mft} | \Psi \rangle|^2 = 0.81853181$

 \Rightarrow Condensed state insensitive to particle density (as expected).

(II) Correlated States

Composite Fermions

Composite fermion = bound state of an electron with two "flux quanta"

$$n_{\phi}^{CF} = n_{\phi} - 2n$$

Interacting electrons \Rightarrow non-interacting composite fermions. Filled band for $(n, n_{\phi}^{CF}) \Rightarrow$ trial incompressible state.

Rotating bosons

Composite fermion = a bound state of a boson with *one vortex* of the many-body wavefunction. [NRC & Wilkin, PRB **80**, 16279 (1999)]

$$n_{\rm v}^{CF} = n_{\rm v} - n$$

Filled band $(n, n_v^{CF}) \Rightarrow$ trial incompressible state.

Continuum:

$$n/n_{\rm v}^{CF} = \pm p \qquad \Rightarrow \qquad \nu = \frac{n}{n_{\rm v}} = \frac{p}{p \pm 1}$$

Lattice: band gaps of the "Hofstadter butterfly"

There can exist incompressible states with no counterpart in the continuum

Example CF series

- Take bosons at $\frac{1}{2} < n_{\mathrm{v}} < \frac{2}{3}$
- Make CF transformation:

$$n_{\rm v}^* = n_{\rm v} - n$$

• Read off particle density [linear dependence on n_v , going through $(0, \frac{1}{2})$, (1, 1)]:

$$n = 2(n_{\rm v} - 1/2)$$

 $\Rightarrow {\sf CF}$ state predicted for $~n_{\rm v}=\frac{1}{2}-\frac{1}{2}n$

• filling factor $\nu = n/n_{\rm v}$ varies continuously for such states!

Gaps for CFs on the square lattice

Numerical Evidence

Exact diagonalisation results show evidence of strongly-correlated many-body states at a series of these new cases:

 $n = 1/7, n_{v} = 3/7 (N = 3, 4, 5, 6)$ $n = 1/6, n_{v} = 5/12 (N = 2, 4)$ $n = 1/9, n_{v} = 4/9 (N = 3, 4, 5)$

Many-body spectrum has properties similar to those of the Laughlin state.

- Single-particle density matrix has N eigenvalues of order 1.
- Groundstate has very small overlap with condensed (mft) states.
- Substantial excitation gap above the groundstate ⇒incompressibility.

Sample data: $(n = 1/7, n_v = 3/7, N = 5)$

- gap $\Delta \approx 0.04t$ (compare to $\Delta_{\text{Laughlin}} \approx 0.18t$ naïvely expect 1/4)
- \bullet gap increasing with on-site repulsion U
- five large eigenvalues of ρ_{ij} : 2 × 0.85426, 0.85325, 2 × 0.83706,...
- low overlap of MF condensed state and exact low-lying states:

 \Rightarrow Uncondensed, incompressible fluid \rightarrow strongly correlated state

• Compatible with existence of QH state, but no proof

Summary

• We have studied the phases of rotating bosons on the lattice (the Bose-Hubbard model in a magnetic field).

• Taking account of broken translational symmetry, we find evidence for simple BEC at $n_v = 1/2$ with a two-fold degeneracy. (Condensed, vortex lattice, phase.)

• A generalized composite fermion construction leads to the prediction of incompressible phases at certain (n, n_v) stabilized by the lattice.

• We find numerical evidence for uncondensed, incompressible fluids for several of these predicted cases. These are strongly-correlated phases which have no counterpart in the continuum.